Search results for: real time model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13051

Search results for: real time model

9241 Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall

Authors: Snehal R. Pathak, Sachin S. Munnoli

Abstract:

Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical.

Keywords: Earth pressure, earthquake, 2-DOF model, plaxis, wall movement, retaining walls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
9240 Ultimate Load Capacity of the Cable Tower of Liede Bridge

Authors: Weifeng Wang, Xilong Chen, Xianwei Zeng

Abstract:

The cable tower of Liede Bridge is a double-column curved-lever arched-beam portal framed structure. Being novel and unique in structure, its cable tower differs in complexity from traditional ones. This paper analyzes the ultimate load capacity of cable tower by adopting the finite element calculations and model tests which indicate that constitutive relations applied here give a better simulation of actual failure process of prestressed reinforced concrete. In vertical load, horizontal load and overloading tests, the stepped loading of the tower model is of linear relationship, and the test data has good repeatability. All suggests that the cable tower has good bearing capacity, rational design and high emergency capacity.

Keywords: Cable tower of Liede Bridge, ultimate load capacity, model test, nonlinear finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
9239 Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations

Authors: Gilbert Makanda, Roelf Sypkens

Abstract:

A mathematical model for knowledge acquisition in teaching and learning is proposed. In this study we adopt the mathematical model that is normally used for disease modelling into teaching and learning. We derive mathematical conditions which facilitate knowledge acquisition. This study compares the effects of dropping out of the course at early stages with later stages of learning. The study also investigates effect of individual interaction and learning from other sources to facilitate learning. The study fits actual data to a general mathematical model using Matlab ODE45 and lsqnonlin to obtain a unique mathematical model that can be used to predict knowledge acquisition. The data used in this study was obtained from the tutorial test results for mathematics 2 students from the Central University of Technology, Free State, South Africa in the department of Mathematical and Physical Sciences. The study confirms already known results that increasing dropout rates and forgetting taught concepts reduce the population of knowledgeable students. Increasing teaching contacts and access to other learning materials facilitate knowledge acquisition. The effect of increasing dropout rates is more enhanced in the later stages of learning than earlier stages. The study opens up a new direction in further investigations in teaching and learning using differential equations.

Keywords: Differential equations, knowledge acquisition, least squares nonlinear, dynamical systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 925
9238 A Robust Controller for Output Variance Reduction and Minimum Variance with Application on a Permanent Field DC-Motor

Authors: Mahmood M. Al-Imam, M. Mustafa

Abstract:

In this paper, we present an experimental testing for a new algorithm that determines an optimal controller-s coefficients for output variance reduction related to Linear Time Invariant (LTI) Systems. The algorithm features simplicity in calculation, generalization to minimal and non-minimal phase systems, and could be configured to achieve reference tracking as well as variance reduction after compromising with the output variance. An experiment of DCmotor velocity control demonstrates the application of this new algorithm in designing the controller. The results show that the controller achieves minimum variance and reference tracking for a preset velocity reference relying on an identified model of the motor.

Keywords: Output variance, minimum variance, overparameterization, DC-Motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
9237 Closed-Form Solutions for Nanobeams Based On the Nonlocal Euler-Bernoulli Theory

Authors: Francesco Marotti de Sciarra, Raffaele Barretta

Abstract:

Starting from nonlocal continuum mechanics, a thermodynamically new nonlocal model of Euler-Bernoulli nanobeams is provided. The nonlocal variational formulation is consistently provided and the governing differential equation for transverse displacement is presented. Higher-order boundary conditions are then consistently derived. An example is contributed in order to show the effectiveness of the proposed model.

Keywords: Bernoulli-Euler beams, Nanobeams, nonlocal elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
9236 Intact and ACL-Deficient Knee MODEL Evaluation

Authors: A. Vairis, M. Petousis, B. Kandyla, C. Chrisoulakis

Abstract:

The human knee joint has a three dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. To produce the necessary joint compliance and stability for optimal daily function various menisci and ligaments are present while muscle forces are used to this effect. Therefore, knowledge of the complex mechanical interactions of these load bearing structures is necessary when treatment of relevant diseases is evaluated and assisting devices are designed. Numerical tools such as finite element analysis are suitable for modeling such joints in order to understand their physics. They have been used in the current study to develop an accurate human knee joint and model its mechanical behavior. To evaluate the efficacy of this articulated model, static load cases were used for comparison purposes with previous experimentally verified modeling works drawn from literature.

