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Abstract—We present a multiple equation time series approach
for the short-term load forecasting applied to the electrical power
load consumption for the whole Quebec province, in Canada.
More precisely, we take into account three meteorological variables
— temperature, cloudiness and wind speed —, and we use
meteorological measurements taken at different locations on the
territory. Our final model shows an average MAPE score of 1.79%
over an 8-years dataset.
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I. INTRODUCTION

THE sustainable energy transition is underway throughout

the world, and electricity produced from so-called

“green” sources will play a major role to enable it. In

Quebec, Canada, where more than 99% of electricity is

generated from renewable energy — mostly from hydroplants

and wind turbines — fossil fuel is still used for power

transportation, building space heating and heat generation in

industrial processes. The rapid electrification of these sectors

of activities is part of the government’s plan to meet its Paris

Agreement commitment to reduce the province’s emissions by

25 megatons of CO2 by 2030 with respect to 1990 emissions.

Hence, as more and more intermittent renewable energy is

added to the grids, accurate load forecasting is of critical

importance to balance production and consumption for the

modern power grids. Any improvement on short-term load

forecasting is very beneficial for both the consumers and utility

companies to optimize resources and costs.

Load forecasting is often classified according to the

horizon it focuses on: very short-term load forecasting

(VSTLF), short-term load forecasting (STLF), medium-term

load forecasting (MTLF), or long-term load forecasting

(LTLF). The forecasting horizon can span seconds, minutes,

days, weeks or even years, depending on the planning or

operational function it supports. Among them, STLF, which

is useful in real-time energy management, is our main focus.

STLF has always been a challenging task that triggers the

interest of both academia and the industrial sector [1]–[5]. The

overall electricity consumption represented by all aggregated

electric power loads is often influenced by meteorological

factors, such as temperature, wind speed, cloud cover, type
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Fig. 1 Comparison of Quebec hourly power load against temperature
(measured in Montreal) between 2012-01-01 and 2019-12-31

and intensity of precipitations [1]. And the effect can be

quite significant: For example, an increase of only 1 ◦C

in ambient temperature or urban warming can impact the

peak of electricity consumption or global consumption by

an overhead of more than 4% [6]. In the particular case

of Quebec, the climate is characterized by a wide thermal

range: extreme temperatures both during the winter and the

summer, high wind variability in some parts of the territory

and major continental air masses sweeping down from the

northwest. Fig. 1 shows the correlation between temperature

and power load consumption observed on a 8-year dataset

ranging from 2012-01-01 to 2019-12-31. Under 15 ◦C, the

lower the temperature is, the higher the power load is, which

is explained by the fact that more than 80% of the households

use electricity for heating. Similarly, above 20 ◦C, we observe

that the power load starts increasing due to the increase

in use of cooling devices. Hence, the forecast models must

deal with a temperature-sensitive and season-dependent load

profile. On top of that, power consumption is not only related

to weather and may be influenced by several other factors,

such as the decline of heavy industry, new social behavior
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of the consumer (teleworking, behind-the-meter production,

active role of the consumer), calendar information (day of

the week, special days), transportation electrification, process

automation, building insulation, and eventually electricity

price [1], [2].

Various approaches have been used to build STLF

models — see [7] for a recent survey. Quantitative models,

such as seasonal auto-regressive integrated moving average

(SARIMA) with support vector regression (SVR) [8], non

parametric regression (NR) [9] or multiple equation time series

[3] have proved to be reliable, very accurate and interpretable.

Several works, especially in the recent years, have also

successfully used machine learning approaches, ranging from

artificial neural networks [10]–[12] and reinforcement learning

[13], [14] to meta-learning [15] or graph neural networks

[16]. Deep learning techniques are very promising, but their

black-box nature and the complexity of scheduling their

training and maintaining their lifecycle remain challenging

[17].

In this paper, we concentrate on a multiple equation time

series approach. Initiated by Ramanathan et al. in [18],

significant improvements have been proposed, in particular

by Cancelo et al. [2] and, more recently, by Clements et

al. [3]. Although multiple equation time series models seem

less popular in the literature, we believe that they present

advantages that make them interesting in a high performance

computing setting. Indeed, as detailed in the next sections,

(1) the model we describe is easily interpretable, (2) its

training can be parallelized with only slight modifications of

the implementation, (3) it can be trained very fast (a few

seconds on a standard laptop) and (4) it has competitive

forecast accuracy (we obtained an average MAPE of 1.79%

on our dataset).

