
 
Abstract—Current land use and land cover (LULC) dynamics in 

Ghana have revealed considerable changes in settlement spaces. As a 
result, this study is intended to merge the cellular automata and 
Markov chain models using remotely sensed data and Geographical 
Information System (GIS) approaches to monitor, map, and detect the 
spatio-temporal LULC change in state lands within Cape Coast 
Metropolis. Multi-temporal satellite images from 1986-2020 were 
pre-processed, geo-referenced, and then mapped using supervised 
maximum likelihood classification to investigate the state’s land 
cover history (1986-2020) with an overall mapping accuracy of 
approximately 85%. The study further observed the rate of change for 
the area to have favored the built-up area 9.8 (12.58 km2) to the 
detriment of vegetation 5.14 (12.68 km2), but on average, 0.37 km2 
(91.43 acres, or 37.00 ha.) of the landscape was transformed yearly. 
Subsequently, the CA-Markov model was used to anticipate the 
potential LULC for the study area for 2030. According to the 
anticipated 2030 LULC map, the patterns of vegetation transitioning 
into built-up regions will continue over the following ten years as a 
result of urban growth. 

 
Keywords—LULC, cellular automata, Markov Chain, state lands, 

urbanisation, public lands, cape coast metropolis. 

I. INTRODUCTION 

HE impact of urbanisation on the African continent is 
characterised by a bicephalic pattern of events where large 

African cities grow disproportionately large compared to other 
urban areas. In 2014, the UN further identified the African 
continent as moving swiftly into the “urban age,” though 
largely rural [1]. According to [1], the projected statistics on 
urbanisation for the continent for forty years (2010–2050) are 
expected  to  triple from 395 million to 1.33 billion, 
corresponding to 21% of the global projected urban 
population. 

In 1960, the Ghanaian urban population stood at 23% and 
was projected to hit a 59.2% high by 2020 [2]. Characterised 
by socio-economic developments, urban areas attract more 
people increasing the general population [3]. A population 
increase is bound to mount pressure on both finite and infinite 
natural resources, of which land, a finite resource is the 
greatest of them all. This was further corroborated by [4] when 
they iterated that the basic microcosm for all forms of 
economic growth and national development is hinged on land. 
This forms the basis for why land must be managed to the 
benefit of both current and future generation’s sustainability. 

The considerable importance of land again requires prudent 
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management skills to effectively and efficiently manage it, as 
a reverse would result in associated dangers with urbanisation 
(sprawl effects, slums, congestion, pollution, and many more). 
The future generation’s fate is determined based on predictive 
studies on LULC for the landscape under study, which are 
done based on tried and tested models proven to be reliable 
over the years. 

Studies on LULC change are frequently employed to track 
changes in the environment brought forth by humans. Many 
studies have confirmed that complex anthropogenic-
environmental interactions are the cause of land use and land 
cover change (LULCC) [5]. It is challenging to pinpoint the 
primary drivers of social-ecological systems due to their high 
levels of interdependency [6]. Land use planning, particularly 
in developing nations, must take into account the primary 
drivers of LULCCs, including indirect (underlying) variables 
that are difficult to identify through spatial or economic 
analysis. 

The loss of forests and agricultural land in many exurban 
regions has been made worse by rising global urbanization, 
which has also raised poverty rates among smallholder 
farmers who practice subsistence farming [7]. Critical 
instruments for collecting precise and timely geographical data 
on LULC and assessing changes in a study region are 
Geographic Information Systems (GIS) and Remote Sensing 
(RS) [8]. 

To identify and monitor land uses at different scales, RS 
pictures record LULC conditions with ease and provide an 
abundance of data from which current LULC information and 
changes may be effectively retrieved, analysed, and simulated 
[9]. That being said, GIS offers a flexible environment for 
collecting, archiving, displaying, and evaluating the digital 
data needed for change detection [10]. 

