
 
Abstract—Recently, grid middlewares have provided large 

integrated use of network resources as the shared data and the CPU to 
become a virtual supercomputer. In this work, we present the design 
and implementation of the middleware for Data Warehouse Signature 
(DWS) Framework. The aim of using the middleware in the proposed 
DWS framework is to achieve the high performance by the parallel 
computing. This middleware is developed on Alchemi.Net 
framework to increase the security among the network nodes through 
the authentication and group-key distribution model. This model 
achieves the key security and prevents any intermediate attacks in the 
middleware. This paper presents the flow process structures of the 
middleware design. In addition, the paper ensures the implementation 
of security for DWS middleware enhancement with the 
authentication and group-key distribution model. Finally, from the 
analysis of other middleware approaches, the developed middleware 
of DWS framework is the optimal solution of a complete covering of 
security issues. 

 
Keywords—Middleware, parallel computing, data warehouse, 

security, group-key, high performance. 

I. INTRODUCTION 

WS is a framework for implementing the three security 
issues: Confidentiality, Integrity, and Availability (CIA) 

in the data warehouses. The DWS framework is designed by 
using the Client-Server model [1]. For the data flow between 
the client and the server, there are two process models in the 
DWS framework. These models are DWSend model and 
DWReceive model joined in the middleware. 

The middleware named View Manager Layer (VML) is used 
to achieve high performance for data availability by 
eliminating the query response timed-out. In the two DWS 
models (DWSend and DWReceive), the security processes 
(encryption/decryption and hash computing) are executed in 
the parallel computing using the VML middleware to reach the 
high performance [2]. This middleware is supported by a.NET-
based grid computing framework called Alchemi to use the 
computational power of networked nodes [3]-[5]. In addition, 
the VML middleware of the DWS framework has been 
enhanced by proposing an authentication and group-key 
distribution model to resist the security attack as well as to 
increase the performance. The proposed model aims to 
generate a group-key to be distributed between the manger and 
the chosen group of executors in this middleware [6]. The 
group-key is employed to transmit the shared key of encryption 
algorithm in a secure way. This model thwarts any attacks, 
such as denial of service, replay, and man-in-the middle 

 
Mayada AlMeghari is with Computer Department, Palestine Technical 

College-Deir ElBalah, Gaza, Palestine (e-mail: malmeghari@ptcdb.edu.ps). 

attacks. 
The rest of this paper is organized as follows. Section II 

reviews the related work. Section III presents VML 
middleware of DWS framework. The middleware design is 
described in Section IV. In Section V, VML middleware 
implementation is presented. Section VI offers a comparison of 
VML middleware and existing middleware approaches. 
Finally, the conclusion and future work are given in Section 
VII. 

II. LITERATURE SURVEY  

This section primarily focuses on many related works 
available in the same category. Ahamed et al. [7] present the 
design and implementation of secure middleware for pervasive 
computing applications, S-MARKS. This middleware provides 
security solutions from the perspective of device validation, 
resource discovery providing trust, handling malicious 
recommendations, and avoiding privacy violation. The S-
MARKS includes core components such as Impregnable 
Lightweight Device Discovery, ILDD, Simple and Secure 
Resource Discovery, SSRD with Trust Management and 
Security Management, Privacy module and Object Request 
Broker, ORB. The evaluation results show that the parameters 
such as length of secret x, η and Ω can be tuned to achieve this 
optimized performance of the network.  

In [8], they propose an enhanced mobile agent middleware, 
Agilla (see Fig. 1) for Wireless Sensor Networks (WSN) to 
overcome the queuing delay. The approach enhanced the 
mobile agents for supporting multiple concurrent applications 
to support dynamic changes and large scale networks for 
increasing scalability and heterogeneity. This organized the 
WSN into multiple clusters to promote reusability of available 
resources. The analysis results showed that this middleware 
consumed less amount of energy and produced good 
throughput for a large amount of data streams. 