The remaining of the paper is divided as follows: In

Section II, we recall the main ideas behind Clements et al.’s [3]

mathematical model. Then, in Section III, we present various

extensions of the reference model. Section IV is devoted to

the experimental setting, while Section V reports the main

observations and results obtained. Section VI concludes with

a brief discussion about special days.

II. A MULTIPLE EQUATION TIME-SERIES APPROACH

In this section, we briefly summarize the model equations

from [3]. Let t be the number of time steps per day (t = 24 in

our case, but Clements et al. [3] consider half-hours, so that

t = 48). Also, for any time step t of day d, let

• Ld,t be the logarithm of the load (in MW) at time step t
of day d;

• Td,t be the temperature (in Celsius) at time step t of day

d;

• Wd,p indicate whether d is the p-th day of the week;

• Sd,k indicate whether d is a special day of kind k ∈
{1, 2, . . . , k′}, where k′ is the number of special day

types.

Moreover, for any day d and time step t of the day, let

Yd,t,q = 2qπ(dt+ t)/(365.2425t)

Hd,t,1 = CLRAMP
−
−23,13(Td,t)

Hd,t,2 = CLRAMP
−
−23,1(Td,t)

Cd,t,1 = CLRAMP
+
21,33(Td,t)

Cd,t,2 = CLRAMP
+
28,33(Td,t),

where

CLRAMP
−
x0,x1

(x) =

⎧⎨
⎩

x1 − x0, if x ≤ x0;

x1 − x, if x0 < x ≤ x1;

0, if x1 < x.

CLRAMP
+
x0,x1

(x) =

⎧⎨
⎩

0, if x ≤ x0;

x− x0, if x0 < x ≤ x1;

x1 − x0, if x1 < x.

are respectively the descending and ascending clipped ramp

functions. It is worth mentioning that the intervals [−23, 13],
[−23, 1], [21, 33] and [28, 33] are different from those selected

in [3] and were deduced by examining the correlation between

power load consumption and temperature on Quebec territory

(see Fig. 1). Finally, for any real number α, β and any random

variable X , let

SC(α, β,X) = α sinX + β cosX.

and let O = {0,−1} be the set of days offsets when

considering temperature and special days (0 is for the current

day, −1 for the previous day, −7 would be for the previous

week). Then the complete and preferred model adapted from

[3] is given by

Ld,t = λt,0 +

(
7∑

p=1

ωt,pWp

)
Ld−1,t

+

[
λt,1 +

4∑
q=1

SC(γt,q,1, γt,q,2, Yd,t,q)

]
Ld−7,t

+ λt,2Ld−1,t−1 + λt,3Ld,t−1

+ φt,1εd−1,t + φt,2εd−7,t + εd,t

+
∑
o∈O

2∑
k=1

(τt,o,k,1Hd+o,t,k + τt,o,k,2Cd+o,t,k)

+
∑
o∈O

k′∑
k=1

σt,o,kSd+o,k,

(1)

where, for each t = 1, 2, . . . , t and each o ∈ O, λt,i (for

i = 0, 1, 2, 3), φt,i (for i = 1, 2,), ωt,p (for p = 1, 2, . . . , 7),

γt,q,i (for q = 1, 2, 3, 4 and i = 1, 2), τt,o,k,i (for k = 1, 2 and

i = 1, 2, 3, 4) and σt,o,k,i (for k = 1, 2, . . . , k′ and i = 1, 2)

are the parameters to learn, εd,t and εd−1,t are the unexpected

changes in load on the previous day and week, and εd,t is the

expected error of the forecast model.

The model described in (1) presents several advantages.

First, the parameters to learn are linearly combined to form

an estimate of the forecased load, making it easy to interpret.

More precisely:
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• λt,0 explains the basic expected load for the given time

step, λt,1 the contribution of the previous week load, λt,2

that of the last observed load and λt,3 the contribution of

the previous time step load;

• φt,1 and φt,2 are used to take into account the previous

day and previous week errors;

• ωt,p, for p = 1, 2, . . . , 7, addresses week seasonality,

while γt,q,1 and γt,q,2, for q = 1, 2, 3, 4, capture

the annual, semi-annual, quadrimester and quaterly

seasonality;

• τt,o,k,1 and τt,k,3 explain the effect of heating of the

current day (o = 0) and the previous day (o = −1),

while τt,o,k,2 and τt,o,k,4 explain the effect of cooling;

• σt,o,k,1 and σt,o,k,2 explain the effect on the electrical

power load on special days or on the days following a

special day.

