Search results for: First critical rotor speed
2499 Real-Time Implementation of STANAG 4539 High-Speed HF Modem
Authors: S. Saraç, F. Kara, C.Vural
Abstract:
High-frequency (HF) communications have been used by military organizations for more than 90 years. The opportunity of very long range communications without the need for advanced equipment makes HF a convenient and inexpensive alternative of satellite communications. Besides the advantages, voice and data transmission over HF is a challenging task, because the HF channel generally suffers from Doppler shift and spread, multi-path, cochannel interference, and many other sources of noise. In constructing an HF data modem, all these effects must be taken into account. STANAG 4539 is a NATO standard for high-speed data transmission over HF. It allows data rates up to 12800 bps over an HF channel of 3 kHz. In this work, an efficient implementation of STANAG 4539 on a single Texas Instruments- TMS320C6747 DSP chip is described. The state-of-the-art algorithms used in the receiver and the efficiency of the implementation enables real-time high-speed data / digitized voice transmission over poor HF channels.
Keywords: High frequency, modem, STANAG 4539.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53402498 A High-Speed and Low-Energy Ternary Content Addressable Memory Design Using Feedback in Match-Line Sense Amplifier
Authors: Syed Iftekhar Ali, M. S. Islam
Abstract:
In this paper we present an energy efficient match-line (ML) sensing scheme for high-speed ternary content-addressable memory (TCAM). The proposed scheme isolates the sensing unit of the sense amplifier from the large and variable ML capacitance. It employs feedback in the sense amplifier to successfully detect a match while keeping the ML voltage swing low. This reduced voltage swing results in large energy saving. Simulation performed using 130nm 1.2V CMOS logic shows at least 30% total energy saving in our scheme compared to popular current race (CR) scheme for similar search speed. In terms of speed, dynamic energy, peak power consumption and transistor count our scheme also shows better performance than mismatch-dependant (MD) power allocation technique which also employs feedback in the sense amplifier. Additionally, the implementation of our scheme is simpler than CR or MD scheme because of absence of analog control voltage and programmable delay circuit as have been used in those schemes.Keywords: content-addressable memory, energy consumption, feedback, peak power, sensing scheme, sense amplifier, ternary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18202497 MRAS Based Speed Sensorless Control of Induction Motor Drives
Authors: Nadia Bensiali, Nadia Benalia, Amar Omeiri
Abstract:
The recent trend in field oriented control (FOC) is towards the use of sensorless techniques that avoid the use of speed sensor and flux sensor. Sensors are replaced by estimators or observers to minimise the cost and increase the reliability. In this paper an anlyse of perfomance of a MRAS used in sensorless control of induction motors and sensitvity to machine parameters change are studied.
Keywords: Induction motor drive, adaptive observer, MRAS, stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15412496 Extent of Highway Capacity Loss Due to Rainfall
Authors: Hashim Mohammed Alhassan, Johnnie Ben-Edigbe
Abstract:
Traffic flow in adverse weather conditions have been investigated in this study for general traffic, week day and week end traffic. The empirical evidence is strong in support of the view that rainfall affects macroscopic traffic flow parameters. Data generated from a basic highway section along J5 in Johor Bahru, Malaysia was synchronized with 161 rain events over a period of three months. This revealed a 4.90%, 6.60% and 11.32% reduction in speed for light rain, moderate rain and heavy rain conditions respectively. The corresponding capacity reductions in the three rainfall regimes are 1.08% for light rain, 6.27% for moderate rain and 29.25% for heavy rain. In the week day traffic, speed drops of 8.1% and 16.05% were observed for light and heavy conditions. The moderate rain condition speed increased by 12.6%. The capacity drops for week day traffic are 4.40% for light rain, 9.77% for moderate rain and 45.90% for heavy rain. The weekend traffic indicated speed difference between the dry condition and the three rainy conditions as 6.70% for light rain, 8.90% for moderate rain and 13.10% for heavy rain. The capacity changes computed for the weekend traffic were 0.20% in light rain, 13.90% in moderate rain and 16.70% in heavy rain. No traffic instabilities were observed throughout the observation period and the capacities reported for each rain condition were below the norain condition capacity. Rainfall has tremendous impact on traffic flow and this may have implications for shock wave propagation.
