Search results for: Unified power flow controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5580

Search results for: Unified power flow controller

1500 Satellite Thermal Control: Cooling by a Diphasic Loop

Authors: L. Boukhris, A. Boudjemai, A. Bellar, R. Roubache, M. Bensaada

Abstract:

In space during functioning, a satellite will be heated up due to the behavior of its components such as power electronics. In order to prevent problems in the satellite, this heat has to be released in space thanks to the cooling system. This system consists of a loop heat pipe (LHP), in which a fluid streams through an evaporator and a condenser. In the evaporator, the fluid captures the heat from the satellite and evaporates. Then it flows to the condenser where it releases the heat and it condenses. In this project, the two mains parts of a cooling system are studied: the evaporator and the condenser. The study of the diphasic loop was done starting from digital simulations carried out under Matlab and Femlab.

Keywords: capillarity, condenser, evaporator, phase change, transfer of heat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
1499 Image Analysis of Fine Structures of Supercavitation in the Symmetric Wake of a Cylinder

Authors: Y. Obikane , M.Kaneko, K.Kakioka, K.Ogura

Abstract:

The fine structure of supercavitation in the wake of a symmetrical cylinder is studied with high-speed video cameras. The flow is observed in a cavitation tunnel at the speed of 8m/sec when the sidewall and the wake are partially filled with the massive cavitation bubbles. The present experiment observed that a two-dimensional ripple wave with a wave length of 0.3mm is propagated in a downstream direction, and then abruptly increases to a thicker three-dimensional layer. IR-photography recorded that the wakes originated from the horseshoe vortexes alongside the cylinder. The wake was developed to inside the dead water zone, which absorbed the bubbly wake propelled from the separated vortices at the center of the cylinder. A remote sensing classification technique (maximum most likelihood) determined that the surface porosity was 0.2, and the mean speed in the mixed wake was 7m/sec. To confirm the existence of two-dimensional wave motions in the interface, the experiments were conducted at a very low frequency, and showed similar gravity waves in both the upper and lower interfaces.

Keywords: Supercavitation, density gradient correlation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
1498 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect

Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev

Abstract:

The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.

Keywords: Film condensation, heat transfer, plain tube, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
1497 Reaction Kinetics of Biodiesel Production from Refined Cottonseed Oil Using Calcium Oxide

Authors: Ude N. Callistus, Amulu F. Ndidi, Onukwuli D. Okechukwu, Amulu E. Patrick

Abstract:

Power law approximation was used in this study to evaluate the reaction orders of calcium oxide, CaO catalyzed transesterification of refined cottonseed oil and methanol. The kinetics study was carried out at temperatures of 45, 55 and 65 oC. The kinetic parameters such as reaction order 2.02 and rate constant 2.8 hr-1g-1cat, obtained at the temperature of 65 oC best fitted the kinetic model. The activation energy, Ea obtained was 127.744 KJ/mol. The results indicate that the transesterification reaction of the refined cottonseed oil using calcium oxide catalyst is approximately second order reaction.

Keywords: Refined cottonseed oil, transesterification, CaO, heterogeneous catalysts, kinetic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
1496 Surface Morphology and Formation of Nanostructured Porous GaN by UV-assisted Electrochemical Etching

Authors: L. S. Chuah, Z. Hassan, C. W. Chin, H. Abu Hassan

Abstract:

This article reports on the studies of porous GaN prepared by ultra-violet (UV) assisted electrochemical etching in a solution of 4:1:1 HF: CH3OH:H2O2 under illumination of an UV lamp with 500 W power for 10, 25 and 35 minutes. The optical properties of porous GaN sample were compared to the corresponding as grown GaN. Porosity induced photoluminescence (PL) intensity enhancement was found in these samples. The resulting porous GaN displays blue shifted PL spectra compared to the as-grown GaN. Appearance of the blue shifted emission is correlated with the development of highly anisotropic structures in the morphology. An estimate of the size of the GaN nanostructure can be obtained with the help of a quantized state effective mass theory.