While there are several techniques for identifying and 
analysing LULC changes, the analysis of historical remotely 
sensed images using RS and GIS technologies enables 
effective monitoring and forecasting of LULC change 
patterns. This might provide a framework for methodical and 
efficient management, planning, and restoration of land used 
for socioeconomic development [11]. Numerous methods for 
predicting LULC changes are easily found in the literature. 
These methods vary in terms of their objectives, protocols, 
study areas, presumptions, and the types and sources of data 
employed [12]. 

Analytical equation-based approaches [13] are frequently 
used to estimate LULC changes. Additionally, there are 
statistical models [14]. Markov models [15], multi-agent 
models [16], expert system models [17], cellular models [18], 
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and hybrid models [19]. Cellular and agent-based models, or a 
hybrid model based on these two types, are now the most 
often employed models in LULCC monitoring and prediction 
[20]-[22]. 

Combining the concepts of Markov chains and cellular 
automata (CA-Markov) results in a hybrid model. To 
effectively simulate the spatial variation in a complex system, 
this model combines the benefits of the long-term predictions 
of the Markov model with the capabilities of the Cellular 
Automata (CA) model [23]. 

Benefits of the CA-Markov model for LULCC research 
include its capacity for dynamic simulation, high data 
efficiency, scarcity, easy calibration, and the ability to 
simulate a variety of land cover types and intricate patterns 
[24], [25]. The CA-Markov model has been widely utilized by 
scholars to track and predict changes in landscapes and land 
use [26], [27], and [28]. 

This research evaluates LULC from 1986 to 2020 and 
projects into the future (2030) using geospatial analysis on the 
state lands of Cape Coast, Ghana. This study provides 
decision-makers with important data for sustainable growth 
and comprehensive local environmental change, in addition to 
helpful planning and management information. 

II. STUDY AREA 

The study was performed for the Cape Coast Metropolitan 
Assembly (CCMA), which is abutted by the following 
districts: Twifu Hemang Lower Denkyira on the north, Abura 
Asebu Kwamankesse on the east, the Gulf of Guinea on the 
south, and Komenda Edina Eguafo Abbirim on the west. It is 
geographically located between longitudes 001° 13ˈW and 
001° 22ˈW and latitudes 005°05ˈN and 005°15ˈN, with an 
approximate area coverage of 122 km2.  

With the batholith as the dominant feature, it is 
characterised by an undulating landscape with a relatively 
high temperature. Saturated with most of Ghana’s leading 
second-cycle educational institutions—a public university and 
a technical university—its literacy rate is 74.1% [29]. Fig. 1 
represents the district map of the CCMA.  

III. DATA COLLECTION 

LULC data for the CCMA were gathered from the United 
States Geological Survey (USGS), as shown in Table I. These 
datasets were classified to perform LULC mapping between 
distinct LULC classes such as built-up areas, water bodies, 
and vegetation, as described in Table II. 

 

 

Fig. 1 District Map of Cape Coast Metropolitan Assembly 
 

TABLE I 
SATELLITE DATA SOURCE 

Satellite 
images 

Date 
Acquired 

Resolution/P
ixel Size (m)

Image 
Quality 

Land Cloud 
Cover (%)

Number of 
Bands

Landsat 4 TM 01-01-1986 30 9 0 7 
Landsat 7 

ETM+ 
01-15-2000 30 7 9 9 

Landsat 7 
ETM+ 

01-15-2010 30 9 9 9 

Landsat 8 
OLI_TIRS 

03-01-2020 30 9 3.82 11 

IV. METHODOLOGY 

The study procedures include image pre-processing, image 
classification, change prediction, and validation. Fig. 2 
illustrates a flow chart that summarises these procedures. Pre-
processing is essential for assessing LULC change since errors 
due to image sensors, atmospheric effects, and Earth's 
curvature might produce inaccurate findings if they are not 
corrected [30]. 
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A. Image Classification and Accuracy Assessment 