Keywords: Highway Capacity, Dry condition, Rainfall Intensity, Rainy condition, Traffic Flow Rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20752495 Design and Analysis of a Low Power High Speed 1 Bit Full Adder Cell Based On TSPC Logic with Multi-Threshold CMOS
Authors: Ankit Mitra
Abstract:
An adder is one of the most integral component of a digital system like a digital signal processor or a microprocessor. Being an extremely computationally intensive part of a system, the optimization for speed and power consumption of the adder is of prime importance. In this paper we have designed a 1 bit full adder cell based on dynamic TSPC logic to achieve high speed operation. A high threshold voltage sleep transistor is used to reduce the static power dissipation in standby mode. The circuit is designed and simulated in TSPICE using TSMC 180nm CMOS process. Average power consumption, delay and power-delay product is measured which showed considerable improvement in performance over the existing full adder designs.
Keywords: CMOS, TSPC, MTCMOS, ALU, Clock gating, power gating, pipelining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30732494 Analysis of Long-Term File System Activities on Cluster Systems
Authors: Hyeyoung Cho, Sungho Kim, Sik Lee
Abstract:
I/O workload is a critical and important factor to analyze I/O pattern and to maximize file system performance. However to measure I/O workload on running distributed parallel file system is non-trivial due to collection overhead and large volume of data. In this paper, we measured and analyzed file system activities on two large-scale cluster systems which had TFlops level high performance computation resources. By comparing file system activities of 2009 with those of 2006, we analyzed the change of I/O workloads by the development of system performance and high-speed network technology.Keywords: I/O workload, Lustre, GPFS, Cluster File System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14602493 Does Training in the Use of a Magnifier Improve Efficiency?
Authors: Norliza Mohamad Fadzil, Kerry Fitzmaurice, Linda Malesic
Abstract:
Provision of optical devices without proper instruction and training may cause frustration resulting in rejection or incorrect use of the magnifiers. However training in the use of magnifiers increases the cost of providing these devices. This study compared the efficacy of providing instruction alone and instruction plus training in the use of magnifiers. 24 participants randomly assigned to two groups. 15 received instruction and training and 9 received instruction only. Repeated measures of print size and reading speed were performed at pre, post training and follow up. Print size decreased in both groups between pre and post training maintained at follow up. Reading speed increased in both groups over time with the training group demonstrating more rapid improvement. Whilst overall outcomes were similar, training decreased the time required to increase reading speed supporting the use of training for increased efficiency. A cost effective form of training is suggested.Keywords: Low vision, magnification, training, reading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14132492 Computing Center Conditions for Non-analytic Vector Fields with Constant Angular Speed
Authors: Li Feng
Abstract:
We investigate the planar quasi-septic non-analytic systems which have a center-focus equilibrium at the origin and whose angular speed is constant. The system could be changed into an analytic system by two transformations, with the help of computer algebra system MATHEMATICA, the conditions of uniform isochronous center are obtained.
Keywords: Non-analytic, center–focus problem, Lyapunov constant, uniform isochronous center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13032491 A Study of Quality Assurance and Unit Verification Methods in Safety Critical Environment
Authors: Miklos Taliga
Abstract:
In the present case study we examined the development and testing methods of systems that contain safety-critical elements in different industrial fields. Consequentially, we observed the classical object-oriented development and testing environment, as both medical technology and automobile industry approaches the development of safety critical elements that way. Subsequently, we examined model-based development. We introduce the quality parameters that define development and testing. While taking modern agile methodology (scrum) into consideration, we examined whether and to what extent the methodologies we found fit into this environment.
Keywords: Safety-critical elements, quality management, unit verification, model base testing, agile methods, scrum, metamodel, object-oriented programming, field specific modelling, sprint, user story, UML Standard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8262490 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw
Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar
Abstract:
Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.