Secondly, it can be efficiently trained using an algorithm

called iterated ordinary least square [19], which proceeds as

follows:

1) First, we estimate, with a regular linear regression, each

equation by ignoring the moving-average error terms and

by storing the residuals;

2) Next, we extend the input with the residuals and lagged

residuals as estimates of the error;

3) Then we estimate the complete model;

4) We repeat the two previous steps until numerical

convergence is attained on the learned parameters.

It is important to notice that the algorithm is not guaranteed

to converge, for instance, if the number of parameters to

estimate is too large, the time series is too short or if the

time series exhibits nonstationary types of variations [19].

Therefore, for the sake of robustness, we set a threshold of

10−20 for numerical convergence and a maximal number of

iterations of 100. In practice, in our experiments, the models

converged quickly in almost every case, and even when it was

not the case, the forecasted loads did not appear to be of low

quality in comparison with the other ones. We also provide

more detail in Section IV about how one can parallelize

the training to fully take advantage of high performance

computing clusters.

Finally, the accuracy of the forecast model is quite good.

Clements et al. [3] report an impressive 1.36% mean absolute

percentage error (MAPE) over a period of 11 years for

the Queensland region of Australia. Although we do not

succeed in reproducing the same score, we obtain a respectable

final MAPE score of about 1.79% for the residential and

commercial power loads of the complete Quebec territory.

III. EXTENDING THE REFERENCE MODEL

In this section, we introduce small extensions, or variations,

of the model of Clements et al. [3]. The simple nature of 1

makes the process quite easy. But first, we need to define

some additional random variables. Let L be a set of fixed

geographical locations. For any time step t of day d and any

location � ∈ L, let

• T �
d,t be the temperature (in Celsius) at location � on time

step t of day d;

Fig. 2 Comparison of Quebec hourly power load against cloudiness
(measured in Montreal) between 2012-01-01 and 2019-12-31

• N �
d,t be the cloudiness (in oktas) at location � on time

step t of day d;

• W �
d,t be the wind speed (in km/h) at location � on time

step t of day d and

• DSTd indicate whether day d is on daylight saving time

(DST).

In other words, we introduce four changes: (1) We take

into account cloudiness (or cloud cover), which measures the

fraction of the sky obscured by clouds at a given time, from a

particular location [20]. (2) We also consider the wind speed
measured at a given time and place. (3) We allow the use of

multiple meteorological locations in order to take into account

geographical variations. (4) We allow the separation between

days using the DST and those which are not.

Indeed, as shown in Figs. 2 and 3, both cloudiness and wind

speed show some correlation with the power load consumption

[1]. More precisely, there does not seem to be any significant

variation for cloudiness between values in range [0, 6], but

there are two small peaks at 7 and 10 that could explain some

variability in the power load consumption: It seems reasonable

to assume that if the sky is almost or completely covered, then

we might observe a slight increase of load due to the increase

in lighting devices use. The effect is not expected to be as high

as the one observed for heating and cooling devices, since

lighting is not energy-intensive, but should nevertheless be

significant. As for the wind speed, we notice a slight increase

in power load consumption as the speed grows, which could be

explained by the wind chill factor, when combined with cold

temperatures. The irregular variations above 50 km/h should

be ignored since there are not many data points available in

the case of very high winds.

As for daylight saving time, although we do not expect it to

bring significant changes, it draws a clean separation between
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Summer and Winter periods, and it should also make forecasts

more reliable during the transition dates.

Next, we must update the heating and cooling variables

accordingly. For any day d and time step t of the day, let

H�
d,t,1 = CLRAMP

−
−23,13(T

�
d,t)

H�
d,t,2 = CLRAMP

−
−23,1(T

�
d,t)

C�
d,t,1 = CLRAMP

+
21,33(T

�
d,t)

C�
d,t,2 = CLRAMP

+
28,33(T

�
d,t),

where CLRAMP
− and CLRAMP

+ have the same meaning as in

Section II. We use the same breakpoints than before, whatever

the location. Indeed, examination of the correlations between

temperatures and power load for different locations dit not

reveal any significant differences. To take into account the

nonlinear relations between cloudiness/wind speed and load,

we define the following variables:

N
�

d,t,1 = CLRAMP
+
0,3(N

�
d,t)

N
�

d,t,2 = CLRAMP
+
3,10(N

�
d,t)

N
�

d,t,3 = CLRAMP
+
9,10(N

�
d,t)

W
�

d,t = CLRAMP
+
12,39(W

�
d,t)

Finally, let O = {0,−1,−7} the set of allowed days offsets.