Satellite images cover a wider area of spatial features, 
which are made possible through signals travelling to and 
from objects through the atmosphere to sensors onboard 
imaging platforms. The outcome images are therefore not 
without noise resulting from missed or incomplete, 
inconsistent, and false values, rendering images 
indistinguishable from originally captured objects as observed 
by [31]. For better results to be obtained from a satellite 
survey, radiometric and atmospheric corrections (quantitative 
outputs), geometric correction, and spatial sub-setting 
(qualitative outputs), generally referred to as pre-processing, 
must be done to ensure an image with better reflectance 
quality depicting true ground representation (geo-referenced 
data). The pre-processing technique was catered for in this 
study by the ENVI software. The processing of pre-processed 
images was performed in Arc Map, where various thematic 
layers from the various bands were clipped to form a land 
cover mosaic for detail classification. Image pixels were 
categorised into numerous LULC classes based on similar or 
differing spectral reflectance based on trained samples [32]. 

The trained samples for this study were based on mapped 
data from Google Earth and online imagery from Global 
Mapper. High-quality change detection findings were ensured 
by uniformly and randomly scattering sixty ground truth data 
points over the area. 30 training points were used to classify 
the 2020 image, together with local information and Google 
Earth photos. After that, the remaining thirty points were used 
to assess how well the image was classified. Using a 
supervised classification approach based on maximum 
likelihood, the research region was split into three (3) land use 
categories: (1) built-up; (2) vegetation; and (3) water. 

 

 

Fig. 2 Schematic Workflow for Methodology 

TABLE II 
LAND USE CLASSES 

Land use Class Feature 
Vegetation Any land having woody plants, plantations, shrubs, 

grassland and cropped land. 
Built-up All of the land that has been developed, including social 

amenities like roads and highways for transportation, built-
up regions and undeveloped terrain. 

In land Water These are areas of land that are submerged or covered in 
water for a portion of the year (for example, Lagoon).

B. Change Detection Analysis 

To evaluate the LULCC that has occurred for the thirty-
four-year period (1986–2020), the study used post-
classification change detection. The three-time periods (1986-
2000, 2000-2010, and 2010-2020) yielded the following 
results: change maps, contributions to the net change by land-
cover type, and net gains or losses in hectares (ha) and 
percentages (%) for each land-cover category. Equation (1), as 
adopted in [32], was used to determine the yearly rate of 
LULC change. 

 

         𝑅 ൌ  ଵ଴଴ൈሺ஺మି஺భሻ

஺భ
ൈ ଵ

௧మି௧భ
       (1) 

 
where R is the rate of LULC change A1 and A2 are the area of 
the first epoch and second epoch respectively. 

C. Modelling and Predicting LULCC 

In modelling and predicting LULCC, the study adopted the 
use of Markov Chain (MC) analysis and Cellular Automata 
(CA-Markov) to predict LULCC. The Markov model, 
according to [31], is used to forecast LULC change through a 
stochastic approach where a given class changes over time. 
Land-use change(s) over some time can be mathematically 
expressed as a matrix in a state. In a state, the transition 
probability matrix is determined in (2): 

  
    𝑆ሺ𝑡, 𝑡 ൅ 1ሻ ൌ 𝑃௜௝ ൈ 𝑆ሺ𝑡ሻ                                   (2)  

  
where S(t) represents the system's status at time (t), S(t+1) 
represents the system's status at time (t+1), and Pij represents 
the transition probability, which is determined in (3): 

  

       𝑃௜௝ ൌ ൥
𝑃ଵଵ ⋯ 𝑃ଵ௡

⋮ ⋱ ⋮
𝑃௡ଵ ⋯ 𝑃௡௡

൩ , ሺ0 ൑ 𝑃௜௝ ൑ 1ሻ               (3) 

 
where P is the transition probability. Pij is the probability of 
converting from the present state (i) to another state (j) in time 
(t+1), and Pn is the state probability at any time.  

To project land use trends by 2030, a transition probability 
matrix was developed for 2010-2020. A cross-tabulation of 
two periods using land use photos was used to build this 
matrix. According to [33], the prediction model can replicate 
spatial dynamics by considering the state of nearby cells at a 
particular moment in time. 