Keywords: ANSYS-Fluent, hydrodynamic behavior, SSHE, thermal behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9232489 Twin-Screw Extruder and Effective Parameters on the HDPE Extrusion Process
Authors: S. A. Razavi Alavi, M. Torabi Angaji, Z. Gholami
Abstract:
In the process of polyethylene extrusion polymer material similar to powder or granule is under compression, melting and transmission operation and on base of special form, extrudate has been produced. Twin-screw extruders are applicable in industries because of their high capacity. The powder mixing with chemical additives and melting with thermal and mechanical energy in three zones (feed, compression and metering zone) and because of gear pump and screw's pressure, converting to final product in latest plate. Extruders with twin-screw and short distance between screws are better than other types because of their high capacity and good thermal and mechanical stress. In this paper, process of polyethylene extrusion and various tapes of extruders are studied. It is necessary to have an exact control on process to producing high quality products with safe operation and optimum energy consumption. The granule size is depending on granulator motor speed. Results show at constant feed rate a decrease in granule size was found whit Increase in motor speed. Relationships between HDPE feed rate and speed of granulator motor, main motor and gear pump are calculated following as: x = HDPE feed flow rate, yM = Main motor speed yM = (-3.6076e-3) x^4+ (0.24597) x^3+ (-5.49003) x^2+ (64.22092) x+61.66786 (1) x = HDPE feed flow rate, yG = Gear pump speed yG = (-2.4996e-3) x^4+ (0.18018) x^3+ (-4.22794) x^2+ (48.45536) x+18.78880 (2) x = HDPE feed flow rate, y = Granulator motor speed 10th Degree Polynomial Fit: y = a+bx+cx^2+dx^3... (3) a = 1.2751, b = 282.4655, c = -165.2098, d = 48.3106, e = -8.18715, f = 0.84997 g = -0.056094, h = 0.002358, i = -6.11816e-5 j = 8.919726e-7, k = -5.59050e-9Keywords: Extrusion, Extruder, Granule, HDPE, Polymer, Twin-Screw extruder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49772488 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines
Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri
Abstract:
This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.Keywords: Wind turbines, aeroelasticity, repetitive control, periodic systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12952487 Motions of Multiple Objects Detection Based On Video Frames
Authors: Khin Thandar Lwin, Than Htike, Zaw Min Naing
Abstract:
This paper introduces an intelligent system, which can be applied in the monitoring of vehicle speed using a single camera. The ability of motion tracking is extremely useful in many automation problems and the solution to this problem will open up many future applications. One of the most common problems in our daily life is the speed detection of vehicles on a highway. In this paper, a novel technique is developed to track multiple moving objects with their speeds being estimated using a sequence of video frames. Field test has been conducted to capture real-life data and the processed results were presented. Multiple object problems and noisy in data are also considered. Implementing this system in real-time is straightforward. The proposal can accurately evaluate the position and the orientation of moving objects in real-time. The transformations and calibration between the 2D image and the actual road are also considered.
Keywords: Motion Estimation, Image Analyses, Speed Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14282486 Production Structures of Energy Based on Water Force, Its Infrastructure Protection, and Possible Causes of Failure
Authors: Gabriela-Andreea Despescu, Mădălina-Elena Mavrodin, Gheorghe Lăzăroiu, Florin Adrian Grădinaru
Abstract:
The purpose of this paper is to contribute to the enhancement of a hydroelectric plant protection by coordinating protection measures / existing security and introducing new measures under a risk management process. In addition, plan identifies key critical elements of a hydroelectric plant, from its level vulnerabilities and threats it is subjected to in order to achieve the necessary protection measures to reduce the level of risk.Keywords: Critical infrastructure, risk analysis, critical infrastructure protection, vulnerability, risk management, turbine, Impact analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15612485 Influence of Heterogeneous Traffic on the Roadside Fine (PM2.5 and PM1) and Coarse(PM10) Particulate Matter Concentrations in Chennai City, India
Authors: Srimuruganandam. B, S.M. Shiva Nagendra
Abstract:
In this paper the influence of heterogeneous traffic on the temporal variation of ambient PM10, PM2.5 and PM1 concentrations at a busy arterial route (Sardar Patel Road) in the Chennai city has been analyzed. The hourly PM concentration, traffic counts and average speed of the vehicles have been monitored at the study site for one week (19th-25th January 2009). Results indicated that the concentrations of coarse (PM10) and fine PM (PM2.5 and PM1) concentrations at SP road are having similar trend during peak and non-peak hours, irrespective of the days. The PM concentrations showed daily two peaks corresponding to morning (8 to 10 am) and evening (7 to 9 pm) peak hour traffic flow. The PM10 concentration is dominated by fine particles (53% of PM2.5 and 45% of PM1). The high PM2.5/PM10 ratio indicates that the majority of PM10 particles originate from re-suspension of road dust. The analysis of traffic flow at the study site showed that 2W, 3W and 4W are having similar diurnal trend as PM concentrations. This confirms that the 2W, 3W and 4W are the main emission source contributing to ambient PM concentration at SP road. The speed measurement at SP road showed that the average speed of 2W, 3W, 4W, LCV and HCV are 38, 40, 38, 40 and 38 km/hr and 43, 41, 42, 40 and 41 km/hr respectively for the weekdays and weekdays.Keywords: particulate matter, heterogeneous traffic, fineparticles, coarse particles, vehicle speed, weekend and weekday.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14652484 Reliability-based Selection of Wind Turbines for Large-Scale Wind Farms
Authors: M. Fotuhi-Firuzabad, A. Salehi Dobakhshari
Abstract:
This paper presents a reliability-based approach to select appropriate wind turbine types for a wind farm considering site-specific wind speed patterns. An actual wind farm in the northern region of Iran with the wind speed registration of one year is studied in this paper. An analytic approach based on total probability theorem is utilized in this paper to model the probabilistic behavior of both turbines- availability and wind speed. Well-known probabilistic reliability indices such as loss of load expectation (LOLE), expected energy not supplied (EENS) and incremental peak load carrying capability (IPLCC) for wind power integration in the Roy Billinton Test System (RBTS) are examined. The most appropriate turbine type achieving the highest reliability level is chosen for the studied wind farm.
