Search results for: noise web data learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9385

Search results for: noise web data learning

5725 Examining the Pearlite Growth Interface in a Fe-C-Mn Alloy

Authors: R. E. Waters, M. J. Whiting, V. Stolojan

Abstract:

A method of collecting composition data and examining structural features of pearlite lamellae and the parent austenite at the growth interface in a 13wt. % manganese steel has been demonstrated with the use of Scanning Transmission Electron Microscopy (STEM). The combination of composition data and the structural features observed at the growth interface show that available theories of pearlite growth cannot explain all the observations.

Keywords: Interfaces, Phase transformations, Pearlite, Scanning Transmission Electron Microscopy (STEM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
5724 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers

Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice

Abstract:

In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.

Keywords: Churn prediction, data mining, decision-theoretic rough set, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
5723 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of big data technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centres or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through VADER and RoBERTa model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and Term Frequency – Inverse Document Frequency (TFIDF) Vectorization and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide if the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: Counter vectorization, Convolutional Neural Network, Crawler, data technology, Long Short-Term Memory, LSTM, Web Scraping, sentiment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175
5722 Photogrammetry and GIS Integration for Archaeological Documentation of Ahl-Alkahf, Jordan

Authors: Rami Al-Ruzouq, Abdallah Al-Zoubi, Abdel-Rahman Abueladas, Petya Dimitrova

Abstract:

Protection and proper management of archaeological heritage are an essential process of studying and interpreting the generations present and future. Protecting the archaeological heritage is based upon multidiscipline professional collaboration. This study aims to gather data by different sources (Photogrammetry and Geographic Information System (GIS)) integrated for the purpose of documenting one the of significant archeological sites (Ahl-Alkahf, Jordan). 3D modeling deals with the actual image of the features, shapes and texture to represent reality as realistically as possible by using texture. The 3D coordinates that result of the photogrammetric adjustment procedures are used to create 3D-models of the study area. Adding Textures to the 3D-models surfaces gives a 'real world' appearance to the displayed models. GIS system combined all data, including boundary maps, indicating the location of archeological sites, transportation layer, digital elevation model and orthoimages. For realistic representation of the study area, 3D - GIS model prepared, where efficient generation, management and visualization of such special data can be achieved.

Keywords: Archaeology, close range photogrammetry, ortho-photo, 3D-GIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
5721 On the Variability of Tool Wear and Life at Disparate Operating Parameters

Authors: S. E. Oraby, A.M. Alaskari

Abstract:

The stochastic nature of tool life using conventional discrete-wear data from experimental tests usually exists due to many individual and interacting parameters. It is a common practice in batch production to continually use the same tool to machine different parts, using disparate machining parameters. In such an environment, the optimal points at which tools have to be changed, while achieving minimum production cost and maximum production rate within the surface roughness specifications, have not been adequately studied. In the current study, two relevant aspects are investigated using coated and uncoated inserts in turning operations: (i) the accuracy of using machinability information, from fixed parameters testing procedures, when variable parameters situations are emerged, and (ii) the credibility of tool life machinability data from prior discrete testing procedures in a non-stop machining. A novel technique is proposed and verified to normalize the conventional fixed parameters machinability data to suit the cases when parameters have to be changed for the same tool. Also, an experimental investigation has been established to evaluate the error in the tool life assessment when machinability from discrete testing procedures is employed in uninterrupted practical machining.

Keywords: Machinability, tool life, tool wear, wear variability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
5720 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles

Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis

Abstract:

E-maintenance is a relatively recent concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This is clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification, cellular connectivity, connectivity to the vehicle computer, and connectivity to analog and digital sensors by means of a specially targeted design of expansion board. Specifically, the latter offers a number of adaptability features to cope with the diverse sensor types employed in different vehicles. In standard mode, the IoT sensor node communicates to the data center through cellular network, transmitting all digital/digitized sensor data, IoT device identity and position. Moreover, the proposed IoT sensor node offers connectivity, through WiFi and an appropriate application, to smart phones or tablets allowing the registration of additional vehicle- and driver-specific information and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware.

Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595
5719 TBOR: Tree Based Opportunistic Routing for Mobile Ad Hoc Networks

Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji

Abstract:

A mobile ad hoc network (MANET) is a wireless communication network where nodes that are not within direct transmission range establish their communication via the help of other nodes to forward data. Routing protocols in MANETs are usually categorized as proactive. Tree Based Opportunistic Routing (TBOR) finds a multipath link based on maximum probability of the throughput. The simulation results show that the presented method is performed very well compared to the existing methods in terms of throughput, delay and routing overhead.