The condition of neighbouring cells across time and the 
specified transition matrix are employed in CA to update each 
cell in the landscape. Spatial-temporal dynamics combine with 

Markov Chain  
Analysis

Transition 

Probability or 

Area Matrix 

(2020‐2030) 

Cellular Automata 

(CA) Model 

Predicted LULC Map 

2030

Analysis 

Data Collection  Landsat Data 

Classification  Preprocessing 

Accuracy 
Assessment 

Change Detection 
Analysis 

Transition 

Probability or 

Area Matrix 

(2010‐2020) 

World Academy of Science, Engineering and Technology
International Journal of Urban and Civil Engineering

 Vol:18, No:3, 2024 

121International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 U
rb

an
 a

nd
 C

iv
il 

E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

3,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

56
0.

pd
f



CA dynamics to mimic changes in two-dimensional space 
[34]. The CA-Markov model used to estimate LULC 
dynamics for the 2030-year prediction was verified to ensure 
the model's optimal performance. This was done by predicting 
the 2020 LULCC and comparing it with the actual 2020 
LULCC. The results were analysed for accuracy performance 
using the Kappa Index of Agreement (KIA) for the actual and 
predicted image for the 2020 year and were determined to be 
within the range for the approved classification accuracy 
range. 

C. Model Validation 

The model was evaluated for validity by employing the 
Kappa Index after producing a simulated map. This Kappa 
statistic is distinct from typical Kappa statistics. It splits the 
validation into numerous components, each with a distinct 
form of Kappa and the statistics that go with it, such as K-no 
information, K-location, K-standard, and so on. [33]. After 
achieving successful Kappa values, the CA-Markov model 
was used to simulate the LULC change maps for 2020 and 
2030. According to [34], (4)-(6) give the summary statistics 
for the Kappa fluctuations: 

 
  𝐾௡௢ ൌ ሺ𝑀ሺ௠ሻ𝑁ሺ௡ሻሻ/ሺ𝑃ሺ௣ሻ െ 𝑁ሺ௡ሻሻ       (4) 

  
 𝐾௟௢௖௔௧௜௢௡ ൌ ሺ𝑀ሺ௠ሻ𝑁ሺ௡ሻሻ/ሺ𝑃ሺ௣ሻ െ 𝑁ሺ௡ሻሻ          (5) 

 
 𝐾௦௧௔௡ௗ௔௥ௗ ൌ ሺ𝑀ሺ௠ሻ𝑁ሺ௡ሻሻ/ሺ𝑃ሺ௣ሻ െ 𝑁ሺ௡ሻሻ           (6) 

  
where N(n) denotes no information, M(m) denotes medium 
grid cell-level information, and P(p) denotes perfect grid cell-
level information across the landscape. 

 
TABLE III 

CA-MARKOV CHAIN MODEL STATISTICAL VALIDATION-2020 

Statistics Value (%) 

K_no 84.44 

K_location 93.96 

K_standard 78.89 

V. RESULTS AND DISCUSSION 

A. Classification  

LULC classifications for 1986, 2000, 2010, and 2020 were 
performed on the acquired images with three land cover types 
based on supervised classification and the FAO classification 
scheme. These include: 
i. built-up areas (settlement and bare soil because of their 

close reflectance value); 
ii. vegetation (shrubs, grassland, open woodland, agricultural 

or farmland, etc.); and 
iii. inland water (streams, lagoons, etc.). 

An accuracy assessment was performed for 2020, and the 
results showed an overall accuracy of approximately 85% and 
a Kappa coefficient of 0.80, indicating substantial agreement. 
As a result, there was very little class misunderstanding, and 
the land cover classes were designated.  

Four land cover maps were generated. The land cover map 

for 1986 was mainly dominated by vegetation (Fig. 3 and 
Table IV), with the area and percentage of cover for built-up 
areas, vegetation, and inland water being 3.75 km2 (17.11%), 
17.63 km2 (80.43%), and 0.54 km2 (2.46%), respectively. 

The total land size spanning the study area derived from the 
shape file for the state land holdings within the Metropolis 
was found to be approximately 22 km2 (21.92 km2).  