Keywords: Wind Turbine Generator, Wind Farm, Power System Reliability, Wind Turbine Type Selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17752483 Critical Factors to Company Success in the Construction Industry
Abstract:
Achieving success is a highly critical issue for the companies to survive in a competitive business environment. The construction industry is also an area where there is strong competition due to a large number of construction contractors. There have been many factors such as qualified employees, quality workmanship and financial management that can lead to company success in the construction industry. The aim of this study was to investigate the critical factors leading to construction company success. Within this context, a survey was carried out among 40 Turkish construction companies which are located in the Northwest region of Turkey. In this survey, top-level managers and owners of the companies were interviewed. The interviews took place over a five month period between January and May 2007. Finally, the ranking of the critical success factors has been determined by using the Simple Multi Attribute Rating Technique (SMART). Based on the results, business management, financial conditions and owner/manager characteristics were determined as the most important factors to company success.Keywords: Company success, construction, organization, success factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98082482 The Effect of Main Factors on Forces during FSJ Processing of AA2024 Aluminum
Authors: Dunwen Zuo, Yongfang Deng, Bo Song
Abstract:
An attempt is made here to measure the forces of three directions, under conditions of different feed speeds, different tilt angles of tool and without or with the pin on the tool, by using octagonal ring dynamometer in the AA2024 aluminum FSJ (Friction Stir Joining) process, and investigate how four main factors influence forces in the FSJ process. It is found that, high feed speed lead to small feed force and small lateral force, but high feed speed leads to large feed force in the stable joining stage of process. As the rotational speed increasing, the time of axial force drop from the maximum to the minimum required increased in the push-up process. In the stable joining stage, the rotational speed has little effect on the feed force; large rotational speed leads to small lateral force and axial force. The maximum axial force increases as the tilt angle of tool increases at the downward movement stage. At the moment of start feeding, as tilt angle of tool increases, the amplitudes of the axial force increasing become large. In the stable joining stage, with the increase of tilt angle of tool, the axial force is increased, the lateral force is decreased, and the feed force almost unchanged. The tool with pin will decrease axial force in the downward movement stage. The feed force and lateral force will increase, but the axial force will reduced in the stable joining stage by using the tool with pin compare to by using the tool without pin.
Keywords: FSJ, force factor, AA2024, friction stir joining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11372481 Emergency Response Plan Establishment and Computerization through the Analysis of the Disasters Occurring on Long-Span Bridges by Type
Authors: Sungnam Hong, Sun-Kyu Park, Dooyong Cho, Jinwoong Choi
Abstract:
In this paper, a strategy for long-span bridge disaster response was developed, divided into risk analysis, business impact analysis, and emergency response plan. At the risk analysis stage, the critical risk was estimated. The critical risk was “car accident."The critical process by critical-risk classification was assessed at the business impact analysis stage. The critical process was the task related to the road conditions and traffic safety. Based on the results of the precedent analysis, an emergency response plan was established. By making the order of the standard operating procedures clear, an effective plan for dealing with disaster was formulated. Finally, a prototype software was developed based on the research findings. This study laid the foundation of an information-technology-based disaster response guideline and is significant in that it computerized the disaster response plan to improve the plan-s accessibility.