 

 

Fig. 1 The architecture of Agilla middleware [8] 

Design and Implementation of Security Middleware 
for Data Warehouse Signature Framework 

Mayada AlMeghari 

D

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:12, 2022 

628International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
86

0.
pd

f



Zheng [9] proposes a real-time middleware based on the 
publish and subscribe mechanism. In this work, there are two 
aspects as: First, Real Time eXtention (RTX) is to guarantee 
the real time performance of data processing and transmission 
of the middleware. Second, publish/subscribe mechanism is to 
decouple data producers from data consumers through the 
communication nodes. The middleware is designed and 
implemented to meet the real-time requirements of data 
distribution in the distributed systems. The author adopts a 
hierarchical design to build his middleware from a model layer, 
a communication layer and a support layer. The model layer 
implements the data synchronization of distributed objects. The 
communication layer provides the publish/subscribe 
mechanism based on Ethernet. The support layer guarantees 
the real-time performance of the middleware. This middleware 
can transmit data correctly in a timely manner and reduce the 
cost of system development. 

Finally, Sallow [10] uses Java-RMI (Remote Method 
Invocation) middleware to build a distributed system for 
scheduling the threads. This system includes two separate 
programs: the server, and the client as shown in Fig. 2. The 
server program creates some remote objects, makes references 
to these objects accessible, and waits for clients to invoke 

methods on these objects. The client program obtains a remote 
reference to one or more remote objects on a server and then 
invokes methods on them. This system minimized the 
complexity of distributed programming and introduced a high 
degree of transparency.  

 

 

Fig. 2 Distributed RMI middleware [10]

 

 

Fig. 3 Types of VML middleware 
 

The previous middleware approaches indicate the absence of 
a middleware achieving of all security issues in their systems. 
This motivates us to go more deeply trying to develop a 
middleware for DWS framework to reach the high performance 
as well as to increase the security among the network nodes. 

III. VML MIDDLEWARE OF DWS FRAMEWORK  

There are many middlewares used to execute the huge 
amount of data in the parallel computing. The common large 
distributed middleware is called Alchemi. Alchemi is an open-
source .Net based Enterprise Grid computing framework. It 
allows to aggregate the computing power of networked 

machines into a virtual supercomputer [11], [12]. In the DWS 
implementation, we develop the VML middleware supported 
by Alchemi.Net Desktop Enterprise to achieve the security 
issues, CIA in the data warehouse systems. The VML 
middleware supports many types of computing: cluster 
computing for private network organization; grid computing 
for public network organization; cloud computing for 
enterprise desktop network organization [1] (see Fig. 3). This 
middleware is applied on two sides, the DWServer side 
(DWSend model) and the Client side (DWReceive model). It 
consists of three nodes described as: 
1. Owner: The owner, O is the DWServer or the Client at the 

two model sides. This owner is responsible for separating 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:12, 2022 

629International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
86

0.
pd

f



the Query Result Table (QRT)/Encrypted QRT (EQRT) 
into blocks with the same size of the number of records to 
achieve confidentiality. In addition, the owner computes 
the current hash code value with the previous hash code 
value for blocks to get the final hash code to achieve 
integrity. 

2. Manager: The manager, M is the main node in the VML 
middleware, which distributes the blocks/encrypted blocks 
to a set of chosen executors. Also, this manager returns the 
computed hash value of each block/encrypted block to the 
owner to get the final hash code value. Then, the manager 
recollects all encrypted/decrypted blocks to become 
EQRT/QRT to be sent into the owner. 

3. Executor: The executor, E is the worker that performs two 
security processes on its block: the encryption/decryption 
process using Advanced Encryption Standard (AES) 
algorithm with the Shared Key (KSK) generated by using 
Diffie-Hellman (D-H) algorithm and the hash computing 
process using SHA-1 algorithm. After the executor 
finishes these processes, it sends its block with the hash 
code value to the manager. Executing the security 
processes on a query result of a huge number of records, 
QRT as blocks using parallel computing through the VML 
middleware saves more time than serial computing. 