Keywords: Mobile ad hoc networks, opportunistic data forwarding, proactive Source routing, BFS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
5718 Effect of Leadership Approach to Organizational Commitment: A Study in Transportation Sector

Authors: R. Iraz, K. Eryeşil

Abstract:

Employees commitments of vision and mission of organization is effected due to manager’s executes by approach of leadership The leaders who have attributions like vision, confidence and correctitude, sharing and participation, creativeness, progressive learning –improvement and responsibility are effective to increase organizational commitment if they are sensitive to expectation and requirement of employees in an organization. Studies about organizational commitment appear results that employees who have strong organizational commitment have the most contribution. In this study, “Leadership” and “Organizational Commitment” conduct surveys to 31 employees of Ahmet Özdemir Nak. Tic. San. A.Ş. which has operations in road and railway transportation sector. It is analyzed the effects of leadership approach to organizational commitment deals with result of survey.

Keywords: Leadership Approach, Organizational Commitment, Study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
5717 Paremaeter Determination of a Vehicle 5-DOF Model to Simulate Occupant Deceleration in a Frontal Crash

Authors: Javad Marzbanrad, Mostafa Pahlavani

Abstract:

This study has investigated a vehicle Lumped Parameter Model (LPM) in frontal crash. There are several ways for determining spring and damper characteristics and type of problem shall be considered as system identification. This study use Genetic Algorithm (GA) procedure, being an effective procedure in case of optimization issues, for optimizing errors, between target data (experimental data) and calculated results (being obtained by analytical solving). In this study analyzed model in 5-DOF then compared our results with 5-DOF serial model. Finally, the response of model due to external excitement is investigated.

Keywords: Vehicle, Lumped-Parameter Model, GeneticAlgorithm, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
5716 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection

Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi

Abstract:

In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.

Keywords: HTM, Real time anomaly detection, ECG, Cardiac Anomalies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795
5715 Efficient Filtering of Graph Based Data Using Graph Partitioning

Authors: Nileshkumar Vaishnav, Aditya Tatu

Abstract:

An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.

Keywords: Graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
5714 HTML5 Online Learning Application with Offline Web, Location Based, Animated Web, Multithread, and Real-Time Features

Authors: Sheetal R. Jadhwani, Daisy Sang, Chang-Shyh Peng

Abstract:

Web applications are an integral part of modem life. They are mostly based upon the HyperText Markup Language (HTML). While HTML meets the basic needs, there are some shortcomings. For example, applications can cease to work once user goes offline, real-time updates may be lagging, and user interface can freeze on computationally intensive tasks. The latest language specification HTML5 attempts to rectify the situation with new tools and protocols. This paper studies the new Web Storage, Geolocation, Web Worker, Canvas, and Web Socket APIs, and presents applications to test their features and efficiencies.

Keywords: HTML5, Web Worker, Canvas, Web Socket.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
5713 Blood Glucose Measurement and Analysis: Methodology

Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali

Abstract:

There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.

Keywords: Invasive, linear, near-infrared (Nir), non-invasive, non-linear, prediction system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
5712 Trajectory Estimation and Control of Vehicle using Neuro-Fuzzy Technique

Authors: B. Selma, S. Chouraqui

Abstract:

Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Backpropagation gradient descent method was performed to train the ANFIS system. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in controlling the non linear system.

Keywords: Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy logic, neural network, nonlinear system, control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
5711 A Hybrid Nature Inspired Algorithm for Generating Optimal Query Plan

Authors: R. Gomathi, D. Sharmila

Abstract:

The emergence of the Semantic Web technology increases day by day due to the rapid growth of multiple web pages. Many standard formats are available to store the semantic web data. The most popular format is the Resource Description Framework (RDF). Querying large RDF graphs becomes a tedious procedure with a vast increase in the amount of data. The problem of query optimization becomes an issue in querying large RDF graphs. Choosing the best query plan reduces the amount of query execution time. To address this problem, nature inspired algorithms can be used as an alternative to the traditional query optimization techniques. In this research, the optimal query plan is generated by the proposed SAPSO algorithm which is a hybrid of Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms. The proposed SAPSO algorithm has the ability to find the local optimistic result and it avoids the problem of local minimum. Experiments were performed on different datasets by changing the number of predicates and the amount of data. The proposed algorithm gives improved results compared to existing algorithms in terms of query execution time.

