
Abstract—Camera calibration plays an important role in the 
domain of the analysis of sports video.  Considering soccer video, in 
most cases, the cross-points can be used for calibration at the center of 
the soccer field are not sufficient, so this paper introduces a new 
automatic camera calibration algorithm focus on solving this problem 
by using the properties of images of the center circle, halfway line and 
a touch line. After the theoretical analysis, a practicable automatic 
algorithm is proposed. Very little information used though, results of 
experiments with both synthetic data and real data show that the 
algorithm is applicable. 

Keywords—Absolute conic, camera calibration, circular points, 
line at infinity.

I. INTRODUCTION

ECENTLY, much interest has been caught in athlete 
tracking and automatic semantic annotation of sports 

videos. In both domains, camera calibration is a necessary stage 
in order to extract metric information from 2D images. For 
decades, there has been much work on camera calibration. 
Originally, it was studied in the photogrammetry community, 
while now, became a hotspot in computer vision.  

Generally, the techniques on calibration can be classified 
roughly into two categories[1]: Photogrammetric calibration,

which are classic and require expensive apparatus and complex 
steps to acquire a precisely result. Self-calibration, which can 
find the intrinsic parameters without any calibration object but 
the geometric correspondence among a sequence of images. 
There still exist some other techniques such as vanishing points 
and pure rotation of camera. 

Usually, in soccer video analysis, images taken near the 
penalty area are easy to be calibrated since there are enough 
markers in the image such as the goal line, the flagpost and the 
cross points of the lines. By extracting these markers, sufficient 
information can be acquired for calibration, Szenberg et al.

solved this problem in [2]. But for the center of the field (Fig. 
2(a)), we can only get a halfway line, two touch lines (usually 
only the touch line near the camera is clear enough to be 
extracted) and the center circle in most cases. There are not 
more than four cross points on the same straight line can be 
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used, resulting in undermined equations; not only intrinsic and 
extrinsic parameters but also the homography matrix cannot be 
computed.  

Some work has been done on how to calibrate by  using the 
image of the circle and straight lines: Meng et al.used a planar 
calibration pattern which includes a circle and a pencil of lines 
passing through the circle’s center[3]; Wu et al. used the 
images of two parallel circles[4], and Zhang et al. used two 
circles that intersect each other[5]. All of them used the 
properties of the absolute conic (or the absolute quadric) and 
the line at infinity. Some other methods used the property of 
straight lines[6], but  usually, they can only compute the lens 
distortion parameters. All the methods mentioned above do not 
match our destination. In this paper we propose a new method 
let both intrinsic and extrinsic parameters can be computed if 
the noise and the distortion of the lens can be neglected. When 
the interference is so severe that the result cannot be 
convergence, at least the homography matrix can be computed 
and then an approximate solution can be acquired under some 
reasonable assumptions. 

The paper is organized as follows. Section II describes the 
basic algorithm of the method. The algorithm used in practice is 
offered in Section III. Section IV provides both synthetic and 
real data experimental results. Finally, conclusion is given. 

II. BASIC ALGORITHM

A. Notation and Camera Model 

The notations used in this paper are presented below. We use 
a common letter to denote a scalar, a bold lowercase letter for a 
vector and a bold uppercase letter for a matrix, for example, x is 
a scalar; x is a vector and X is a matrix. In addition, XT denotes 
the transpose of X, X

-1 for the inversion, and X-T for (X-1 )T or 
(XT )-1. A 2D point is denoted by m= [u v]T. A 3D point is 
denoted by n=[x y z]T. We use italic to denote their 
homogeneous coordinates, e.g. m = [u v t]T and n = [x y z t]T.

The camera model used is the pinhole model that the imaging 
process from a 3D point n to its image m can be expressed[7] as 
Equation: km = K[R  t]n (1), where K is the camera matrix 
including all the intrinsic parameters and denoted in Eq.(2). 