Regarding the DWS framework [1], [2], all transmitted 
blocks of QRT along with the key, KSK, were sent in a clear-
text to the executors, which in turn is a chance for any 
intermediate attacker to intercept the data before encrypting it. 
For enhancing DWS framework, the problem of sending the 
data blocks in a clear-text is solved by compressing the QRT 
and dividing it to blocks, then keeping one block at the owner 
(DWServer/Client) (i.e., the owner is working as one of the 
executors). Therefore, the attacker could not be able to identify 
the whole blocks [6]. 

The other problem of sending the shared key (KSK) of 
encryption algorithm in a clear-text is solved by proposing an 
authentication and group-key distribution model as shown in 
Fig. 4. The goal of the model is to mutually authenticate the 
manager and the executors to prevent any intermediate attacks, 
such as denial of service, replay, and man-in-the middle 
attacks. Also, this model generates a group key among the 
manager and the chosen executors employed to encrypt the KSK 
of the AES encryption algorithm. It is based on the idea of 
modular symmetric polynomial and we are the first to use the 
modular symmetric polynomial in generating and distributing a 
group key. Finally, the proposed model also prevents any 
attacker to get the complete compressed blocks by keeping one 
block at the owner without sending it. 

 

 

Fig. 4 The architecture of enhancing of DWS framework 
 

The VML middleware of enhancing DWS framework 
achieves the high performance during executing the security 
processes by using the parallel computing. Additionally, this 
middleware increases the security level among its nodes using 
the authentication and group-key distribution model. It 
achieves the key freshness, confidentiality, and authentication. 
It also prevents the insider and outsider attackers by increasing 
the security level from t to  ∑  ൫௖

௜൯௖
௜ୀଵ ൈ 𝑡 , where t is the 

symmetric polynomial degree, and c is the number of chosen 

executors. The use case diagram shown in Fig. 5 details how 
this model is executed. 

IV. VML MIDDLEWARE DESIGN  

The VML middleware is applied in the two models of DWS 
framework as Server VML for DWSend model and Client 
VML for DWReceive model. Therefore, there are two flow 
process structures for the middleware described below: 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:12, 2022 

630International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
86

0.
pd

f



 

Fig. 5 Use case diagram for authentication and group-key distribution in VML middleware 
 

A. DWSend Middleware 

There are three main types of flow process for DWSend 
structure depending on the VML middleware nodes (Owner, 
Manager, Executor) as shown in Fig. 6. 

•  Owner (DWServer) 

The owner executes a set of processes in the VML 
middleware of DWSend ordered as follows: 
1. Get the QRT from the DW. 
2. Compress the QRT.  
3. Read CQRT as a file. 
4. Divide the CQRT into blocks objects. The last block is 

kept in the owner without sending it to the manager. 
5. Assign a thread for every block object. 
6. Start the thread. 

7. Wait for the thread to finish. 
8. Make XOR result to other to generate the computed hash 

for all encrypted block objects to get the Hash of 
Encrypted Compressed Block Objects (HECBOs). 

9. Encrypt the HECBOs by using RSA algorithm with the 
private key (KPr) of DWServer to get the Encrypted Hash 
of Encrypted Block Objects (EHECBOs). 

10. Write ECQRT || EHECBOs as a view table. 
11. Calculate execution time. 

•  Manager 

1. Initialize the authentication process with the chosen 
executors joint in the VML middleware of DWSend 
model. 

2. Get the thread from the owner. 
3. Generate the group key in order to encrypt the KSK and 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:12, 2022 

631International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
86

0.
pd

f



then send it in a secure way to the chosen executors. 
4. Assign the thread to an executor. 
5. Pool finish thread.  
6. Send the results to the owner. These results are: 
- The hash value for each Encrypted Compressed Block 

Object (ECBO). 
- The ECBOs are recollected to become one block object as 

ECQRT. 