Keywords: Semantic web, RDF, Query optimization, Nature inspired algorithms, PSO, SA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
5710 Computer Modeling of Drug Distribution after Intravitreal Administration

Authors: N. Haghjou, M. J. Abdekhodaie, Y. L. Cheng, M. Saadatmand

Abstract:

Intravitreal injection (IVI) is the most common treatment for eye posterior segment diseases such as endopthalmitis, retinitis, age-related macular degeneration, diabetic retinopathy, uveitis, and retinal detachment. Most of the drugs used to treat vitreoretinal diseases, have a narrow concentration range in which they are effective, and may be toxic at higher concentrations. Therefore, it is critical to know the drug distribution within the eye following intravitreal injection. Having knowledge of drug distribution, ophthalmologists can decide on drug injection frequency while minimizing damage to tissues. The goal of this study was to develop a computer model to predict intraocular concentrations and pharmacokinetics of intravitreally injected drugs. A finite volume model was created to predict distribution of two drugs with different physiochemical properties in the rabbit eye. The model parameters were obtained from literature review. To validate this numeric model, the in vivo data of spatial concentration profile from the lens to the retina were compared with the numeric data. The difference was less than 5% between the numerical and experimental data. This validation provides strong support for the numerical methodology and associated assumptions of the current study.

Keywords: Posterior segment, Intravitreal injection (IVI), Pharmacokinetic, Modelling, Finite volume method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447
5709 Homogeneous and Heterogeneous Catalysis: Teachings of the Thermal Energy and Power Engineering Course

Authors: Junjie Chen

Abstract:

It is usually difficult for students to understand some basic theories in learning thermal energy and power engineering course. A new teaching method was proposed that we should introduce the comparison research method of those theories to help them being understood. “Homogeneous and heterogeneous catalysis” teaching is analyzed as an example by comparison research method.

Keywords: Homogeneous catalysis, heterogeneous catalysis, thermal energy and power engineering, teaching method, comparison research method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5584
5708 A Novel Fuzzy-Neural Based Medical Diagnosis System

Authors: S. Moein, S. A. Monadjemi, P. Moallem

Abstract:

In this paper, application of artificial neural networks in typical disease diagnosis has been investigated. The real procedure of medical diagnosis which usually is employed by physicians was analyzed and converted to a machine implementable format. Then after selecting some symptoms of eight different diseases, a data set contains the information of a few hundreds cases was configured and applied to a MLP neural network. The results of the experiments and also the advantages of using a fuzzy approach were discussed as well. Outcomes suggest the role of effective symptoms selection and the advantages of data fuzzificaton on a neural networks-based automatic medical diagnosis system.

Keywords: Artificial Neural Networks, Fuzzy Logic, MedicalDiagnosis, Symptoms, Fuzzification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
5707 A Novel In-Place Sorting Algorithm with O(n log z) Comparisons and O(n log z) Moves

Authors: Hanan Ahmed-Hosni Mahmoud, Nadia Al-Ghreimil

Abstract:

In-place sorting algorithms play an important role in many fields such as very large database systems, data warehouses, data mining, etc. Such algorithms maximize the size of data that can be processed in main memory without input/output operations. In this paper, a novel in-place sorting algorithm is presented. The algorithm comprises two phases; rearranging the input unsorted array in place, resulting segments that are ordered relative to each other but whose elements are yet to be sorted. The first phase requires linear time, while, in the second phase, elements of each segment are sorted inplace in the order of z log (z), where z is the size of the segment, and O(1) auxiliary storage. The algorithm performs, in the worst case, for an array of size n, an O(n log z) element comparisons and O(n log z) element moves. Further, no auxiliary arithmetic operations with indices are required. Besides these theoretical achievements of this algorithm, it is of practical interest, because of its simplicity. Experimental results also show that it outperforms other in-place sorting algorithms. Finally, the analysis of time and space complexity, and required number of moves are presented, along with the auxiliary storage requirements of the proposed algorithm.