Keywords: biomechanics, finite element modeling, knee joint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
9235 Multi-Agent Systems Applied in the Modeling and Simulation of Biological Problems: A Case Study in Protein Folding

Authors: Pedro Pablo González Pérez, Hiram I. Beltrán, Arturo Rojo-Domínguez, Máximo EduardoSánchez Gutiérrez

Abstract:

Multi-agent system approach has proven to be an effective and appropriate abstraction level to construct whole models of a diversity of biological problems, integrating aspects which can be found both in "micro" and "macro" approaches when modeling this type of phenomena. Taking into account these considerations, this paper presents the important computational characteristics to be gathered into a novel bioinformatics framework built upon a multiagent architecture. The version of the tool presented herein allows studying and exploring complex problems belonging principally to structural biology, such as protein folding. The bioinformatics framework is used as a virtual laboratory to explore a minimalist model of protein folding as a test case. In order to show the laboratory concept of the platform as well as its flexibility and adaptability, we studied the folding of two particular sequences, one of 45-mer and another of 64-mer, both described by an HP model (only hydrophobic and polar residues) and coarse grained 2D-square lattice. According to the discussion section of this piece of work, these two sequences were chosen as breaking points towards the platform, in order to determine the tools to be created or improved in such a way to overcome the needs of a particular computation and analysis of a given tough sequence. The backwards philosophy herein is that the continuous studying of sequences provides itself important points to be added into the platform, to any time improve its efficiency, as is demonstrated herein.

Keywords: multi-agent systems, blackboard-based agent architecture, bioinformatics framework, virtual laboratory, protein folding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
9234 Dual-Actuated Vibration Isolation Technology for a Rotary System’s Position Control on a Vibrating Frame: Disturbance Rejection and Active Damping

Authors: Kamand Bagherian, Nariman Niknejad

Abstract:

A vibration isolation technology for precise position control of a rotary system powered by two permanent magnet DC (PMDC) motors is proposed, where this system is mounted on an oscillatory frame. To achieve vibration isolation for this system, active damping and disturbance rejection (ADDR) technology is presented which introduces a cooperation of a main and an auxiliary PMDC, controlled by discrete-time sliding mode control (DTSMC) based schemes. The controller of the main actuator tracks a desired position and the auxiliary actuator simultaneously isolates the induced vibration, as its controller follows a torque trend. To determine this torque trend, a combination of two algorithms is introduced by the ADDR technology. The first torque-trend producing algorithm rejects the disturbance by counteracting the perturbation, estimated using a model-based observer. The second torque trend applies active variable damping to minimize the oscillation of the output shaft. In this practice, the presented technology is implemented on a rotary system with a pendulum attached, mounted on a linear actuator simulating an oscillation-transmitting structure. In addition, the obtained results illustrate the functionality of the proposed technology.

Keywords: Vibration isolation, position control, discrete-time nonlinear controller, active damping, disturbance tracking algorithm, oscillation transmitting support, stability robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625
9233 Assessing drought Vulnerability of Bulgarian Agriculture through Model Simulations

Authors: Z. Popova, L. S. Pereira, М. Ivanova, P. Alexandrova, K. Doneva, V. Alexandrov, M. Kercheva

Abstract:

This study assesses the vulnerability of Bulgarian agriculture to drought using the WINISAREG model and seasonal standard precipitation index SPI(2) for the period 1951-2004. This model was previously validated for maize on soils of different water holding capacity (TAW) in various locations. Simulations are performed for Plovdiv, Stara Zagora and Sofia. Results relative to Plovdiv show that in soils of large TAW (180 mm m-1) net irrigation requirements (NIRs) range 0-40 mm in wet years and 350-380 mm in dry years. In soils of small TAW (116 mm m-1), NIRs reach 440 mm in the very dry year. NIRs in Sofia are about 80 mm smaller. Rainfed maize is associated with great yield variability (29%91%) were found for seasonal agricultural drought relating the SPI (2) for “July-Aug" with the simulated RYD of rainfed maize while in Stara Zagora and Sofia the relationships are less accurate (R2>71%). When rainfed maize is grown on soils of large TAW economical losses are produced when high peak season SPI (2) < -0.50 in Plovdiv/Stara Zagora and SPI (2) < -0.90 in Sofia. The corresponding NIR thresholds were identified.

Keywords: Drought vulnerability, ISAREG simulation model, South Bulgaria, SPI-index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
9232 Artificial Intelligence in Management Simulators

Authors: Nuno Biga

Abstract:

Artificial Intelligence (AI) has the potential to transform management in a number of impactful ways. It allows machines to interpret information to find patterns in large volumes of data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-based decision-making. The introduction of an “artificial brain” into the organization also allows it to learn from complex information and data provided by those who train it, namely its users. The “Mastering” Serious Game introduces the concept of a context-sensitive “Virtual Assistant” (VA), which provides users with useful suggestions for optimizing processes and creating value for stakeholders. The VA helps to identify in real time the bottleneck(s) in the operations system so that it is possible to act on them quickly, the resources that should be multi-skilled to make the system more efficient and in which specific processes it might be advantageous to partner with another team(s). The possible solutions are evaluated using the Key Performance Indicators (KPIs) considered in the Balanced Scorecard (BSC), allowing actions to be monitored to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. Systemic analysis and data interpretation are enhanced in Assisted-BIGAMES through a computer application that the players can use. The role of each team's AV is to guide the players to be more effective in their decision-making, providing recommendations based on AI methods. It is important to note that the AV's suggestions for action can be accepted or rejected by the coaches of each team, as they must take into account their own experience and knowledge to support their decision-making. The “Serious Game Coordinator” is responsible for supporting the players with whom he debates points of view that help make decision-making more robust. All inputs must be analyzed and evaluated by each team, which must add “Emotional Intelligence” - an essential component missing from the machine learning process. The preliminary results obtained in “Mastering” show that the introduction of AV allows for faster learning of the decision-making process.

Keywords: Artificial Intelligence, AI, Balanced Scorecard, Gamification, Key Performance Indicators, KPIs, Machine Learning, ML, Management Simulators, Serious Games, Virtual Assistant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35
9231 Parameters of Main Stage of Discharge between Artificial Charged Aerosol Cloud and Ground in Presence of Model Hydrometeor Arrays

Authors: D. S. Zhuravkova, A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, I. Y. Kalugina, N. Y. Lysov, A.V. Orlov

Abstract:

Investigation of the discharges from the artificial charged water aerosol clouds in presence of the arrays of the model hydrometeors could help to receive the new data about the peculiarities of the return stroke formation between the thundercloud and the ground when the large volumes of the hail particles participate in the lightning discharge initiation and propagation stimulation. Artificial charged water aerosol clouds of the negative or positive polarity with the potential up to one million volts have been used. Hail has been simulated by the group of the conductive model hydrometeors of the different form. Parameters of the impulse current of the main stage of the discharge between the artificial positively and negatively charged water aerosol clouds and the ground in presence of the model hydrometeors array and of its corresponding electromagnetic radiation have been determined. It was established that the parameters of the array of the model hydrometeors influence on the parameters of the main stage of the discharge between the artificial thundercloud cell and the ground. The maximal values of the main stage current impulse parameters and the electromagnetic radiation registered by the plate antennas have been found for the array of the model hydrometeors of the cylinder revolution form for the negatively charged aerosol cloud and for the array of the hydrometeors of the plate rhombus form for the positively charged aerosol cloud, correspondingly. It was found that parameters of the main stage of the discharge between the artificial charged water aerosol cloud and the ground in presence of the model hydrometeor array of the different considered forms depend on the polarity of the artificial charged aerosol cloud. In average, for all forms of the investigated model hydrometeors arrays, the values of the amplitude and the current rise of the main stage impulse current and the amplitude of the corresponding electromagnetic radiation for the artificial charged aerosol cloud of the positive polarity were in 1.1-1.9 times higher than for the charged aerosol cloud of the negative polarity. Thus, the received results could indicate to the possible more important role of the big volumes of the large hail arrays in the thundercloud on the parameters of the return stroke for the positive lightning.