• Executor 

1. Set the authentication with the manager to verify the 
authorized executors. 

2. Get a thread from the manager. 
3. Calculate the group key to be used for getting the sent KSK. 
4. Encrypt it CBO by using AES algorithm with the share 

key (KSK). 
5. Execute the hash code to compute the hash function for 

each ECBO using SHA-1 algorithm. 
6. Return the results to the manager. 

 

B. DWReceive Middleware 

The structure of DWReceive model is also separated into 
three types of flow process based on its VML middleware 
nodes (see Fig. 7). 

• Owner (Client) 

1. Separate the ECQRT from the EHECBOs, which are 
received from the DWServer. 

2. Decrypt the EHECBOs by using RSA algorithm with the 
public key (KPu) of DWServer. 

3. Read the number of blocks chosen in the DWSend model. 
4. Read the ECQRT as data block objects.  
5. Assign a thread for each block object of number of 

records. 
6. Start the thread. 
7. Wait for the thread to finish. 
8. Make XOR result to other to generate the computed hash 

for all encrypted block objects to get the Hash of 
Encrypted Block Objects (HECBOs). 

9. Decompress the CQRT after collecting CBOs blocks. With 
condition, its block is added with other blocks, which are 
sent from manager to be become QRT.  

 

 

Fig. 6 The steps of DWSend middleware design 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:12, 2022 

632International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
86

0.
pd

f



10. Compare the calculated HECBOs with the received 
HECBOs. 

11. Calculate the execution time. 

• Manger 

1. Initialize the authentication process with the chosen 
executors joint in the VML middleware of DWReceive 
model.  

2. Get the thread from application. 
3. Generate the group key to encrypt the KSK and then send it 

in a secure way to the executors.  
4. Assign the thread to an executor. 
5. Pool finish thread. 
6. Send the results to the owner. These results are: 

- The hash value for each ECBO. 
- The decrypted block objects are recollected to get CQRT. 

•  Executor 

1. Set the authentication with the manager to verify the 
authorized executors. 

2. Get the thread from the manager. 
3. Execute the hash code to compute the hash function for its 

encrypted compressed block object, ECBO using SHA-1 
algorithm. 

4. Calculate the group key to be used for getting the sent KSK. 
5. Decrypt each ECBO by using AES algorithm with the 

KSK. 
6. Return the results to the manager. 

 

 

Fig. 7 The steps of DWReceive middleware design 
 

V. VML MIDDLEWARE IMPLEMENTATION 

The VML middleware is developed on Alchemi 1.0.4.Net 
Framework 2 [3] to resist the potential attacks through the 
proposed authentication and group-key distribution model. For 
managing a set of schedule threads, the VML used a manager 
node. For executing a set of these threads, the VML used the 

executor nodes. The result of execution of schedule jobs is 
returned to the owner. The proposed model for VML provides 
a secure authentication between the manager and the executors 
to prevent any intermediate attacks. Also, this model generates 
a group-key that is distributed between the manager and the 
chosen executors employed to transmit the key, KSK in a secure 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:12, 2022 

633International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
86

0.
pd

f



way. The experimental network data flow is in a star network 
topology with a cluster structure. The programming language 
used in developing the VML middleware is C# with Microsoft 
Visual Studio 2013.  

A. VML Database 

The VML middleware needs to store the data for each of the 
executors, the threads, the applications, the groups, and the 
users. So, the VML middleware has a database stored at the 
manager node, which is the main component in this 

middleware. The database that manages the data flow in the 
VML middleware is Microsoft SQL Server Management 
Studio 2008. In the executor table, there is a set of data fields 
added for authentication and group-key generation processes, 
such as mangerID, executorID, nonce, and modular. In 
addition, in the application table, two data fields are added to 
be used in the group-key generation process, such as AES_Key 
and group key (see Fig. 8). 