Keywords: Photoluminescence, porous GaN, electrochemical etching, Si, RF-MBE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
1495 Aeroelasticity Analysis of Rotor Blades in the First Two Stages of Axial Compressor in the Case of a Bird Strike

Authors: R. Rzadkowski, V. Gnesin, M. Drewczyński, R. Szczepanik

Abstract:

A bird strike can cause damage to stationary and rotating aircraft engine parts, especially the engine fan. This paper presents a bird strike simulated by blocking four stator blade passages. It includes the numerical results of the unsteady lowfrequency aerodynamic forces and the aeroelastic behaviour caused by a non-symmetric upstream flow affecting the first two rotor blade stages in the axial-compressor of a jet engine. The obtained results show that disturbances in the engine inlet strongly influence the level of unsteady forces acting on the rotor blades. With a partially blocked inlet the whole spectrum of low-frequency harmonics is observed. Such harmonics can lead to rotor blade damage. The lowfrequency amplitudes are higher in the first stage rotor blades than in the second stage. In both rotor blades stages flutter appeared as a result of bird strike.

Keywords: Flutter, unsteady forces, rotor blades.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
1494 Numerical Simulation of the Kurtosis Effect on the EHL Problem

Authors: S. Gao, S. Srirattayawong

Abstract:

In this study, a computational fluid dynamics (CFD) model has been developed for studying the effect of surface roughness profile on the EHL problem. The cylinders contact geometry, meshing and calculation of the conservation of mass and momentum equations are carried out using the commercial software packages ICEMCFD and ANSYS Fluent. The user defined functions (UDFs) for density, viscosity and elastic deformation of the cylinders as the functions of pressure and temperature are defined for the CFD model. Three different surface roughness profiles are created and incorporated into the CFD model. It is found that the developed CFD model can predict the characteristics of fluid flow and heat transfer in the EHL problem, including the main parameters such as pressure distribution, minimal film thickness, viscosity, and density changes. The results obtained show that the pressure profile at the center of the contact area directly relates to the roughness amplitude. A rough surface with kurtosis value of more than 3 has greater influence over the fluctuated shape of pressure distribution than in other cases.

Keywords: CFD, EHL, Kurtosis, Surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
1493 Dynamics and Control of a Chaotic Electromagnetic System

Authors: Shun-Chang Chang

Abstract:

In this paper, different nonlinear dynamics analysis techniques are employed to unveil the rich nonlinear phenomena of the electromagnetic system. In particular, bifurcation diagrams, time responses, phase portraits, Poincare maps, power spectrum analysis, and the construction of basins of attraction are all powerful and effective tools for nonlinear dynamics problems. We also employ the method of Lyapunov exponents to show the occurrence of chaotic motion and to verify those numerical simulation results. Finally, two cases of a chaotic electromagnetic system being effectively controlled by a reference signal or being synchronized to another nonlinear electromagnetic system are presented.

Keywords: bifurcation, Poincare map, Lyapunov exponent, chaotic motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
1492 Realization of Electronically Controllable Current-mode Square-rooting Circuit Based on MO-CFTA

Authors: P. Silapan, C. Chanapromma, T. Worachak

Abstract:

This article proposes a current-mode square-rooting circuit using current follower transconductance amplifier (CTFA). The amplitude of the output current can be electronically controlled via input bias current with wide input dynamic range. The proposed circuit consists of only single CFTA. Without any matching conditions and external passive elements, the circuit is then appropriate for an IC architecture. The magnitude of the output signal is temperature-insensitive. The PSpice simulation results are depicted, and the given results agree well with the theoretical anticipation. The power consumption is approximately 1.96mW at ±1.5V supply voltages.

Keywords: CFTA, Current-mode, Square-rooting Circuit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
1491 Design and Implementation of Security Middleware for Data Warehouse Signature Framework

Authors: Mayada AlMeghari

Abstract:

Recently, grid middlewares have provided large integrated use of network resources as the shared data and the CPU to become a virtual supercomputer. In this work, we present the design and implementation of the middleware for Data Warehouse Signature (DWS) Framework. The aim of using the middleware in the proposed DWS framework is to achieve the high performance by the parallel computing. This middleware is developed on Alchemi.Net framework to increase the security among the network nodes through the authentication and group-key distribution model. This model achieves the key security and prevents any intermediate attacks in the middleware. This paper presents the flow process structures of the middleware design. In addition, the paper ensures the implementation of security for DWS middleware enhancement with the authentication and group-key distribution model. Finally, from the analysis of other middleware approaches, the developed middleware of DWS framework is the optimal solution of a complete covering of security issues.