Keywords: Main stage of discharge, hydrometeor form, lightning parameters, negative and positive artificial charged aerosol cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
9230 A Quantitative Tool for Analyze Process Design

Authors: Andrés Carrión García, Aura López de Murillo, José Jabaloyes Vivas, Angela Grisales del Río

Abstract:

Some quality control tools use non metric subjective information coming from experts, who qualify the intensity of relations existing inside processes, but without quantifying them. In this paper we have developed a quality control analytic tool, measuring the impact or strength of the relationship between process operations and product characteristics. The tool includes two models: a qualitative model, allowing relationships description and analysis; and a formal quantitative model, by means of which relationship quantification is achieved. In the first one, concepts from the Graphs Theory were applied to identify those process elements which can be sources of variation, that is, those quality characteristics or operations that have some sort of prelacy over the others and that should become control items. Also the most dependent elements can be identified, that is those elements receiving the effects of elements identified as variation sources. If controls are focused in those dependent elements, efficiency of control is compromised by the fact that we are controlling effects, not causes. The second model applied adapts the multivariate statistical technique of Covariance Structural Analysis. This approach allowed us to quantify the relationships. The computer package LISREL was used to obtain statistics and to validate the model.

Keywords: Characteristics matrix, covariance structure analysis, LISREL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
9229 Project Management Maturity Models and Organizational Project Management Maturity Model (OPM3®): A Critical Morphological Evaluation

Authors: Farrokh J., Azhar K. Mansur

Abstract:

There exists a strong correlation between efficient project management and competitive advantage for organizations. Therefore, organizations are striving to standardize and assess the rigor of their project management processes and capabilities i.e. project management maturity. Researchers and standardization organizations have developed several project management maturity models (PMMMs) to assess project management maturity of the organizations. This study presents a critical evaluation of some of the leading PMMMs against OPM3® in a multitude of ways to look at which PMMM is the most comprehensive model - which could assess most aspects of organizations and also help the organizations in gaining competitive advantage over competitors. After a detailed morphological analysis of the models, it is concluded that OPM3® is the most promising maturity model that can really provide a competitive advantage to the organizations due to its unique approach of assessment and improvement strategies.

Keywords: Project management maturity, project managemen tmaturity models, competitive advantage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5057
9228 Performance Evaluation Standards and Innovation: An Empirical Investigation

Authors: F. Apaydın

Abstract:

In this empirical research, how marketing managers evaluate their firms- performances and decide to make innovation is examined. They use some standards which are past performance of the firm, target performance of the firm, competitor performance, and average performance of the industry to compare and evaluate the firms- performances. It is hypothesized that marketing managers and owners of the firm compare the firms- current performance with these four standards at the same time to decide when to make innovation relating to any aspects of the firm, either management style or products. Relationship between the comparison of the firm-s performance with these standards and innovation are searched in the same regression model. The results of the regression analysis are discussed and some recommendations are made for future studies and applicants.

Keywords: Innovation, performance evaluation standards

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
9227 Periodic Solutions in a Delayed Competitive System with the Effect of Toxic Substances on Time Scales

Authors: Changjin Xu, Qianhong Zhang

Abstract:

In this paper, the existence of periodic solutions of a delayed competitive system with the effect of toxic substances is investigated by using the Gaines and Mawhin,s continuation theorem of coincidence degree theory on time scales. New sufficient conditions are obtained for the existence of periodic solutions. The approach is unified to provide the existence of the desired solutions for the continuous differential equations and discrete difference equations. Moreover, The approach has been widely applied to study existence of periodic solutions in differential equations and difference equations.