Keywords: Auxiliary storage sorting, in-place sorting, sorting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
5706 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: Ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
5705 CDIO-Based Teaching Reform for Software Project Management Course

Authors: Liping Li, Wenan Tan, Na Wang

Abstract:

With the rapid development of information technology, project management has gained more and more attention recently. Based on CDIO, this paper proposes some teaching reform ideas for software project management curriculum. We first change from Teacher-centered classroom to Student-centered and adopt project-driven, scenario animation show, teaching rhythms, case study and team work practice to improve students' learning enthusiasm. Results showed these attempts have been well received and very effective; as well, students prefer to learn with this curriculum more than before the reform.

Keywords: CDIO, teaching reform, engineering education, project-driven, scenario animation simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227
5704 CFD Simulation of Fixed Bed Reactor in Fischer-Tropsch Synthesis of GTL Technology

Authors: Sh. Shahhosseini, S. Alinia, M. Irani

Abstract:

In this paper 2D Simulation of catalytic Fixed Bed Reactor in Fischer-Tropsch Synthesis of GTL technology has been performed utilizing computational fluid dynamics (CFD). Synthesis gas (a mixture of carbon monoxide and hydrogen) has been used as feedstock. The reactor was modeled and the model equations were solved employing finite volume method. The model was validated against the experimental data reported in literature. The comparison showed a good agreement between simulation results and the experimental data. In addition, the model was applied to predict the concentration contours of the reactants and products along the length of reactor.

Keywords: GTL, Fischer–Tropsch synthesis, Fixed Bed Reactor, CFD simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2925
5703 Automatic Camera Calibration for Images of Soccer Match

Authors: Qihe Li, Yupin Luo

Abstract:

Camera calibration plays an important role in the domain of the analysis of sports video. Considering soccer video, in most cases, the cross-points can be used for calibration at the center of the soccer field are not sufficient, so this paper introduces a new automatic camera calibration algorithm focus on solving this problem by using the properties of images of the center circle, halfway line and a touch line. After the theoretical analysis, a practicable automatic algorithm is proposed. Very little information used though, results of experiments with both synthetic data and real data show that the algorithm is applicable.

Keywords: Absolute conic, camera calibration, circular points, line at infinity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
5702 Dynamic Power Reduction in Sequential Circuits Using Look Ahead Clock Gating Technique

Authors: R. Manjith, C. Muthukumari

Abstract:

In this paper, a novel Linear Feedback Shift Register (LFSR) with Look Ahead Clock Gating (LACG) technique is presented to reduce the power consumption in modern processors and System-on-Chip. Clock gating is a predominant technique used to reduce unwanted switching of clock signals. Several clock gating techniques to reduce the dynamic power have been developed, of which LACG is predominant. LACG computes the clock enabling signals of each flip-flop (FF) one cycle ahead of time, based on the present cycle data of the flip-flops on which it depends. It overcomes the timing problems in the existing clock gating methods like datadriven clock gating and Auto-Gated flip-flops (AGFF) by allotting a full clock cycle for the determination of the clock enabling signals. Further to reduce the power consumption in LACG technique, FFs can be grouped so that they share a common clock enabling signal. Simulation results show that the novel grouped LFSR with LACG achieves 15.03% power savings than conventional LFSR with LACG and 44.87% than data-driven clock gating.

Keywords: AGFF, data-driven, LACG, LFSR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
5701 The Implementation of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications

Authors: Mohamed R. Mhereeg

Abstract:

The paper discusses the implementation of the MultiAgent classification System (MACS) and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies, which are the .NET widows service based agents, the Windows Communication Foundation (WCF) services, the Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). The Microsoft's .NET widows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW. The Monitoring Agents (MAs) were configured to execute automatically to monitor excel spreadsheets development activities by content. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent (DUA) residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers.

Keywords: MACS, Implementation, Multi-Agent, SOA, Autonomous, WCF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
5700 A Car Parking Monitoring System Using Wireless Sensor Networks

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

This paper presents a car parking monitoring system using wireless sensor networks. Multiple sensor nodes and a sink node, a gateway, and a server constitute a wireless network for monitoring a parking lot. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. Each sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The sensor nodes and sink node use the 448 MHz band for wireless communication. Since RF transmission only occurs when sensor values show abrupt changes, the number of RF transmission operations is reduced and battery power can be conserved. The data from the sensor nodes reach the server via the sink node and gateway. The server determines which parking spaces are taken by cars based upon the received sensor data and reference values. The reference values are average sensor values measured by each sensor node when the corresponding parking spot is not occupied by a vehicle. Because the decision making is done by the server, the computational burden of the sensor node is relieved, which helps reduce the duty cycle of the sensor node.