Then the updated equation becomes

Ld,t = λt,0 +

(
7∑

p=1

ωt,pWp

)
Ld−1,t

+

[
λt,1 +

4∑
q=1

SC(γt,q,1, γt,q,2, Yd,t,q)

]
Ld−7,t

+ λt,2Ld−1,t−1 + λt,3Ld,t−1

+ φt,1εd−1,t + φt,2εd−7,t + εd,t

+
∑
o∈O

∑
�∈L

2∑
k=1

τ �t,o,k,1H
�
d+o,t,k

+
∑
o∈O

∑
�∈L

2∑
k=1

τ �t,o,k,2C
�
d+o,t,k

+
∑
o∈O

∑
�∈L

3∑
k=1

ν�t,o,kN
�

d+o,t,k

+
∑
o∈O

∑
�∈L

ω�
t,oW

�

d+o,t

+
∑
o∈O

k′∑
k=1

σt,o,kSd+o,k +
∑
o∈O

δoDSTd+o,

(2)

where the parameters λt,i, γt,q,i, φt,i and σt,o,k have the same

meaning as in (1), and, for t = 1, 2, . . . , t, o ∈ O and � ∈ L,

τ �t,o,k,i (for k = 1, 2 and i = 1, 2), ν�t,o,k (for k = 1, 2) and

ω�
t,o are the new parameters to learn, explaining respectively

the effect of temperature, cloudiness and wind speed on the

power load, for each location, and, finally, δo is the parameter

that explains the effect of using daylight saving time.

It is worth mentioning that we allowed ourselves to use

the letters W and ω both for the weekly seasonality and the

wind speed: Since the number of superscripts and subscripts

is distinctive in both cases, there should be no ambiguity.

Fig. 3 Comparison of Quebec hourly power load against wind speed
(measured in Montral) between 2012-01-01 and 2019-12-31

IV. EXPERIMENTAL SETTING

The model and its variations described respectively in

Sections II and III were implemented in a C++ prototype,

based on the xtensor library, an open-source matrix

computation framework inspired from NumPy [21]. Also,

to facilitate experimentation, a command line interface is

provided to allow the addition or the removal of any specific

given feature. More precisely, the following parametrization is

available to the user, with sensible default values:

• the horizon duration (default: 24 hours);

• the maximum number of iterations allowed during

training (default: 100);

• the acceptable threshold for numerical convergence

(default: 10−8);

• any number of paths to CSV files containing

meteorological (temperature, cloudiness and wind

speed) data, from one or many different locations;

• the heating breakpoints (default: [−23, 1] and [−23, 13]),
the cooling breakpoints (default: [21, 33] and [28, 33]), the

cloudiness breakpoints (default: [0, 3], [3, 10] and [9, 10])
and the wind speed break points (default: [12, 39]) to

consider;

• whether to take into account meteorological data on the

previous day and/or on the previous week (default: only

the current day);

• whether to take into account the daylight saving time

(default: yes);

• the year harmonics to use (default: 1, 2, 3, 4).
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• whether to use the last observed load as input (default:

yes);

• whether to chain the models between each time step

(default: yes).

To evaluate the performance of the model, we used a 8-years

dataset of hourly power load for the complete province of

Quebec, ranging from January 1st, 2012 to December, 31st,

2019. We also retrieved the corresponding meteorological data

(temperature, cloudiness and wind speed) for the same range

of dates and same time steps, for five locations: Montreal

(yul), Quebec city (qc), Ottawa (ott), Sherbrooke (sh)

and Baie-Comeau (bc). Those locations seemed strategically

sound to ensure wider geographical cover with relatively high

population density, except for Baie-Comeau, in the North

Coast administrative region, which is mostly included in the

hope to capture power consumption behavior in the northern

parts of Quebec. In each case, the MAPE score is computed

using a classical rolling window strategy, i.e. for each day d
between 2013 and 2019,

• We train the model using all data between day 0 and day

d− 1.

• We produce a forecast for the day d.

• We store the forecasted values together with the real

power loads observed.

We can then use all stored value to evaluate the global MAPE

score, or to study it for each time step or the day, for each

days of the week, and so on.