Keywords: Time scales, competitive system, periodic solution, coincidence degree, topological degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
9226 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: Facial expression recognition, image pre-processing, deep learning, CNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
9225 Statistical Modeling of Accelerated Pavement Failure Using Response Surface Methodology

Authors: Anshu Manik, Kasthurirangan Gopalakrishnan, Siddhartha K. Khaitan

Abstract:

Rutting is one of the major load-related distresses in airport flexible pavements. Rutting in paving materials develop gradually with an increasing number of load applications, usually appearing as longitudinal depressions in the wheel paths and it may be accompanied by small upheavals to the sides. Significant research has been conducted to determine the factors which affect rutting and how they can be controlled. Using the experimental design concepts, a series of tests can be conducted while varying levels of different parameters, which could be the cause for rutting in airport flexible pavements. If proper experimental design is done, the results obtained from these tests can give a better insight into the causes of rutting and the presence of interactions and synergisms among the system variables which have influence on rutting. Although traditionally, laboratory experiments are conducted in a controlled fashion to understand the statistical interaction of variables in such situations, this study is an attempt to identify the critical system variables influencing airport flexible pavement rut depth from a statistical DoE perspective using real field data from a full-scale test facility. The test results do strongly indicate that the response (rut depth) has too much noise in it and it would not allow determination of a good model. From a statistical DoE perspective, two major changes proposed for this experiment are: (1) actual replication of the tests is definitely required, (2) nuisance variables need to be identified and blocked properly. Further investigation is necessary to determine possible sources of noise in the experiment.

Keywords: Airport Pavement, Design of Experiments, Rutting, NAPTF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
9224 Sexual behaviour and Semen Characteristics of Young Male Boer Goats in Tropical Condition: A Case in Indonesia

Authors: S. Suyadi

Abstract:

Sexual behavior and semen charactertistics were evaluated in young male Boer goats in tropical condition during time period of September to November 2009. The animal was let to have adaptation for five months after importation from Australian climate. A total of 20 bucks were observed for sexual behavior and ability of semen production. Out of this number, 4 faild to libido and 3 produced poor semen. The remaing 13 animals were divided into three groups according to the ages (11-13, 15-16 and 18-25 months). Sexual behavior consisting response time to female teaser, ejaculation time, fixing strenght to female and erection status were normaly observer in 13 bucks, and there was no significant difference between age groups. Semen characteristics from 13 bucks were in normal quality in the volume, sperm mass motility, individual motility, percentage of live- and abnormal sperm. We concluded that is possible to collect semen of Boer goats during the period of September to November under tropical condition. Collection during other time period should be analyzed.

Keywords: sexsual behavior, semen characteristics, Boer goats, tropical condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3244
9223 Customer Value Creation by CRM System in Electronic Device Companies

Authors: Hideki.Kobayashi, Hiroshi.Osada

Abstract:

The service industry accounts for about 70% of GDP of Japan, and the importance of the service innovation is pointed out. The importance of the system use and the support service increases in the information system that is one of the service industries. However, because the system is not used enough, the purpose for which it was originally intended cannot often be achieved in the CRM system. To promote the use of the system, the effective service method is needed. It is thought that the service model's making and the clarification of the success factors are necessary to improve the operation service of the CRM system. In this research the model of the operation service in the CRM system is made.

Keywords: Information system, Operation service, Serviceinnovation, Solution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
9222 Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation

Authors: Pratch Kittipongpattana, Thongchai Fongsamootr

Abstract:

This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%.

Keywords: Boiler water wall tube, Finite element, Stress analysis, Strain gage rosette.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
9221 Airplane Stability during Climb/Descend Phase Using a Flight Dynamics Simulation

Authors: Niloufar Ghoreishi, Ali Nekouzadeh

Abstract:

The stability of the flight during maneuvering and in response to probable perturbations is one of the most essential features of an aircraft that should be analyzed and designed for. In this study, we derived the non-linear governing equations of aircraft dynamics during the climb/descend phase and simulated a model aircraft. The corresponding force and moment dimensionless coefficients of the model and their variations with elevator angle and other relevant aerodynamic parameters were measured experimentally. The short-period mode and phugoid mode response were simulated by solving the governing equations numerically and then compared with the desired stability parameters for the particular level, category, and class of the aircraft model. To meet the target stability, a controller was designed and used. This resulted in significant improvement in the stability parameters of the flight.

