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Abstract—In this paper, the existence of periodic solutions of
a delayed competitive system with the effect of toxic substances
is investigated by using the Gaines and Mawhin,s continuation
theorem of coincidence degree theory on time scales. New sufficient
conditions are obtained for the existence of periodic solutions. The
approach is unified to provide the existence of the desired solutions
for the continuous differential equations and discrete difference
equations. Moreover, The approach has been widely applied to study
existence of periodic solutions in differential equations and difference
equations.
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I. INTRODUCTION

After the work of Lotka[1] and Volterra[2], A great many
realistic continuous and discrete predator-prey models have
been proposed and investigated by many authors[3-7]. In 2009,
Song and Chen[8] proposed a delay two-species competitive
system in which two species have toxic inhibitory effects on
each other:⎧⎪⎪⎨

⎪⎪⎩
dx1
dt = x1(t)[K1(t) − α1(t)x1(t) − β1(t)x2(t)

− γ1(t)x1(t)x2(t − τ1(t))],
dx2
dt = x2(t)[K2(t) − α2(t)x2(t) − β2(t)x1(t)

− γ2(t)x1(t − τ2(t))x2(t)],

(1)

where x1(t), x2(t) stand for the population densities of two
competing species, respectively. Ki(t)(i = 1, 2) are the
intrinsic growth rates of two competing species; αi(t)(i =
1, 2) denote the coefficients of interspecific competition;
Ki(t)/αi(t)(i = 1, 2) are the environmental carrying ca-
pacities of two competing species; γ1 and γ2 stand for,
respectively, the rates of toxic inhibition of the species x1 by
the species x2 and vice versa. More details about the model,
one can see [8]. By applying the theory of coincidence degree
theory, Song and Chen[8] established the existence of positive
periodic solution for system (1).

It is worth to point out that although there are numerous
papers studying the existence of positive periodic solutions of
differential or difference equations by using the coincidence
degree theory in mathematical ecology, one often deal with
these types of equations in a different way to prove the
existence results. It is natural for us to think wether we
can explore such an existence problem in an unified way. In
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order to unify continuous and discrete analysis, the theory
of time scales(measure chain), which has recently received
a great many attention, was introduced by Stefan Hilger
in his PhD thesis in 1998. After that, people have done
a lot of research about dynamic equations on time scales.
Moreover, many results on the existence of periodic solutions
of dynamic equations have been reported[9-13]. Motivated by
papers[9-13], the principle object of this article is to explore
the existence of periodic solutions of the following delayed
competitive system with the effect of toxic substances on time
scales:⎧⎪⎪⎨
⎪⎪⎩

xΔ
1 (t) = K1(t) − α1(t) exp(x1(t)) − β1(t) exp(x2(t))

− γ1(t) exp(x1(t)) exp(x2(t − τ1(t))),
xΔ

2 (t) = K2(t) − α2(t) exp(x2(t)) − β2(t) exp(x1(t))
− γ2(t) exp(x1(t − τ2(t))) exp(x2(t)).

(2)
To the best of our knowledge, it is the first time to deal with

the existence problem of periodic solution for system (2) on
time scales. In order to obtain the main results of our paper,
throughout this paper, we assume
(H1) Ki(t), αi(t), βi(t), γi(t) and τi(t) are positive continuous
ω-periodic functions, where i = 1, 2.
(H2) sign{K̄1ᾱ2 − K̄2β̄1} = sign{K̄1β̄2 − K̄2ᾱ1} = sign
{ᾱ1ᾱ2 − β̄2β̄2} �= 0.

The remainder of the paper is organized as follows: in
Section 2, we present some preliminary definitions, notations
and some basic knowledge for dynamic system on time scales.
In Section 3, a easily verifiable sufficient condition for the
existence of positive solutions of system (2) is obtained.

II. PRELIMINARY RESULTS ON TIME SCALES

In order to make an easy and convenient reading of this
paper, we present some definitions and notations on time scales
which can be found in the literatures[9,10].

Definition 2.1. A time scale is an arbitrary nonempty closed
subset T of R, the real numbers. The set T inherits the
standard topology of R.

Definition 2.2. The forward jump operator σ : T → T,
the backward jump operator σ : T → T, and the grain-
iness μ : T → R

+ = [0,∞) are defined, respectively, by
σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},
μ(t) = σ(t) − t for t ∈ T.
If σ(t) = t, then t is called right-dense (otherwise: right-
scattered), and if ρ(t) = t, then t is called left-dense (other-
wise: left-scattered).
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Definition 2.3. A function f : T → R is said to be rd-
continuous if it is continuous at right-dense points in T and
its left-sides limits exists(finite) at left-dense points in T. The
set rd-continuous functions is shown by C1

rd = Crd(T) =
Crd(T, R).