 

 

Fig. 8 The VML database diagram 
 

 

Fig. 9 (a) Start manager 
 

 

Fig. 9 (b) The authenticated executors and the chosen executors for 
working 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:12, 2022 

634International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
86

0.
pd

f



B. VML Manager 

The manager schedules a set of threads as jobs and manages 
the data of threads for sending it to the chosen executors as 
First Come First Served (FCFS). The database configuration 
for the VML manager should be entered to start the connection 
process, then the managerID is generated randomly (see Fig. 9 
(a)). For the authentication in the VML middleware, the 
manager shows the connected executors, which are 
authenticated with it. Also, after finishing the DWS 
application, this manager shows the chosen executors, which 
execute the application process (see Fig. 9 (b)). 

C. VML Executors 

In VML middleware for DWS framework, the chosen 
executors used their threads as blocks, which are sent by the 
manager. In the two models (DWSend and DWReceive), these 
executors perform two processes, encryption/decryption 
process and hash code function process in a parallel computing. 
There are two types of executors as dedicated and non-
dedicated. The dedicated executor is always executing the 
threads, while the non-dedicated executor executes the threads 
on a voluntary basis. In the VML executors, the IP address of 
manager is entered to connect it with the executors, and then 
the executorIDs are generated sequentially. After that, the 
authentication process (described in [6]) is done between the 
manager and those connected executors. Fig. 10 shows a 
snapshot for one of the connected executors (ID:10) which is 
authenticated with the manager. 

 

 

Fig. 10 The authentication process between the manager and the 
connected executors 

For the chosen executors by the manger, the group-key is 

generated and then distributed among the VML nodes in order 
to send the AES key, KSK securely [6]. For example, the AES 
key (KSK) was 215 generated using Diffie-Hellman (D-H) 
algorithm to be distributed among the two models (see Figs. 11 
and 12).  

In the VML middleware, the group-key is recalculated and 
periodically changed for each application run. For example, in 
the middleware at DWSend, the generated group-key was 
16370 at the chosen executors with IDs (7,4,2,6) to execute 
their threads of blocks. Fig. 11 shows a thread of executor ID 2. 
While, in the middleware at DWReceive, the group-key was 
42848 at the chosen executors with IDs (7,1,3,10) to perform 
their threads. Fig. 12 shows a thread of executor ID 10. 

D. Application of Authentication and Group-key Distribution  

The authentication and group-key distribution in the VML 
middleware is implemented with C# languages to provide a 
secure way among the middleware nodes. This includes 
initialization, authentication, and group-key generation phases 
[6]. In the initialization, each executor sends connect-request 
message to the manager encrypted with its public key. This 
manager receives the connect request to be decrypted using its 
private key (see C# code of SendConnectionRequest method). 

 

 

Fig. 11 The group-key generation in the VML middleware- DWSend 
 

public void SendConnectionRequest(byte[] encMsg) 
       { 
            string appDir = AppDomain.CurrentDomain.BaseDirectory + 
"\\private.rsa.cs.key"; 
            var key = File.ReadAllText(appDir); 
            var bytes = NewUtils.RSADecryptMsg(encMsg, key); 
            var data = System.Text.Encoding.UTF8.GetString(bytes); 
            //receive --> executerID||nonce1||ts1 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:12, 2022 

635International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
86

0.
pd

f



            var dataArray = NewUtils.SplitMessage(data); 
            var nonce1 = int.Parse(dataArray[1]); 
            var ExeNumeric = int.Parse(dataArray[0]); 
            logger.Debug("received connection request message from exe
cutor (" + ExeNumeric + ")--
>" + Convert.ToBase64String(encMsg)); 
         } 

 

 