Keywords: Emergency response; Long-span bridge; Disaster management; Standard operating procedure; Ubiquitous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18332480 Critical Velocities for Particle Transport from Experiments and CFD Simulations
Authors: Sajith Sajeev, Brenton McLaury, Siamack Shirazi
Abstract:
In the petroleum industry, solid particles are often present along with the produced fluids. It is imperative to keep particles from accumulating in flow lines. In this study, various experiments are conducted to study sand particle transport, where critical velocity is defined as the average fluid velocity to keep particles continuously moving. Many parameters related to the fluid, particles and pipe affect the transport process. Experimental results are presented varying the particle concentration. Additionally, CFD simulations using a discrete element modeling (DEM) approach are presented to compare with experimental result.Keywords: Particle transport, critical velocity, CFD, DEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12112479 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network
Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard
Abstract:
Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the point specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.
Keywords: Milling process, rotational speed, Artificial Neural Networks, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23312478 Image Analysis of Fine Structures of Supercavitation in the Symmetric Wake of a Cylinder
Authors: Y. Obikane , M.Kaneko, K.Kakioka, K.Ogura
Abstract:
The fine structure of supercavitation in the wake of a symmetrical cylinder is studied with high-speed video cameras. The flow is observed in a cavitation tunnel at the speed of 8m/sec when the sidewall and the wake are partially filled with the massive cavitation bubbles. The present experiment observed that a two-dimensional ripple wave with a wave length of 0.3mm is propagated in a downstream direction, and then abruptly increases to a thicker three-dimensional layer. IR-photography recorded that the wakes originated from the horseshoe vortexes alongside the cylinder. The wake was developed to inside the dead water zone, which absorbed the bubbly wake propelled from the separated vortices at the center of the cylinder. A remote sensing classification technique (maximum most likelihood) determined that the surface porosity was 0.2, and the mean speed in the mixed wake was 7m/sec. To confirm the existence of two-dimensional wave motions in the interface, the experiments were conducted at a very low frequency, and showed similar gravity waves in both the upper and lower interfaces.Keywords: Supercavitation, density gradient correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15232477 Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of an Ultra-High-Speed Image Sensor by Dimensional Analysis
Authors: V. T. S. Dao, T. G. Etoh, C. Vo Le, H. D. Nguyen, K. Takehara, T. Akino, K. Nishi
Abstract:
We present an explicit expression to estimate driving voltage attenuation through RC networks representation of an ultrahigh- speed image sensor. Elmore delay metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE simulation data, we found a simple expression that significantly improves the accuracy of the approximation. Estimation error of the resultant expression for uniform RC networks is less than 2%. Similarly, another simple closed-form model to estimate 50 % delay through fundamental RC networks is also derived with sufficient accuracy. The framework of this analysis can be extended to address delay or attenuation issues of other VLSI structures.
Keywords: Dimensional Analysis, Elmore model, RC network, Signal Attenuation, Ultra-High-Speed Image Sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14232476 Positive Solutions for Semipositone Discrete Eigenvalue Problems via Three Critical Points Theorem
Authors: Benshi Zhu
Abstract:
In this paper, multiple positive solutions for semipositone discrete eigenvalue problems are obtained by using a three critical points theorem for nondifferentiable functional.Keywords: Discrete eigenvalue problems, positive solutions, semipositone, three critical points theorem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12532475 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels
Authors: WooYoung Jung, HoYoung Son
Abstract:
This study presented to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, hightech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).Keywords: Composite material, GFRP, Infill Panel, Aftershock, Seismic Retrofitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22852474 A study of the ERP Project Life Cycles in Small-and-Medium–Sized Enterprises: Critical Issues and Lessons Learned
Authors: Eli Hustad, Aurilla A. Bechina
Abstract:
The purpose of this research is to increase our knowledge as regards how Small-and-Medium-Sized Enterprises (SMEs) tackle ERP implementation projects to achieve successful adoption and use of these systems within the organization. SMEs have scare resources to handle these kinds of projects which have proved to be risky and costly. There are several studies focusing on ERP implementation in larger companies, however, few studies report on challenges experienced by SMEs. Our research seeks to bridge this gap. Through a multiple case study of four companies, we identified challenges and critical elements within the different phases (pre-implementation, implementation and post-implementation) of the ERP life cycle. To interpret our findings, we utilize a well-know ERP life cycle model and critical success factors developed for larger companies which are reported in former research literature. We discuss if these models are relevant for SMEs and suggest additional critical elements identified in this study to make a framework more adapted to the SME context.Keywords: ERP implementation challenges, ERP implementation framework, ERP life cycle model, Small-and- Medium-Sized Enterprises, ERP critical success factors
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22992473 High Speed Video Transmission for Telemedicine using ATM Technology
Authors: J. P. Dubois, H. M. Chiu
Abstract:
In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.Keywords: ATM, multiplexing, queueing, telemedicine, VBR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17432472 Investigation on a Wave-Powered Electrical Generator Consisted of a Geared Motor-Generator Housed by a Double-Cone Rolling on Concentric Circular Rails
Authors: Barenten Suciu
Abstract:
An electrical generator able to harness energy from the water waves and designed as a double-cone geared motor-generator (DCGMG), is proposed and theoretically investigated. Similar to a differential gear mechanism, used in the transmission system of the auto vehicle wheels, an angular speed differential is created between the cones rolling on two concentric circular rails. Water wave acting on the floating DCGMG produces and a gear-box amplifies the speed differential to gain sufficient torque for power generation. A model that allows computation of the speed differential, torque, and power of the DCGMG is suggested. Influence of various parameters, regarding the construction of the DCGMG, as well as the contact between the double-cone and rails, on the electro-mechanical output, is emphasized. Results obtained indicate that the generated electrical power can be increased by augmenting the mass of the double-cone, the span of the rails, the apex angle of the cones, the friction between cones and rails, the amplification factor of the gear-box, and the efficiency of the motor-generator. Such findings are useful to formulate a design methodology for the proposed wave-powered generator.
Keywords: Wave-powered electrical generator, double-cone, circular concentric rails, amplification of angular speed differential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7152471 Time Domain and Frequency Domain Analyses of Measured Metocean Data for Malaysian Waters
Authors: Duong Vannak, Mohd Shahir Liew, Guo Zheng Yew
Abstract:
Data of wave height and wind speed were collected from three existing oil fields in South China Sea – offshore Peninsular Malaysia, Sarawak and Sabah regions. Extreme values and other significant data were employed for analysis. The data were recorded from 1999 until 2008. The results show that offshore structures are susceptible to unacceptable motions initiated by wind and waves with worst structural impacts caused by extreme wave heights. To protect offshore structures from damage, there is a need to quantify descriptive statistics and determine spectra envelope of wind speed and wave height, and to ascertain the frequency content of each spectrum for offshore structures in the South China Sea shallow waters using measured time series. The results indicate that the process is nonstationary; it is converted to stationary process by first differencing the time series. For descriptive statistical analysis, both wind speed and wave height have significant influence on the offshore structure during the northeast monsoon with high mean wind speed of 13.5195 knots ( = 6.3566 knots) and the high mean wave height of 2.3597 m ( = 0.8690 m). Through observation of the spectra, there is no clear dominant peak and the peaks fluctuate randomly. Each wind speed spectrum and wave height spectrum has its individual identifiable pattern. The wind speed spectrum tends to grow gradually at the lower frequency range and increasing till it doubles at the higher frequency range with the mean peak frequency range of 0.4104 Hz to 0.4721 Hz, while the wave height tends to grow drastically at the low frequency range, which then fluctuates and decreases slightly at the high frequency range with the mean peak frequency range of 0.2911 Hz to 0.3425 Hz.
Keywords: Metocean, Offshore Engineering, Time Series, Descriptive Statistics, Autospectral Density Function, Wind, Wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36782470 High-Speed Pipeline Implementation of Radix-2 DIF Algorithm
Authors: Christos Meletis, Paul Bougas, George Economakos , Paraskevas Kalivas, Kiamal Pekmestzi
Abstract:
In this paper, we propose a new architecture for the implementation of the N-point Fast Fourier Transform (FFT), based on the Radix-2 Decimation in Frequency algorithm. This architecture is based on a pipeline circuit that can process a stream of samples and produce two FFT transform samples every clock cycle. Compared to existing implementations the architecture proposed achieves double processing speed using the same circuit complexity.
Keywords: Digital signal processing, systolic circuits, FFTalgorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214