Definition 2.4. For f : T → R and t ∈ R, we define fΔ(t),
the delta-derivative of f at t, to be the number(provided it
exists) with the property that, given any ε > 0, there is a
neighborhood U of t in T such that

|[f(σ(t))−f(s)]−fΔ(t)[σ(t)−s]| ≤ ε|σ(t)−s| for all s ∈ U.

Thus f is said to be delta-differentiable if its delta-derivative
exists. The set of functions f : T → R that are delta-
differentiable and whose delta-derivative are rd-continuous
functions is denoted by Crd = C1

rd(T) = C1
rd(T, R).

Definition 2.5. A function F : T → R is called a delta-
antiderivative of f : T → R provided FΔ(t) = f(t), for all
t ∈ T. Then we write

∫ s

r
f(t)Δt := F (s)−F (r) for all s, t ∈

T.

For the usual time scales T = R, rd-continuous coincides
with the usual continuity in calculus. Moreover, every rd-
continuous function on T has a delta-antiderivative[9]. For
more information about the above definitions and their related
concepts, one can see [9-13].

III. EXISTENCE OF PERIODIC SOLUTIONS

For convenience and simplicity in the following discussion,
we always use the notations below throughout the paper. Let
T be ω-periodic, that is, t ∈ T implies t + ω ∈ T, κ =
min{R

+ ∩ T}, Iω = [κ, κ + ω] ∩ T, gl = inft∈T g(t), gu =
maxt∈T g(t), ḡ = 1

ω

∫
Iω

g(s)Δs = 1
ω

∫ κ+ω

κ
g(s)Δs, where

g ∈ Crd(T) is an ω-periodic real function, i.e., g(t+ω) = g(t)
for all t ∈ T.

In order to explore the existence of positive periodic solu-
tions of (2) and for the reader,s convenience, we shall first
summarize below a few concepts and results without proof,
borrowing from [14].

Let X, Y be normed vector spaces, L : DomL ⊂ X → Y
is a linear mapping, N : X → Y is a continuous mapping.
The mapping L will be called a Fredholm mapping of index
zero if dimKerL = codimImL < +∞ and ImL is closed in
Y . If L is a Fredholm mapping of index zero and there exist
continuous projectors P : X → X and Q : Y → Y such
that ImP = KerL, ImL = KerQ = Im(I − Q), It follows
that L | DomL ∩ KerP : (I − P )X → ImL is invertible. We
denote the inverse of that map by KP . If Ω is an open bounded
subset of X , the mapping N will be called L−compact on Ω̄
if QN(Ω̄) is bounded and KP (I−Q)N : Ω̄ → X is compact.
Since ImQ is isomorphic to KerL, there exist isomorphisms
J : ImQ → KerL.

Lemma 3.1. ([14]Continuation Theorem ) Let L be a
Fredholm mapping of index zero and let N be L−compact
on Ω̄. Suppose
(a) For each λ ∈ (0, 1), every solution x of Lx = λNx is
such that x /∈ ∂Ω;

(b) QNx �= 0 for each x ∈ KerL
⋂

∂Ω, and
deg{JQN,Ω

⋂
∂KerL, 0} �= 0;

Then the equation Lx = Nx has at least one solution lying
in DomL

⋂
Ω̄.

Lemma 3.2. [12] Let t1, t2 ∈ Iω and t ∈ T. If g : T → R is
ω-periodic, then

g(t) ≤ g(t1) +
∫ κ+ω

κ

|gΔ(s)|Δs,

and

g(t) ≤ g(t2) −
∫ κ+ω

κ

|gΔ(s)|Δs.

Lemma 3.3. If condition (H2) is satisfied, then the following
equation {

K̄1 − ᾱ1 exp(x1) − β̄1 exp(x2) = 0,
K̄2 − ᾱ2 exp(x2) − β̄2 exp(x1) = 0 (3)

has a unique solution (x∗
1, x

∗
2)

T .

The proofs of Lemma 3.3 are trivial, so we omitted the details
here.

Theorem 3.1. Let S1, S3 be defined by (12) and (20),
respectively. In addition to (H1) and (H2). Suppose that

(H3) K̄2 > γ̄2 exp(S1), K̄1 > β̄1 exp(S3)

hold, then (2) has at least one ω-periodic solution.

Proof. Define

X = Z = {(x1, x2)T ∈ C(T, R2)|xi ∈ Crd,

xi(t + ω) = xi(t), i = 1, 2},

||(x1, x2)T || =
2∑

i=1

max
t∈Iω

|xi(t)|, (x1, x2)T ∈ X(or Z).

DomL = {x = (x1, x2)T ∈ X|xi ∈ Crd, i = 1, 2}.

It is easy to see that X and Z are both Banach spaces if they
are endowed with the above norm ||.||.