Keywords: Flight stability, phugoid mode, short period mode, climb phase, damping coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216
9220 An Enhanced Situational Awareness of AUV's Mission by Multirate Neural Control

Authors: Igor Astrov, Mikhail Pikkov

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the neural control of depth flight of an autonomous underwater vehicle (AUV). Constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a multirate neural control of an AUV trajectory using neural network model reference controller for a nontrivial mid-small size AUV "r2D4" stochastic model. This control system has been demonstrated and evaluated by simulation of diving maneuvers using software package Simulink. From the simulation results it can be seen that the chosen AUV model is stable in the presence of high noise, and also can be concluded that the fast SA of similar AUV systems with economy in energy of batteries can be asserted during the underwater missions in search-and-rescue operations.

Keywords: Autonomous underwater vehicles, multirate systems, neurocontrollers, situational awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
9219 Generalized Measures of Fuzzy Entropy and their Properties

Authors: K.C. Deshmukh, P.G. Khot, Nikhil

Abstract:

In the present communication, we have proposed some new generalized measure of fuzzy entropy based upon real parameters, discussed their and desirable properties, and presented these measures graphically. An important property, that is, monotonicity of the proposed measures has also been studied.

Keywords: Fuzzy numbers, Fuzzy entropy, Characteristicfunction, Crisp set, Monotonicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
9218 Combination of Geological, Geophysical and Reservoir Engineering Analyses in Field Development: A Case Study

Authors: Atif Zafar, Fan Haijun

Abstract:

A sequence of different Reservoir Engineering methods and tools in reservoir characterization and field development are presented in this paper. The real data of Jin Gas Field of L-Basin of Pakistan is used. The basic concept behind this work is to enlighten the importance of well test analysis in a broader way (i.e. reservoir characterization and field development) unlike to just determine the permeability and skin parameters. Normally in the case of reservoir characterization we rely on well test analysis to some extent but for field development plan, the well test analysis has become a forgotten tool specifically for locations of new development wells. This paper describes the successful implementation of well test analysis in Jin Gas Field where the main uncertainties are identified during initial stage of field development when location of new development well was marked only on the basis of G&G (Geologic and Geophysical) data. The seismic interpretation could not encounter one of the boundary (fault, sub-seismic fault, heterogeneity) near the main and only producing well of Jin Gas Field whereas the results of the model from the well test analysis played a very crucial rule in order to propose the location of second well of the newly discovered field. The results from different methods of well test analysis of Jin Gas Field are also integrated with and supported by other tools of Reservoir Engineering i.e. Material Balance Method and Volumetric Method. In this way, a comprehensive way out and algorithm is obtained in order to integrate the well test analyses with Geological and Geophysical analyses for reservoir characterization and field development. On the strong basis of this working and algorithm, it was successfully evaluated that the proposed location of new development well was not justified and it must be somewhere else except South direction.

Keywords: Field development, reservoir characterization, reservoir engineering, well test analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
9217 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: Customer relationship management, churn prediction, telecom industry, deep learning, Artificial Neural Networks, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
9216 Studies on Properties of Knowledge Dependency and Reduction Algorithm in Tolerance Rough Set Model

Authors: Chen Wu, Lijuan Wang

Abstract:

Relation between tolerance class and indispensable attribute and knowledge dependency in rough set model with tolerance relation is explored. After giving definitions and concepts of knowledge dependency and knowledge dependency degree for incomplete information system in tolerance rough set model by distinguishing decision attribute containing missing attribute value or not, the result of maintaining reflectivity, transitivity, augmentation, decomposition law and merge law for complete knowledge dependency is proved. Knowledge dependency degrees (not complete knowledge dependency degrees) only satisfy some laws after transitivity, augmentation and decomposition operations. An algorithm to solve attribute reduction in an incomplete decision table is designed. The correctness is checked by an example.