Keywords: Middleware, parallel computing, data warehouse, security, group-key, high performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 339
1490 A Low-Voltage Current-Mode Wheatstone Bridge using CMOS Transistors

Authors: Ebrahim Farshidi

Abstract:

This paper presents a new circuit arrangement for a current-mode Wheatstone bridge that is suitable for low-voltage integrated circuits implementation. Compared to the other proposed circuits, this circuit features severe reduction of the elements number, low supply voltage (1V) and low power consumption (<350uW). In addition, the circuit has favorable nonlinearity error (<0.35%), operate with multiple sensors and works by single supply voltage. The circuit employs MOSFET transistors, so it can be used for standard CMOS fabrication. Simulation results by HSPICE show high performance of the circuit and confirm the validity of the proposed design technique.

Keywords: Wheatstone bridge, current-mode, low-voltage, MOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3024
1489 Effect of Turbulence Models on Simulated Iced Aircraft Airfoil

Authors: Muhammad Afzal, Cao Yihua, Zhao Ming

Abstract:

The present work describes a computational study of aerodynamic characteristics of GLC305 airfoil clean and with 16.7 min ice shape (rime 212) and 22.5 min ice shape (glaze 944).The performance of turbulence models SA, Kε, Kω Std, and Kω SST model are observed against experimental flow fields at different Mach numbers 0.12, 0.21, 0.28 in a range of Reynolds numbers 3x106, 6x106, and 10.5x106 on clean and iced aircraft airfoil GLC305. Numerical predictions include lift, drag and pitching moment coefficients at different Mach numbers and at different angle of attacks were done. Accuracy of solutions with respect to the effects of turbulence models, variation of Mach number, initial conditions, grid resolution and grid spacing near the wall made the study much sensitive. Navier Stokes equation based computational technique is used. Results are very close to the experimental results. It has seen that SA and SST models are more efficient than Kε and Kω standard in under study problem.

Keywords: Aerodynamics, Airfoil GLC305, Iced Airfoil, Turbulence Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
1488 Lattice Boltzmann Simulation of MHD Natural Convection Heat Transfer of Cu-Water Nanofluid in a Linearly/Sinusoidally Heated Cavity

Authors: Bouchmel Mliki, Chaouki Ali, Mohamed Ammar Abbassi

Abstract:

In this numerical study, natural convection of Cu–water nanofluid in a cavity submitted to different heating modes on its vertical walls is analyzed. Maxwell-Garnetts (MG) and Brinkman models have been utilized for calculating the effective thermal conductivity and dynamic viscosity of nanofluid, respectively. Influences of Rayleigh number (Ra = 103−106), nanoparticle volume concentration (f = 0-0.04) and Hartmann number (Ha = 0-90) on the flow and heat transfer characteristics have been examined. The results indicate that the Hartmann number influences the heat transfer at Ra = 106 more than other Raleigh numbers, as the least effect is observed at Ra = 103. Moreover, the results show that the solid volume fraction has a significant influence on heat transfer, depending on the value of Hartmann, heat generation or absorption coefficient and Rayleigh numbers.