For (x1, x2)T ∈ X , we define

N

[
x1

x2

]
(t) =

[
x1(t)
x2(t)

]
=

[
f1(t)
f2(t)

]
, L

[
x1

x2

]
(t) =

[
xΔ

1

xΔ
2

]
(t),

P

[
x1

x2

]
(t) = Q

[
x1

x2

]
(t) =

[
1
ω

∫ κ+ω

κ
x1(t)Δt

1
ω

∫ κ+ω

κ
x2(t)Δt

]
,

where

f1(t) = K1(t) − α1(t) exp(x1(t)) − β1(t) exp(x2(t))
−γ1(t) exp(x1(t)) exp(x2(t − τ1(t))),

f2(t) = K2(t) − α2(t) exp(x2(t)) − β2(t) exp(x1(t))
−γ2(t) exp(x1(t − τ2(t))) exp(x2(t)).
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Then

KerL = {(x1, x2)T ∈ X|(x1(t), x2(t))T = (h1, h2)T ∈ R
2

for t ∈ T},
ImL = {(x1, x2)T ∈ X|

∫ κ+ω

κ

x1(t)Δt = 0,∫ κ+ω

κ

x2(t)Δt = 0, for t ∈ T}.
Then dim KerL = 2 = codim ImL. Since ImL is closed in Z,
L is a Fredholm mapping of index zero, it is easy to show that
P and Q are continuous projections and ImP = KerL, ImL =
KerQ = Im(I − Q). Clearly, QN and Kp(I − Q)N are
continuous. It can be shown that N is L-compact on Ω̄ for
every open bounded set, Ω ⊂ X.

Now we are at the point to search for an appropriate open,
bounded subset Ω for the application of the continuation the-
orem. Corresponding to the operator equation L(x1, x2)T =
λN(x1, x2)T , λ ∈ (0, 1), we have{

xΔ
1 (t) = λf1(t),

xΔ
2 (t) = λf2(t).

(4)

Suppose that x(t) = (x1(t), x2(t))T ∈ X is an arbitrary
solution of system (4) for a certain λ ∈ (0, 1), Integrating
(4) over the set Iω, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

K̄1ω =
∫ κ+ω

κ
α1(t) exp(x1(t))Δt

+
∫ κ+ω

κ
β1(t) exp(x2(t))Δt

+
∫ κ+ω

κ
γ1(t) exp(x1(t)) exp(x2(t − τ1(t)))Δt,

K̄2ω =
∫ κ+ω

κ
α2(t) exp(x2(t))Δt

+
∫ κ+ω

κ
β2(t) exp(x1(t))Δt

+
∫ κ+ω

κ
γ2(t) exp(x1(t − τ2(t))) exp(x2(t))Δt.

(5)
Since (x1, x2, )T ∈ X , there exists ξi, ηi ∈ [κ, κ+ω], i = 1, 2
such that

xi(ξi) = min
t∈[κ,κ+ω]

{xi(t)}, xi(ηi) = max
t∈[κ,κ+ω]

{xi(t)}.

It follows from (5) that∫ κ+ω

κ

|xΔ
1 (t)|Δt < 2K̄1ω. (6)∫ κ+ω

κ

|xΔ
2 t|Δ(t) < 2K̄2ω. (7)

From the first equation of (5), it follows that

K̄1ω > ᾱ1ω exp(x1(ξ1)), K̄1ω > β̄1ω exp(x2(ξ2)).

Then

x1(ξ1) < ln
K̄1

ᾱ1
:= m1, x2(ξ2) < ln

K̄1

β̄1
:= m2. (8)

In the sequel, we consider two cases.
(a) If x1(η1) ≥ x2(η2), then it follows from (5) that

(α1 + β1) exp(x1(η1)) + γ̄1 exp(2x1(η1)) ≥ K̄1,

which leads to

x1(η1) > ln

⎡
⎣−(α1 + β1) +

√
(α1 + β1)

2
+ 4γ̄1K̄1

2γ̄1

⎤
⎦ := M1.

(9)

Based on (6), (8) and (9), using the Lemma 3.2, we get

x1(t) ≤ x1(ξ1) +
∫ κ+ω

κ

|xΔ
1 (t)|Δt ≤ m1 + 2K̄1ω =: B1,

(10)
and

x1(t) ≥ x1(η1) −
∫ κ+ω

κ

|xΔ
1 (t)|Δt ≥ M1 − 2K̄1ω =: B2.

(11)
Thus

max
t∈Iω

|x1(t)| ≤ max{|B1|, |B2|} := S1. (12)

From the first equation of (5), it follows that

ᾱ2 exp(x2(η2))+β̄2 exp(S1)+γ̄2 exp(S1) exp(x2(η2)) ≥ K̄2.