LULC of the entire state lands in CCMA was still 
dominated by vegetation as of 2000 (Fig. 4), with a minimum 
growth in built-up areas. The coverage of vegetation was 
12.25 km2, built-up areas were 9.19 km2 and inland waters 
were 0.48 km2. These represent 55.90%, 41.93%, and 0.48% 
of the total land area, respectively (Table IV). 

The 2010 and 2020 land cover maps also showed that 
vegetation decreased drastically, with 8.23 km2 representing 
37.55% of the land area for 2010 and 4.95 km2 representing 
22.58% for 2020. Built-up (bare land) and concrete surfaces 
continued to grow in number, occupying 13.17 km2 (60.09%) 
in 2010 and 16.33 km2 (74.5%) in 2020 of the total state lands 
of the Metropolis. Equally for the said two years in 
succession, inland water appreciated by 0.52 km2 (2.36%) and 
0.64 km2 (2.92%), as shown in Figs. 4 and 5 and Table IV. 

The regional statistical breakdown of the urban population 
of Ghana has always placed the Central Region in the third 
position, from independence until the last census year. This 
observation can equally account for the findings of the spatial 
analysis and the results in Table IV, and upon inference, 
similar reasons can be attributed to why the State lands in the 
Metropolis is losing its vegetative cover to rapid urban 
development. 

B. Change Detection Analysis  

Table V presents changes in land cover types over various 
time intervals (1986-2000, 2000-2010, 2010-2020, and 1986-
2020) for built-up areas, vegetation, and water bodies. It was 
seen that there was an increase in built-up areas over all 
intervals, with gains ranging from 3.98 km² to 10.36 km² and 
the rate of change was 9.8 (1986-2020) 

The percentage change also demonstrates consistent growth, 
ranging from 12.58% to 57.39%. This trend suggests 
urbanization and infrastructure development. While it 
indicates economic growth and increased human activity, it 
also implies potential environmental impacts such as habitat 
loss, increased impervious surfaces leading to drainage issues, 
and higher energy consumption due to urban heat island 
effects. 

Vegetation shows a consistent loss across all intervals, 
ranging from 2.18 km2 to 5.38 km2 and a rate of change of 
5.14 (1986-2020). The percentage change in vegetation loss 
ranges from 12.68% to 57.85%. The decline in vegetation 
could indicate deforestation, agricultural expansion, or the 
degradation of natural habitats. It raises concerns about 
biodiversity loss, soil erosion, reduced carbon sequestration, 
and impacts on local climates and ecosystems. 

Water bodies show fluctuating changes, with losses and 
gains observed across different intervals. The overall trend 
indicates a slight increase in water bodies over the entire 
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period (1986–2020). Changes in water bodies can be 
influenced by various factors, such as climate change, land use 
changes, and hydrological alterations. 

While a slight increase in water bodies may seem positive, 
it is essential to consider the quality and ecological health of 
these bodies, as well as potential implications for flood risk 
and water resource management. Continuous monitoring of 
land cover changes using RS and GIS technologies is crucial 
for assessing trends, identifying hotspots of change, and 
informing decision-making processes.  

Long-term planning that considers the ecological, social, 
and economic implications of land cover changes is essential 
for sustainable development and biodiversity conservation. 

By analysing the trends and drivers behind the changes in 

built-up areas, vegetation, and water bodies as depicted in 
Table V, stakeholders can better understand the evolving 
landscape and implement strategies to promote sustainable 
land use practices, protect ecosystems, and address the 
challenges posed by land cover transformations. 

 
TABLE IV 

CHANGES IN LAND COVER (1986-2020) 
Land Cover 

Class
1986    Area 

km2      %
2000    Area 
km2         % 

2010   Area 
km2       % 

2020    Area 
km2         %

Buit-Up 3.75     17.11 9.19       41.93 13.17    60.09 16.33      74.50 

Vegetation 17.63   80.43 12.25     55.90 8.23      37.55 4.95       22.58 

Water 0.54     2.46 0.48       0.48 0.52      2.36 0.64       2.92 

Total 21.92   100 21.92     100 21.92     100 21.92       100 

 