Keywords: Heat transfer, linearly/sinusoidally heated, Lattice Boltzmann Method, natural convection, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
1487 Numerical and Experimental Study of Heat Transfer Enhancement with Metal Foams and Ultrasounds

Authors: L. Slimani, A. Bousri, A. Hamadouche, H. Ben Hamed

Abstract:

The aim of this experimental and numerical study is to analyze the effects of acoustic streaming generated by 40 kHz ultrasonic waves on heat transfer in forced convection, with and without 40 PPI aluminum metal foam. Preliminary dynamic and thermal studies were done with COMSOL Multiphase, to see heat transfer enhancement degree by inserting a 40PPI metal foam (10 × 2 × 3 cm) on a heat sink, after having determined experimentally its permeability and Forchheimer's coefficient. The results obtained numerically are in accordance with those obtained experimentally, with an enhancement factor of 205% for a velocity of 0.4 m/s compared to an empty channel. The influence of 40 kHz ultrasound on heat transfer was also tested with and without metallic foam. Results show a remarkable increase in Nusselt number in an empty channel with an enhancement factor of 37,5%, while no influence of ultrasound on heat transfer in metal foam presence.

Keywords: Enhancing heat transfer, metal foam, ultrasound, acoustic streaming, laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 491
1486 One-Dimensional Numerical Investigation of a Cylindrical Micro-Combustor Applying Electrohydrodynamics Effect

Authors: Behrouzinia P., Irani R. A., Saidi M.H.

Abstract:

In this paper, a one-dimensional numerical approach is used to study the effect of applying electrohydrodynamics on the temperature and species mass fraction profiles along the microcombustor. Premixed mixture is H2-Air with a multi-step chemistry (9 species and 19 reactions). In the micro-scale combustion because of the increasing ratio of area-to-volume, thermal and radical quenching mechanisms are important. Also, there is a significant heat loss from the combustor walls. By inserting a number of electrodes into micro-combustor and applying high voltage to them corona discharge occurs. This leads in moving of induced ions toward natural molecules and colliding with them. So this phenomenon causes the movement of the molecules and reattaches the flow to the walls. It increases the velocity near the walls that reduces the wall boundary layer. Consequently, applying electrohydrodynamics mechanism can enhance the temperature profile in the microcombustor. Ultimately, it prevents the flame quenching in microcombustor.

Keywords: micro-combustor, electrohydrodynamics, temperature profile, wall quenching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
1485 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique

Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan

Abstract:

In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.

Keywords: Brain balancing, kNN, power spectral density, 3D EEG model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2630
1484 On Unburned Carbon in Coal Ash from Various Combustion Units

Authors: L. Bartonová, D. Juchelková, Z. Klika, B. Cech

Abstract:

Work is focused to the study of unburned carbon in ash from coal (and wastes) combustion in 8 combustion tests at 3 fluidised-bed power station, at co-combustion of coal and wastes (also at fluidized bed) and at bench-scale unit simulating coal combustion in small domestic furnaces. The attention is paid to unburned carbon contents in bottom ashes and fly ashes at these 8 combustion tests and to morphology of unburned carbons. Specific surface area of coals, unburned carbons and ashes and the relation of specific surface area of unburned carbon and the content of volatile combustibles in coal were studied as well.

Keywords: Coal combustion, emissions, toxic elements, unburned carbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3751
1483 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach

Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou

Abstract:

We present a multiple equation time series approach for the short-term load forecasting applied to the electrical power load consumption for the whole Quebec province, in Canada. More precisely, we take into account three meteorological variables — temperature, cloudiness and wind speed —, and we use meteorological measurements taken at different locations on the territory. Our final model shows an average MAPE score of 1.79% over an 8-years dataset.

Keywords: Short-term load forecasting, special days, time series, multiple equations, parallelization, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290
1482 Three Dimensional MEMS Supercapacitor Fabricated by DRIE on Silicon Substrate

Authors: Wei Sun, Ruilin Zheng, Xuyuan Chen

Abstract:

Micro power sources are required to be used in autonomous microelectromechanical system (MEMS). In this paper,  we designed and fabricated a three dimensional (3D) MEMS supercapacitor, which is consisting of conformal silicon  dioxide/titanium/polypyrrole (PPy) layers on silicon substrate. At first, ''through-structure'' was fabricated on the silicon substrate by high-aspect-ratio deep reactive ion etching (DRIE) method, which enlarges the available surface area significantly. Then the SiO2/Ti/PPy layers grew sequentially on the ³through-structure´. Finally, the supercapacitor was investigated by electrochemical methods.