Fig. 12 The group-key generation in the VML middleware-
DWReceive 

 
As an authentication phase, the manager sends a challenge 

message to the executor. This is encrypted using the public key 
of executor. The definition of a method called 
SendChallengeMessage is presented as follows: 
 
public String SendChallengeMessage (byte[] encMsg) 
        { 
            var f = NewUtils.F(ExeNumeric, ManagerId); 
            var nonce2 = NewUtils.GenerateNonce(); 
            var ts1 = dataArray[2]; 
            var ts2 = NewUtils.GetTimestamp(DateTime.Now); 
            var chanllengeMsg = NewUtils.JoinMessage(ExeNumeric, no
nce1, ts1, nonce2, ts2, f); 
            //send --> executerID||nonce1||ts1||nonce2||ts2, F(x, y) 
            var EncChanllengeMsg = RijndaelManagedEncryption.Encry
ptRijndael(chanllengeMsg, nonce1.ToString()); 
            logger.Debug("send challenge message to executor (" + ExeN
umeric + ")-->" + EncChanllengeMsg); 
            NonceDict[ExeNumeric] = new NonceMessageModel { Nonc
e1 = nonce1, Nonce2 = nonce2, Ts2 = ts2 }; 
            return EncChanllengeMsg; 
        } 

 
The executor decrypts the received challenge message and 

replies with the response message to manager shown in the 
method SendChallengeResponse. The manger decrypts this 
message and compares the values at the messages and then 
authenticates the executor if the values are identical.   
 
public void SendChallengeResponse(string executorId, string EnctMe
ssage) 
        { 
            logger.Debug("received challenge response message from exe
cutor (" + EnctMessage + ")-->" + EnctMessage); 
            var numId = ManagerStorageFactory.ManagerStorage().GetE
xecutorNumericId(executorId); 
            var StoredNonceModel = NonceDict[numId]; 
            var StoredNonce2 = StoredNonceModel.Nonce2; 
            var StoredTs2 = StoredNonceModel.Ts2; 
            //msg = executerID||nonce2||ts2 
            var DectRespMsg = RijndaelManagedEncryption.DecryptRijn
dael(EnctMessage, StoredNonce2.ToString()); 
            var dataArray = NewUtils.SplitMessage(DectRespMsg); 
            var ReceivedNonce2 = int.Parse(dataArray[1]); 
            var ReceivedTs2 = dataArray[2]; 
            if (ReceivedNonce2 == StoredNonce2 && ReceivedTs2 == S
toredTs2) 
            { 
                ManagerStorageFactory.ManagerStorage().UpdateExecutor
Nonce1(executorId, ManagerId, StoredNonceModel.Nonce1); 
                logger.Debug(string.Format("ReceivedTs2:{0} equals Stor
edTs2:{1} and ReceivedNonce2 == StoredNonce2", ReceivedTs2, St
oredTs2)); 
            } 
            else 
            { 
                logger.Debug("Invalid Challenge Response"); 
                throw new InvalidChallengeResponse(); 
            } 
        } 
 

After authentication, the manager with the chosen executors 
can generate a group key, Kgr to send the shared key of AES 
algorithm among them securely. The manager chooses a secure 
symmetric polynomial, F(x,y) and transmits the modular values 
each of which to the intended executor after encrypting it using 
noncei. The SetExecutorModular method shows how each 
executor gets its modular. Using the modular value, each 
executor can recalculate the group key as defined in the method 
CalculateGroupKey. Thus, the authentication and group-key 
distribution algorithm solves the problem of sending the shared 
key (KSK) in a clear-text. 
 
public void SetExecutorModular(string encryptedModular) 
        { 
            string nonce1 = Configuration.GetConfiguration().Nonce1.To
String(); 
            var dec_m = RijndaelManagedEncryption.DecryptRijndael(en
cryptedModular, nonce1); 
            this.m = int.Parse(dec_m); 
            logger.Debug(string.Format("UpdateExecutorModular: execu
torId {0}, m value:{1}", Id, m)); 
        } 
 
        public double CalculateGroupKey() 
        { 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:12, 2022 