 
TABLE V 

CHANGE DETECTION 
Year Interval 1986 to 2000 2000 to 2010 2010 to 2020 1986 to 2020 

LULC considered Area (km²)   %Change    Rate Area (km²)    % Change    Rate Area (km²)    %Change      Rate Area (km²)     %Change    Rate 

Built-up Areas 
5.44                 24.82       10.36 
(gain)              (gain)       (gain) 

3.98                 18.16          4.91 
(gain)              (gain)       (gain)

3.16                  14.41           2.40 
(gain)               (gain)         (gain) 

12.58                  57.39       9.8 
(gain)              (gain)      (gain)

Vegetation 
5.38                 24.53         2.18 
(loss)               (loss)        (loss) 

4.021                8.35          3.28 
(loss)                (loss)        (loss)

3.28                  14.97           3.99 
(loss)                (loss)          (loss) 

12.68                  57.85     5.14 
(loss)                (loss)      (loss)

In-land Water 
0.06                  0.29          0.79 
(loss)                (loss)       (loss) 

0.04                  0.19          0.83 
(gain)               (gain)       (gain)

0.12                   0.56           2.31 
(gain)                (gain)        (gain) 

0.10                    0.46       0.54 
(gain)                (gain)     (gain)

 

 

Fig. 3 LULC Map for 1986 
 

World Academy of Science, Engineering and Technology
International Journal of Urban and Civil Engineering

 Vol:18, No:3, 2024 

123International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 U
rb

an
 a

nd
 C

iv
il 

E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

3,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

56
0.

pd
f



 

Fig. 4 LULC Map for 2000 
 

 

Fig. 5 LULC Map for 2010 
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Fig. 6 LULC Map for 2020 
 

 

Fig. 7 Predicted LULC Map for 2020 
 

B. Land Cover Simulation and Prediction for 2030 

Before applying the CA-Markov model to estimate the 

LULC map of 2030, the LULC map of 2020 was simulated. 
The LULC maps of 2000 and 2010 were used to forecast the 

World Academy of Science, Engineering and Technology
International Journal of Urban and Civil Engineering

 Vol:18, No:3, 2024 

125International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 U
rb

an
 a

nd
 C

iv
il 

E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

3,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

56
0.

pd
f



LULC map for 2020. The simulated land use areas were 
linked to the actual land use of the specified state lands in the 
Cape Coast metropolis to validate or assess the accuracy of the 
LULC forecast given by the CA-Markov model. 

The model’s performance was evaluated using the Kappa 
index (Table III). Table VI compares actual and simulated 
LULC 2020 maps. The simulated LULC map shows that built-
up regions are slightly overestimated, while vegetation and 
water areas are significantly underestimated. However, these 
findings, as shown in Table VI, indicate a striking similarity 
between the actual and predicted maps for 2020. 

All LULC classifications showed a good range of 
agreement across the two maps' areas covered, as evidenced in 
Table III, where the overall accuracy (K_no) is 0.8444, the 
location quotient (K_locations) is 0.9396, and the quantity 
allocation (K_standard) is 0.7889, which is above 0.75 and 
indicates a satisfactory level of accuracy. Figs. 6 and 7 depict 

the actual and predicted LULC maps for 2020, respectively. 
 

TABLE VI 
COMPARISON OF ACTUAL AND PREDICTED LULC 2020 

Land Cover Class Predicted Area 
(km2)

% 
Observed /Actual Area 

(km2)
% 

Buit-Up 16.87 79.96 16.33 74.50

Vegetation 4.43 20.21 4.95 22.58

Inland water 0.62 2.83 0.64 2.92 

Total 21.92 100 21.92 100 

 
TABLE VII 

PREDICTED AREA AND PERCENTAGE COVERAGE FOR 2030 

Land Cover Class Area (km2) Area (%) 

Built-up 17.64 80.47 

Vegetation 3.60 16.43 

Inland water 0.68 3.10 

Total 21.92 100 

 

 

 