Keywords: MEMS, Supercapacitor, DRIE, 3D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
1481 Parametric Study of Vertical Diffusion Still for Water Desalination

Authors: A. Seleem, M. Mortada, M. El Morsi, M. Younan

Abstract:

Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semianalytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55- 90°C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).

Keywords: Analytical Model, Solar Distillation, Sustainable Water Systems, Vertical Diffusion Still.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
1480 Study on Clarification of the Core Technology in a Monozukuri Company

Authors: Nishiyama Toshiaki, Tadayuki Kyountani, Nguyen Huu Phuc, Shigeyuki Haruyama, Oke Oktavianty

Abstract:

It is important to clarify the company’s core technology in product development process to strengthen their power in providing technology that meets the customer requirement. QFD method is adopted to clarify the core technology through identifying the high element technologies that are related to the voice of customer, and offer the most delightful features for customer. AHP is used to determine the importance of evaluating factors. A case study was conducted by using this approach in Japan’s Monozukuri Company (so called manufacturing company) to clarify their core technology based on customer requirements.

Keywords: QFD, product development process, core technology, AHP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102
1479 Smart and Connected Aircraft Cabin: A Balancing Act between Operational Cabin Management, Airline Business and Passenger Expectations

Authors: Ralf God, Lothar Kerschgens, Leonardo Goratti, Steven Lemaire

Abstract:

Ubiquitous connectivity is a reality and a basic need for users on ground. Air travel connectivity in the cabin is also becoming increasingly important for passengers during cabin use. Wireless sensor networks that provide information to cabin management systems are being used by airlines to optimize cabin crew workload. In networked cabin systems, communications and digitally transmitted data must be managed by airlines in every direction. Security and privacy, information processing and knowledge management are the current and future requirements for a smart and connected cabin.

Keywords: Smart and connected cabin management, Internet of Things, power management, airline business.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 436
1478 A Very High Speed, High Resolution Current Comparator Design

Authors: Neeraj K. Chasta

Abstract:

This paper presents an idea for analog current comparison which compares input signal and reference currents with high speed and accuracy. Proposed circuit utilizes amplification properties of common gate configuration, where voltage variations of input current are amplified and a compared output voltage is developed. Cascaded inverter stages are used to generate final CMOS compatible output voltage. Power consumption of circuit can be controlled by the applied gate bias voltage. The comparator is designed and studied at 180nm CMOS process technology for a supply voltage of 3V.

Keywords: Current Mode, Comparator, High Resolution, High Speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4707
1477 A Semi-Implicit Phase Field Model for Droplet Evolution

Authors: M. H. Kazemi, D. Salac

Abstract:

A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.

Keywords: Coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
1476 Numerical Analysis of Laminar to Turbulent Transition on the DU91-W2-250 Airfoil

Authors: M. Raciti Castelli, G. Grandi, E. Benini

Abstract:

This paper presents a study of laminar to turbulent transition on a profile specifically designed for wind turbine blades, the DU91-W2-250, which belongs to a class of wind turbine dedicated airfoils, developed by Delft University of Technology. A comparison between the experimental behavior of the airfoil studied at Delft wind tunnel and the numerical predictions of the commercial CFD solver ANSYS FLUENT® has been performed. The prediction capabilities of the Spalart-Allmaras turbulence model and of the γ-θ Transitional model have been tested. A sensitivity analysis of the numerical results to the spatial domain discretization has also been performed using four different computational grids, which have been created using the mesher GAMBIT®. The comparison between experimental measurements and CFD results have allowed to determine the importance of the numerical prediction of the laminar to turbulent transition, in order not to overestimate airfoil friction drag due to a fully turbulent-regime flow computation.