Keywords: Car parking monitoring, magnetometer, sensor node, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8177
5699 Movies and Dynamic Mathematical Objects on Trigonometry for Mobile Phones

Authors: Kazuhisa Takagi

Abstract:

This paper is about movies and dynamic objects for mobile phones. Dynamic objects are the software programmed by JavaScript. They consist of geometric figures and work on HTML5-compliant browsers. Mobile phones are very popular among teenagers. They like watching movies and playing games on them. So, mathematics movies and dynamic objects would enhance teaching and learning processes. In the movies, manga characters speak with artificially synchronized voices. They teach trigonometry together with dynamic mathematical objects. Many movies are created. They are Windows Media files or MP4 movies. These movies and dynamic objects are not only used in the classroom but also distributed to students. By watching movies, students can study trigonometry before or after class.

Keywords: Dynamic mathematical object, JavaScript, Google drive, transfer jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1011
5698 Comparison of Multi-User Detectors of DS-CDMA System

Authors: Kavita Khairnar, Shikha Nema

Abstract:

DS-CDMA system is well known wireless technology. This system suffers from MAI (Multiple Access Interference) caused by Direct Sequence users. Multi-User Detection schemes were introduced to detect the users- data in presence of MAI. This paper focuses on linear multi-user detection schemes used for data demodulation. Simulation results depict the performance of three detectors viz-conventional detector, Decorrelating detector and Subspace MMSE (Minimum Mean Square Error) detector. It is seen that the performance of these detectors depends on the number of paths and the length of Gold code used.

Keywords: Cross Correlation Matrix, MAI, Multi-UserDetection, Multipath Effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
5697 Using Daily Light Integral Concept to Construct the Ecological Plant Design Strategy of Urban Landscape

Authors: Chuang-Hung Lin, Cheng-Yuan Hsu, Jia-Yan Lin

Abstract:

It is an indispensible strategy to adopt greenery approach on architectural bases so as to improve ecological habitats, decrease heat-island effect, purify air quality, and relieve surface runoff as well as noise pollution, all of which are done in an attempt to achieve sustainable environment. How we can do with plant design to attain the best visual quality and ideal carbon dioxide fixation depends on whether or not we can appropriately make use of greenery according to the nature of architectural bases. To achieve the goal, it is a need that architects and landscape architects should be provided with sufficient local references. Current greenery studies focus mainly on the heat-island effect of urban with large scale. Most of the architects still rely on people with years of expertise regarding the adoption and disposition of plantation in connection with microclimate scale. Therefore, environmental design, which integrates science and aesthetics, requires fundamental research on landscape environment technology divided from building environment technology. By doing so, we can create mutual benefits between green building and the environment. This issue is extremely important for the greening design of the bases of green buildings in cities and various open spaces. The purpose of this study is to establish plant selection and allocation strategies under different building sunshade levels. Initially, with the shading of sunshine on the greening bases as the starting point, the effects of the shades produced by different building types on the greening strategies were analyzed. Then, by measuring the PAR (photosynthetic active radiation), the relative DLI (daily light integral) was calculated, while the DLI Map was established in order to evaluate the effects of the building shading on the established environmental greening, thereby serving as a reference for plant selection and allocation. The discussion results were to be applied in the evaluation of environment greening of greening buildings and establish the “right plant, right place” design strategy of multi-level ecological greening for application in urban design and landscape design development, as well as the greening criteria to feedback to the eco-city greening buildings.

Keywords: Daily light integral, plant design, urban open space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
5696 Initialization Method of Reference Vectors for Improvement of Recognition Accuracy in LVQ

Authors: Yuji Mizuno, Hiroshi Mabuchi

Abstract:

Initial values of reference vectors have significant influence on recognition accuracy in LVQ. There are several existing techniques, such as SOM and k-means, for setting initial values of reference vectors, each of which has provided some positive results. However, those results are not sufficient for the improvement of recognition accuracy. This study proposes an ACO-used method for initializing reference vectors with an aim to achieve recognition accuracy higher than those obtained through conventional methods. Moreover, we will demonstrate the effectiveness of the proposed method by applying it to the wine data and English vowel data and comparing its results with those of conventional methods.

Keywords: Clustering, LVQ, ACO, SOM, k-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256