Keywords: Incomplete information system, rough set, tolerance relation, knowledge dependence, attribute reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 738
9215 Predictive Clustering Hybrid Regression(pCHR) Approach and Its Application to Sucrose-Based Biohydrogen Production

Authors: Nikhil, Ari Visa, Chin-Chao Chen, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja

Abstract:

A predictive clustering hybrid regression (pCHR) approach was developed and evaluated using dataset from H2- producing sucrose-based bioreactor operated for 15 months. The aim was to model and predict the H2-production rate using information available about envirome and metabolome of the bioprocess. Selforganizing maps (SOM) and Sammon map were used to visualize the dataset and to identify main metabolic patterns and clusters in bioprocess data. Three metabolic clusters: acetate coupled with other metabolites, butyrate only, and transition phases were detected. The developed pCHR model combines principles of k-means clustering, kNN classification and regression techniques. The model performed well in modeling and predicting the H2-production rate with mean square error values of 0.0014 and 0.0032, respectively.

Keywords: Biohydrogen, bioprocess modeling, clusteringhybrid regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
9214 A Fuzzy Predictive Filter for Sinusoidal Signals with Time-Varying Frequencies

Authors: X. Z. Gao, S. J. Ovaska, X. Wang

Abstract:

Prediction of sinusoidal signals with time-varying frequencies has been an important research topic in power electronics systems. To solve this problem, we propose a new fuzzy predictive filtering scheme, which is based on a Finite Impulse Response (FIR) filter bank. Fuzzy logic is introduced here to provide appropriate interpolation of individual filter outputs. Therefore, instead of regular 'hard' switching, our method has the advantageous 'soft' switching among different filters. Simulation comparisons between the fuzzy predictive filtering and conventional filter bank-based approach are made to demonstrate that the new scheme can achieve an enhanced prediction performance for slowly changing sinusoidal input signals.

Keywords: Predictive filtering, fuzzy logic, sinusoidal signals, time-varying frequencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
9213 A Statistical Approach for Predicting and Optimizing Depth of Cut in AWJ Machining for 6063-T6 Al Alloy

Authors: Farhad Kolahan, A. Hamid Khajavi

Abstract:

In this paper, a set of experimental data has been used to assess the influence of abrasive water jet (AWJ) process parameters in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. The effects of these input parameters are studied on depth of cut (h); one of most important characteristics of AWJ. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the AWJ process parameters. The objective is to determine a suitable set of process parameters that can produce a desired depth of cut, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.

Keywords: AWJ machining, Mathematical modeling, Simulated Annealing, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
9212 Image Ranking to Assist Object Labeling for Training Detection Models

Authors: Tonislav Ivanov, Oleksii Nedashkivskyi, Denis Babeshko, Vadim Pinskiy, Matthew Putman

Abstract:

Training a machine learning model for object detection that generalizes well is known to benefit from a training dataset with diverse examples. However, training datasets usually contain many repeats of common examples of a class and lack rarely seen examples. This is due to the process commonly used during human annotation where a person would proceed sequentially through a list of images labeling a sufficiently high total number of examples. Instead, the method presented involves an active process where, after the initial labeling of several images is completed, the next subset of images for labeling is selected by an algorithm. This process of algorithmic image selection and manual labeling continues in an iterative fashion. The algorithm used for the image selection is a deep learning algorithm, based on the U-shaped architecture, which quantifies the presence of unseen data in each image in order to find images that contain the most novel examples. Moreover, the location of the unseen data in each image is highlighted, aiding the labeler in spotting these examples. Experiments performed using semiconductor wafer data show that labeling a subset of the data, curated by this algorithm, resulted in a model with a better performance than a model produced from sequentially labeling the same amount of data. Also, similar performance is achieved compared to a model trained on exhaustive labeling of the whole dataset. Overall, the proposed approach results in a dataset that has a diverse set of examples per class as well as more balanced classes, which proves beneficial when training a deep learning model.

Keywords: Computer vision, deep learning, object detection, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839