Keywords: CFD, wind turbine, DU91-W2-250, laminar to turbulent transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3070
1475 Numerical Analysis of the Melting of Nano-Enhanced Phase Change Material in a Rectangular Latent Heat Storage Unit

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

Melting of Paraffin Wax (P116) dispersed with Al2O3 nanoparticles in a rectangular latent heat storage unit (LHSU) is numerically investigated. The storage unit consists of a number of vertical and identical plates of nano-enhanced phase change material (NEPCM) separated by rectangular channels in which heat transfer fluid flows (HTF: Water). A two dimensional mathematical model is considered to investigate numerically the heat and flow characteristics of the LHSU. The melting problem was formulated using the enthalpy porosity method. The finite volume approach was used for solving equations. The effects of nanoparticles’ volumetric fraction and the Reynolds number on the thermal performance of the storage unit were investigated.

Keywords: Nano-enhanced phase change material, phase change material, nanoparticles, latent heat storage unit, melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
1474 Analysis of the Shielding Effectiveness of Several Magnetic Shields

Authors: Diako Azizi, Hosein Heydari, Ahmad Gholami

Abstract:

Today with the rapid growth of telecommunications equipment, electronic and developing more and more networks of power, influence of electromagnetic waves on one another has become hot topic discussions. So in this article, this issue and appropriate mechanisms for EMC operations have been presented. First, a source of alternating current (50 Hz) and a clear victim in a certain distance from the source is placed. With this simple model, the effects of electromagnetic radiation from the source to the victim will be investigated and several methods to reduce these effects have been presented. Therefore passive and active shields have been used. In some steps, shielding effectiveness of proposed shields will be compared. . It should be noted that simulations have been done by the finite element method (FEM).

Keywords: Electrical field, field distribution, finite element method, shielding effectiveness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
1473 Modified Hybrid Genetic Algorithm-Based Artificial Neural Network Application on Wall Shear Stress Prediction

Authors: Zohreh Sheikh Khozani, Wan Hanna Melini Wan Mohtar, Mojtaba Porhemmat

Abstract:

Prediction of wall shear stress in a rectangular channel, with non-homogeneous roughness distribution, was studied. Estimation of shear stress is an important subject in hydraulic engineering, since it affects the flow structure directly. In this study, the Genetic Algorithm Artificial (GAA) neural network is introduced as a hybrid methodology of the Artificial Neural Network (ANN) and modified Genetic Algorithm (GA) combination. This GAA method was employed to predict the wall shear stress. Various input combinations and transfer functions were considered to find the most appropriate GAA model. The results show that the proposed GAA method could predict the wall shear stress of open channels with high accuracy, by Root Mean Square Error (RMSE) of 0.064 in the test dataset. Thus, using GAA provides an accurate and practical simple-to-use equation.

Keywords: Artificial neural network, genetic algorithm, genetic programming, rectangular channel, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672
1472 Speed Characteristics of Mixed Traffic Flow on Urban Arterials

Authors: Ashish Dhamaniya, Satish Chandra

Abstract:

Speed and traffic volume data are collected on different sections of four lane and six lane roads in three metropolitan cities in India. Speed data are analyzed to fit the statistical distribution to individual vehicle speed data and all vehicles speed data. It is noted that speed data of individual vehicle generally follows a normal distribution but speed data of all vehicle combined at a section of urban road may or may not follow the normal distribution depending upon the composition of traffic stream. A new term Speed Spread Ratio (SSR) is introduced in this paper which is the ratio of difference in 85th and 50th percentile speed to the difference in 50th and 15th percentile speed. If SSR is unity then speed data are truly normally distributed. It is noted that on six lane urban roads, speed data follow a normal distribution only when SSR is in the range of 0.86 – 1.11. The range of SSR is validated on four lane roads also.

Keywords: Normal distribution, percentile speed, speed spread ratio, traffic volume.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4246
1471 An Interval-Based Multi-Attribute Decision Making Approach for Electric Utility Resource Planning

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

This paper presents an interval-based multi-attribute decision making (MADM) approach in support of the decision process with imprecise information. The proposed decision methodology is based on the model of linear additive utility function but extends the problem formulation with the measure of composite utility variance. A sample study concerning with the evaluation of electric generation expansion strategies is provided showing how the imprecise data may affect the choice toward the best solution and how a set of alternatives, acceptable to the decision maker (DM), may be identified with certain confidence.

Keywords: Decision Making, Power Generation, ElectricUtilities, Resource Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579