In order to find a set of parameters as best as possible, we

proceed as follows. First, we start with the basic model of

Clements et al. [3], but with the meteorological and special

days components removed. For the next steps, we look at

the improvement obtained on the global MAPE score by

introducing a simple variation on each available parameter,

such as using the daylight saving time, enhancing the number

of year harmonics considered, adding meteorological data

from a specific station, etc. After having compared the

different variations, we pick the one that shows the largest

improvement, and we consider it fixed for the next experiment.

We repeat the process until no significant improvement is

observed.

As mentioned earlier, the training of a model for a specific

date is done very quickly, whatever the date and the activated

parameters. It takes a few seconds on a standard laptop.

However, the evaluation of several variations of the model,

over a period of 7 years can take dozens of hours if

computed sequentially. Since a high performance computing

cluster is available on premises, we introduced the following

straightforward parallelizations:

• On a given day, each time step of the day, the model

can be trained independently. Only the forecasts must

be computed sequentially, but since the training is much

longer than the forecast process, significant computation

time can be gained.

• The evaluations of the models can also be distributed

between the days of the evaluation range.

• Finally, each model variation can also be trained

independently.

Fig. 4 Comparison of the forecasted values by different variations of the
basic reference model on an arbitrary typical day (September 25, 2019)

Exploiting those “embarassingly” parallel workload

observations, we were able to reduce the computation

time of each step to a time between 5 to 10 minutes.

V. EXPERIMENTAL RESULTS

We are now ready to present the results of the carried out

experiment. We first started with a basic or reference model,
i.e. the model described in ((1)), but with the temperature

and special days components removed. In other words, no

meteorological information is used: Only the week and year

seasonality are taken into account, as well as the last observed

load and the previous time step forecasted load. This seems

like a natural starting point: As it is based only on the power

load history, one could apply this model without additional

change and to any scale, ranging from single household

smart meters and off-grid power systems to single electrical

substations and the complete power grid. Then, we introduced

19 atomic variations of the model:

• One for each of the 5 meteorological locations and each

of the 3 meteorological variables (temperature, cloudiness

and wind speed); Moreover, we only consider those

variables on the current day and not for the previous day

or week;

• One activating the use of the daylight saving time;

• One activating the 2-months year harmonic (q = 6) and

• One activating the 1-month year harmonic (q = 12).

Fig. 4 depicts a comparison between the reference model,

the 18 variations and the real observed load for an arbitrary

typical day (September 25, 2019). For this particular day, the

models are quite accurate during the start/end of the day and

for the largest peak, but they show over-forecasting errors both

for the morning peak and the middle day trough.

Next, we evaluated the average MAPE score of each of

the variations for the time period ranging from 2013-01-01

to 2019-12-31. Fig. 5 shows the average MAPE for each
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Fig. 5 Comparison of the average MAPE score obtained for the basic model
and each of its 18 variations

Fig. 6 Comparison of the average MAPE score obtained for the new
reference model and each of its variations

time step of the day and each variations. Without much

surprise, it is the temperature measured in Montreal — the

most populated city of the Quebec province — that shows the

greatest improvement, both on the global MAPE score and the

average MAPE for each time step of the day. Thus, the new

reference model becomes the basic one with the additional

T yul meteorological variable (on the current day of forecast).

Based on the new reference model, we repeated the same

idea as below, with the additional variation of considering

the meteorological variables on the previous day and on the

previous week. Fig. 6 shows the obtained comparison. At that

stage, there is no clear candidate that stands out: the cloudiness

measured in Montreal (Nyul) significantly lowers the highest

peak, but the temperature measured in Quebec city (T qc)

shows a greater improvement when averaged on all time steps.

In any case, it turns out that the inclusion of both variables

improved the overall performance.

Using the same process over and over, we added, in

that order, the following variations (the global MAPE score

improvement in each case is indicated between parentheses):

1) The current day temperature measured in Montreal

(T yul) (≈ −1.88%);

2) The current day temperature measured in Quebec city

(T qc) (≈ −0.10%);

3) The current day cloudiness measured in Montreal

(Nyul) (≈ −0.10%);

4) The inclusion of the meteorological variables on the

previous day on top of the current day (−0.08%);

5) The cloudiness measured in Quebec city (Nqc) (≈
−0.05%);

6) The inclusion of the meteorological variables on the

previous week on top of the current day and previous

day (≈ −0.05%);

7) The wind speed measured in Montreal (W yul) (≈
−0.03%).