636International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
86

0.
pd

f



            var f = NewUtils.F(this.NumericId, this.Manager.GetManager
Id()); 
            var L = f % m; 
            if (L == 0) 
            { 
                var g = L; 
            } 
            return L; 
        } 

VI. COMPARISON OF VML MIDDLEWARE AND EXISTING 

MIDDLEWARE APPROACHES  

The VML middleware is applied to obtain the high 
performance using parallel computing and to achieve a high 
level of security among its nodes. This section presents the 
evaluation of the VML middleware comparing to other existing 
middleware approaches as shown in Table I. All of them 
achieved the performance according to their evaluation criteria. 
The middleware of [9] failed to provide security solutions. 
Most of these middleware achieved the authentication; the 
middleware of [7] achieved the authentication using ILDD 
challenge – response method; the middleware of [8] achieved 
the authentication using profiling for sensor nodes; and, the 
middleware of [10] achieved the authentication using Remote 
Method Invocation, RMI Security Manager. While our 
middleware achieved the authentication using secure 
challenge-response method to be prevented any intermediate 
attacks, such as denial of service, replay, and man-in-the 
middle attacks, only one middleware [7] achieved the 

confidentiality using Learning Parity in the presence of Noise, 
LPN secret algorithm with the problem of sending the key in a 
clear-text among their middleware nodes. The VML 
middleware achieved the confidentiality using two encryption 
algorithms, symmetric AES and asymmetric public-key with 
distributing the key in a secure way among its nodes based on 
the modular symmetric polynomial. Finally, most of the 
middleware shown in Table I have not addressed all security 
issues in terms of authentication, confidentially and key 
distribution. The VML middleware addresses these issues and 
resists the potential attacks as well as increases the 
performance.  

VII. CONCLUSION AND FUTURE WORK 

In this paper, we have presented the design and the 
implementation of a secure middleware for DWS framework. 
This middleware was developed to increase the security level 
among its nodes using the authentication and group-key 
distribution model with the increase of high performance. It 
also achieved the key security and prevented both insider and 
outsider attackers. This paper has provided a comparative study 
of some middleware approaches with the proposed VML 
middleware. In the future, the VML middleware can be 
extended for applying our secure DWS framework along with 
the authentication and group-key distribution in cloud 
computing.

 
TABLE I 

A COMPARISON OF VML MIDDLEWARE FOR DWS FRAMEWORK WITH EXISTING MIDDLEWARE APPROACHES 
Security Performance Computing 

Environment 
Thread 
Support 

Implementation Tools Architecture Approach 

Key 
Distribution

Confidentiality Authentication 

No No No Minimize 
communication delays 

under CPU and network 
loads

Distributed 
Computing 

No Aircraft program and Radar 
program 

Hierarchical Zheng 
(2019) [9] 

No No Profiling Less amount of energy 
and good throughput for 
a large amount of data 

streams

Cluster 
Computing 

No Simulation using prototypes Hybrid Multi-
Layered 

Lingaraj et 
al. (2018) 

[8] 

No No RMISecurity 
Manager 

Minimize the complexity 
of distributed 

programming and 
introduce a high degree 

of transparency

Distributed 
Computing 

Yes Java Platform Client/Server Sallow 
(2020) [10] 

No LPN secret 
algorithm 

ILDD challenge- 
response 

Achieve the optimized 
performance of the 

network for parameters 
as length of secret x, η 

and Ω

Pervasive 
Computing 

Yes Prototypes for Impregnable 
Lightweight Device 

Discovery, ILDD and Simple 
and Secure Resource 

Discovery, SSRD 

Hierarchical Ahamed et 
al. (2009) 

[7] 

Modular 
symmetric 
polynomial 

function

AES and public-
key encryption 

algorithms 

Challenge-
response method 

Less the cost of 
computation, 

communication and 
complexity overheads

Cluster 
Computing 

Yes C# with Microsoft Visual 
Studio 2013, Microsoft SQL 
Server Management Studio 

2008  and .Net Framework 2. 