Then

x2(η2) ≥ ln
[
K̄2 − γ̄2 exp(S1)
ᾱ2 + γ̄2 exp(S1)

]
:= M2. (13)

From (7),(8) and (13) and using the Lemma 3.2, we obtain

x2(t) ≤ x2(ξ2) +
∫ κ+ω

κ

|xΔ
2 (t)|Δt ≤ m2 + 2K̄2ω =: B3

(14)
and

x2(t) ≥ x2(η2) −
∫ κ+ω

κ

|xΔ
2 (t)|Δt ≥ M2 − 2K̄2ω =: B4.

(15)
It follows from (14) and (15) that

max
t∈Iω

|x2(t)| ≤ max{|B3|, |B4|} := S2. (16)

(b) If x1(η1) < x2(η2), then it follows from (11) that

(α1 + β1) exp(x2(η2)) + γ̄1 exp(2x2(η2)) ≥ K̄1,

which leads to

x2(η2) > ln

⎡
⎣−(α1 + β1) +

√
(α1 + β1)

2
+ 4γ̄1K̄1

2γ̄1

⎤
⎦ := M3.

(17)
From (7),(8) and (17) and using the Lemma 3.2, we obtain

x2(t) ≤ x2(ξ2) +
∫ κ+ω

κ

|xΔ
2 (t)|Δt ≤ m2 + 2K̄2ω =: B5,

(18)
and

x2(t) ≥ x2(η2) −
∫ κ+ω

κ

|xΔ
2 (t)|Δt ≥ M3 − 2K̄2ω =: B6.

(19)
It follows from (14) and (15) that

max
t∈Iω

|x2(t)| ≤ max{|B5|, |B6|} := S3. (20)

From the first equation of (5), it follows that

ᾱ1 exp(x1(η1))+ ¯β12 exp(S3)+γ̄1 exp(S3) exp(x1(η1)) ≥ K̄1.

Then

x1(η1) ≥ ln
[
K̄1 − β̄1 exp(S3)
K̄1 + γ̄1 exp(S3)

]
:= M4. (21)
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From (7),(8) and (21) and using the Lemma 3.2, we obtain

x1(t) ≤ x1(ξ1) +
∫ κ+ω

κ

|xΔ
1 (t)|Δt ≤ m1 + 2K̄1ω =: B7,

(22)
and

x1(t) ≥ x1(η1) −
∫ κ+ω

κ

|xΔ
1 (t)|Δt ≥ M4 − 2K̄1ω =: B8.

(23)
It follows from (22) and (23) that

max
t∈Iω

|x1(t)| ≤ max{|B7|, |B8|} := S4. (24)

Obviously, Si(i = 1, 2, 3, 4) are independent of the choice of
λ ∈ (0, 1). Take M = max{S1, S4} + max{S2, S3} + S0,
where S0 is taken sufficiently large such that S0 ≥ |m1| +
|m2| + max{|M1|, |M4|} + max{|M2|, |M3|}.

Now we define Ω := {(x1, x2)T ∈ X : ||x|| < M}. It
is clear that Ω verifies the requirement (a) of Lemma 3.1.
If (x1, x2)T ∈ ∂Ω

⋂
KerL = ∂Ω

⋂
R

2, then (x1, x2)T is a
constant vector in R

2 with ||(x1, x2)T || = |x1| + |x2| = M .
Then

QN

[
x1

x2

]
=

⎡
⎢⎢⎣

K̄1 − ᾱ1 exp(x1) − β̄1 exp(x2)
−γ̄1 exp(x1) exp(x2)

K̄2 − ᾱ2 exp(x2) − β̄2 exp(x1)
−γ̄2 exp(x1) exp(x2)

⎤
⎥⎥⎦ �=

[
0
0

]
.

Now let us consider homotopic φ(x1, x2, μ) = μQNx + (1−
μ)Gx, μ ∈ [0, 1], x = (x1, x2)T , where

Gx =
[
K̄1 − ᾱ1 exp(x1) − β̄1 exp(x2)
K̄2 − ᾱ2 exp(x2) − β̄2 exp(x1)

]
.

Letting J be the identity mapping, according to Lemma 3.3
and condition (H2) and by direct calculation, we get

deg
[
JQN(x1, x2)T ; ∂Ω

⋂
KerL; 0

]
= deg

[
QN(x1, x2)T ; ∂Ω

⋂
KerL; 0

]
= deg

[
φ(x1, x2, 1); ∂Ω

⋂
KerL; 0

]
= deg

[
φ(x1, x2, 0); ∂Ω

⋂
KerL; 0

]
= sign

[
(ᾱ1ᾱ2 − β̄1β̄2)e(x∗

1+x∗
2)

]
�= 0.

where deg(., ., ., ) is the Brower degree. Thus we have proved
that Ω verifies all requirements of Lemma 3.1, then it follows
that Lx = Nx has at least one solution in DomL ∩ Ω. The
proof is complete.
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