From there, we tried several variations by trial-and-error,

with only slight improvements. In all cases, including the

daylight saving time always improved the forecasts, so we

decided to keep it activated. It is unclear whether the additional

2-months (+q6) and 1-month (+q12) year harmonics really

improve the accuracy of the model: depending on the values of

the other parameters, we either observed small improvements

or small deteriorations. Finally, the meteorological variables

for the city of Sherbrooke (sh) did not seem to bring more

information than the four other cities did so that we decided

to remove it from our final model. To summarize, the final

preferred model uses the following parameters:

• All meteorological variables are used (temperature,

cloudiness and wind speed);

• Four locations (Montreal, Quebec city, Ottawa and

Baie-Comeau) are used, Sherbrooke is not considered;

• Meteorological variables on the current day, the previous

day and the previous week are taken into account;

• The daylight saving time is used and

• The 1-month harmonic (q = 12) is used on top of the

other four ones (q = 1, 2, 3, 4).

The global average MAPE score for our final model

is ≈ 1.79%. The average MAPE scores for each day

of the week are depicted in Fig. 7. The forecasts are

typically better on Wednesdays, Thursdays and Fridays. Some

accuracy is lost on Tuesdays, Saturdays and Sundays, but are

relatively acceptable. Since there is usually over-forecasting on

Saturdays compared to Fridays, this could explain the decrease

in quality. However, the score for Mondays are quite bad.

This result is probably explained by the fact that many special

days fall on that specific weekday combined with the effect

of moving from the weekend to the week and not taking into
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Fig. 7 MAPE score by time step for each day of the week

Fig. 8 MAPE score by time step for each month of the year

account the 2-days lagged demand (from Saturday to Monday).

Finally, the average MAPE scores for each month of the year

are depicted in Fig. 8. The patterns are less clear in that case:

• In general, the forecasts during August, September,

October and November seem better than for the other

months;

• April performs poorly during the first hours in

comparison with the other months. It is unclear why this

is the case.

• The forecasts are more error-prone for the Winter

months (December, January and February, March), which

is probably explained by the higher volatility of the

meteorological conditions.

• February is quite accurate for the morning and evening

peaks, but shows relatively poor performance during the

middle day.

We believe that a better categorization of “day type” could

explain part of those remaining variations.

VI. CONCLUDING REMARKS

In this paper, we presented an extended multiple equation

time series model to address short-time load forecasting.

We studied the inclusion of three meteorological variables

(temperature, cloudiness and wind speed), as well as multiple

meteorological stations. All turned out to improve significantly

the accuracy of the forecast models. Moreover, given the fact

that training of the model is fast, it should be quite easy to

adapt our C++ prototype so that it also provides confidence

intervals on the forecasts, for instance by training the model

on the previous days and on similar days such as those in the

same period of the previous year.

We conclude with a short discussion on how to handle

special days. It is well known that the power load is generally

difficult to forecast around holidays [2]. The global load during

the day, as well as the peaks, are typically lower, but there can

also be unexpected higher demand during some specific time

steps. Unfortunately, it is not always obvious how to identify

what day is really special and how special it is going to turn

out.

In the spirit of generalizing the handling of special days,

we computed an “error profile” for each day, by taking the

absolute percentage error (APE) for each time step of that

day, effectively associating a time series t(d) with each day d.

Then, using Scikit-learn’s cluster library [22], we computed

clusters for those day profiles. Fig. 9 illustrates the clusters

obtained according to five methods: affinity propagation

[22], spectral clustering [23], Ward’s agglomerative clustering

method [22], BIRCH [24] and MiniBatch k-means [25]. Other

methods were tested, but these five yielded the most visually

appealing distributions of the day profiles. For instance, taking

the affinity propagation method:

• Clusters 4 and 7 seem to regroup typical days;

• Clusters 1, 9, 10 and 12 contain days during which almost

every time step presents an under-forecasted error;

• Clusters 5 and 8 contains days during which almost every

time step presents an over-forecasted error;

• Cluster 2 shows an increasingly under-forecasting model

as the day passes;

• Cluster 3 presents over-forecasting during the morning

peak;

• Cluster 6 regroup days during which there seems to be

over-forecasting during the middle of the day and

• Cluster 11 has a bad start during the first hours, but

becomes better for the rest of the day.

It is unclear whether the identification of the “kind” of day

would significantly improve the forecasts, but it seems to be

worth further exploration.

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:17, No:10, 2023 

248International Scholarly and Scientific Research & Innovation 17(10) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

10
, 2

02
3 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

27
3.

pd
f



Fig. 9 Day profiles clusters computed by different strategy (the horizontal
red line identifies a null error)
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