Hierarchical 
with 

centralized 
database 

Our 
Middleware 

 

REFERENCES 
[1] M. AlMeghari, "Data Warehouse Signature: A Framework for 

Implementing Security Issues in Data Warehouses", Journal of Computer 
Sciences and Applications, Science and Education Publishing (SciEP), 
DOI: 10.12691/jcsa-5-1-3, Vol. 5, No. 1, pp. 17-24, April (2017). 

[2] M. AlMeghari, "Data warehouse signature: high performance evaluation 
for implementing security issues in data warehouses through a new 
framework", International Journal of Security and Its Applications 

(IJSIA), Science & Engineering Research Support society (SERSC), 
Journal ISSN: 1738 -9976, Vol. 11, No. 6, pp. 53-68, June (2017). 

[3] A. Luther, R. Buyya, R. Ranjan and S. Venugopal, " Alchemi: A.NET-
based Enterprise Grid Computing System", in: Proceedings of 
International Conference on Internet Computing, Las Vegas, Nevada, 
USA, pp. 269–278, June 27-30(2005). 

[4] A. Poshtkohi, A. H.Abutalebi and S. Hessabi, "DotGrid: a .NET-based 
cross-platform software for desktop grids", International Journal of Web 
and Grid Services, Vol. 3, No. 3, pp. 313-332, August (2007). 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:12, 2022 

637International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
86

0.
pd

f



[5] P. Nagamani, P. Suresh Varma and M. Upendra Kumar, "Security Design 
Framework for Data Management and Distribution for Middleware in 
Grid Extended Cloud Computing", Journal of Engineering Research and 
Application, ISSN: 2248-9622, Vol. 8, Issue 5, pp .57-76, May (2018). 

[6] M. AlMeghari, S. Taha, H. Elmahdy, X. Shen, "Proposed Authentication 
and Group-Key Distribution Model for Data Warehouse Signature, DWS 
Framework", Egyptian Informatics Journal, 
DOI: 10.1016/j.eij.2020.09.002, Volume 22, Issue 3, pp. 245-255, 
Elsevier, September (2021). 

[7] S. I. Ahamed, H. Li, N. Talukder, M. Monjur and C.S. Hasan, "Design 
and implementation of S-MARKS: A secure middleware for pervasive 
computing applications", Vol. 82, No. 10, pp.1657-1677, Elsevier, 
October (2009). 

[8] K. Lingaraj, R.V. Biradar, V.C. Patil, "Eagilla: An Enhanced Mobile 
Agent Middleware for Wireless Sensor Networks", Alexandria 
Engineering Journal, Vol. 57, pp. 1197–1204, Elsevier (2018). 

[9] P. Zheng, "Design and Implementation of a Real-time Publish/Subscribe 
Middleware", Recent Advances in Electrical & Electronic Engineering, 
Vol. 12, No. 6, pp. 513-518 (2019). 

[10] A. B. Sallow, "Design and Implementation Distributed System Using 
Java-RMI Middleware", Academic Journal of Nawroz University 
(AJNU), Volume 9, No 1, pp. 113-120, February (2020). 

[11] M. Bhardwaj, S. Sarbjeet, M. Singh, "Implementation of Single Sign-On 
and Delegation Mechanisms in Alchemi.Net Based Grid Computing 
Framework", International Journal of Information Technology and 
Knowledge Management, Vol. 4, No. 1, pp. 289-292, January-June 
(2011). 

[12] P. Arora and H. Arora, "A Review of Various Grid Middleware 
Technologies", International Journal of Advanced Research in Computer 
Science and Software Engineering, Vol. 2, Issue 6, pp. 6-11, June (2012). 

 
 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:12, 2022 

638International Scholarly and Scientific Research & Innovation 16(12) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
12

, 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
86

0.
pd

f