Fig. 8 Predicted LULC Map 2030 
 

TABLE VIII 
PROPORTION UNITS GAINED AND/OR LOST FOR THE PROJECTED 2030 

Land Cover Class 
2020-2030 

Area (km2)                 Percentage (%)
Built-up 1.31 (gain) 5.97 (gain) 

Vegetation 1.35 (loss) 6.15 (loss) 

Inland water 0.04 (gain) 0.18 (gain) 

 

The model was put into operation after the validation to 
predict the LULC map for 2030 using the land use map of the 
2010-2020 transition area matrices and the 2020 transition 
potential map. This 10-year LULC is based on how well the 
model performed for the 2020 predicted LULC map (Fig. 7). 
Fig. 8 depicts the expected LULC Map of state lands in the 

Cape Coast Metropolis by 2030.  
Table VII shows a quantification comparison between the 

LULC map for 2020 and predicted 2030. By extension, Table 
VIII presents the anticipated proportion of units of gain and or 
loss for the projected 2030-year period. In a similar trend to 
the discussion for Table 8, built-up will gain an area of 1.31 
km2 which translates a 0.13 km2 (34.59 acres or 13.99 
hectares) every year till 2030.  

Vegetation will equally lose an area of 1.35 km2 translating 
a 0.14 km2 (34.59 acres or 13.99 hectares) annually till 2030 
with a negligible gain of 0.04 km2 for inland water for the 
same period. For 2030, the various LULC classes are expected 
to increase by 1.31 km², and 0.04 km² and lose out by 1.35 

World Academy of Science, Engineering and Technology
International Journal of Urban and Civil Engineering

 Vol:18, No:3, 2024 

126International Scholarly and Scientific Research & Innovation 18(3) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 U
rb

an
 a

nd
 C

iv
il 

E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

3,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

56
0.

pd
f



km² respectively for built-up, water and vegetation. Percentage 
data for the aforementioned also reveal 5.97% and 0.18% 
gains for built-up and water, respectively, and a 6.15% loss in 
vegetation, as seen in Table VIII. By this projection, sound 
planning and developmental policies can be formulated to 
ensure sustainability for both present and future generations. 

VI. CONCLUSION  

The importance of LULC in the State Lands of the CCMA 
of Ghana has been illustrated by this study, which shows how 
important it is to provide relevant data on time for decisions 
on the loss or reduction of vegetation in forests and the 
burgeoning built-up areas. It has been feasible to find out 
specifics regarding the size and kind of each LULC while 
showcasing LULC modelling in the research region with the 
help of the techniques employed for obtaining LULC maps 
(1986, 2000, 2010, 2020, and 2030). 

The results of this study generally indicate that the 
classification of RS images (supervised) is a powerful method 
for obtaining appropriate LULC maps. It was determined that 
the CA-Markov model's predicting ability was adequate. A 
comprehensive study on environmental change and 
sustainable development at the local, national, regional, and 
continental levels can greatly benefit from the knowledge 
provided by LULC investigations. 

Decision-makers can utilise these research findings to help 
with planning and management. Under the CCMA years of 
1986–2000, 2000–2010, and 2010–2020, the research focused 
on the following issues: increasing built-up areas, decreasing 
agricultural land, and forest loss (deforestation and 
degradation). The research area's overall LULC pattern 
comprised a decrease in vegetation, an increase in built-up 
land, and a loss of woodland. Because the water bodies in the 
research region are significant national assets and are properly 
protected, they have remained rather stable. Over the last 34 
years, the predominant LULC trend has been the shift from 
forest and agricultural land to built-up land. 

The main trends of past LULC transformations in the 
research region were identified by this study, and they were 
suggested for potential LULC transition processes in the 
future. The investigation confirmed that the CA-Markov 
model is a practical method for LULC prediction. As such, the 
CA-Markov model is essential to the creation and formulation 
of LULC policies. By analysing the trends and drivers behind 
the changes in built-up areas, vegetation, and water bodies as 
depicted in Table V, stakeholders can better understand the 
evolving landscape and implement strategies to promote 
sustainable land use practices, protect ecosystems, and address 
the challenges posed by land cover transformations. 
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