0

00
0 0 1

fu s u
fv vK   (2) 

Considering the 3D projective space, all the points satisfying 
the equation t = 0 are called points at infinity. They form the 
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plane at infinity. The absolute conic is the set of points in the 
plane at infinity which satisfies nT

n = 0. By using Eq(1), we get 
the image of the absolute conic (IAC for short), which equals 
K

-T
K

-1. Thus, we can derive all the intrinsic parameters by 
using Cholesky factorization with determined IAC. 

Since all the markers on the soccer field lie on the same plane, 
we can assume that Z coordinate of the model plane is 0 
without loss of generality. By using ri to denote the ith column 
of R, from Eq(1) we have Eq(3)[1]: 

2 3 2     
01

x
u x x x

y
k v y y y

t t t
t

1 1
K r r r t K r r t KM H (3) 

Based on the theory of projective geometry[7], all points at 

infinity on the model plane form the line at infinity,  denoted by 
l . The cross points of the circle on the model plane and l  are 
called circular points and denoted by I(1,i,0,0), J(1,-i,0,0). I

and J lie on the absolute conic , so they satisfy the equation 
n

T
n = 0, thus the image of them must lie on IAC. Using Im and 

Jm to denote the image of I and J respectively, they should 
satisfy Eq(4):   

0 Re( ) 0
0 Im( ) 0

-T -1 -T -1

-T -1 -T -1

K K K K

K K K K

T T

m m m m
T T

m m m m

I I I I

J J I I
 (4) 

Every image will generate 2 equations, and then we could get 
6 equations through three images, therefore the five intrinsic 
parameters can be computed via least square method. 

Details of the pinhole model can be found in [7]. 

B. Computing the Center Point of the Center Circle 

As shown in Fig. 1(b), the points a, b, o, c, and d are images 
of A, B, O, C, and D in Fig. 1(a) respectively. Using the 
invariance of the cross ratio, i.e., Eq(5), we can derive the 
coordinates of the image of the circle’s center, namely, o.

( , ) : : ( , )
AO AC ao ac

AB OC ab oc
BO BC bo bc

 (5) 

In practice, point D is a redundancy. 

C. Presentation of Ellipse and Lines 

One ellipse can be denoted by equation E(x,y)=ax2+bxy+cy2

+dx+ey+f. Five points on the ellipse are enough to determine 
its equation[7], but usually we use more points to get a more 
precise result as shown in Eq(6). Solving the equation, we can 
get the coefficient. 

2 2
1 1 1 1 1 1
2 2
2 2 2 2 2 2

2 2

1
1 0 ( 5)

1n n n n n n

a
x x y y x y b

cx x y y x y
n

d
ex x y y x y
f

Ac         (6) 

The method used to solve equation of  line is similar to that 
of ellipse’. A line can be denoted as  L(x, y) = Ax + Bx + C, and 
two points are enough to derive its equation[7]. Also, we can 
use more points considering the precision, thus, a least square 
solution can be acquired. 

D. Computing Circular Points  

After getting the the image of the circle’s center, the 
equations of the lines and the ellipse, we can calculate the 
circular points. There are two methods adoptable, that are 
described as follows respectively: 

Method I. This method is based on the method proposed by 
Wang [8]. It needs two rectangle or one square to be recognized, 
so as to acquire four points on the line at infinity, and then the 
circular points can be computed out. Since we have already got 
a diameter of the center circle, i.e., the halfway line, one more 
diameter perpendicular to the halfway line will enable us to 
acquire a square. 

The two touch lines are parallel to each other, and the 
halfway line is perpendicular to them. Thus, a line passing 
through the center of the circle and crossing the two touch lines 
at infinity or parallel to them must be the diameter we need.  

If only one touch line can be extracted, we can use the two 
tangents of the ellipse which pass though the points b and c as 
an alternative. Eqution l = Cx (7)can be used to compute the 
tangents where C is the coefficient matrix of ellipse and x is 
point of tangency[7]. 

Method II. This method is based on the method proposed by 
Meng [3]. It needs a circle and more than one diameters of the 
circle to be recognized. Since the two cross points of the circle 
and its diameter harmonically conjugate with respect to the 
center point of the circle and the point at infinity, the coordinate 
of the point at infinity can be computed(use Eq(8)). Two or 
more points at infinity can determine the line at infinity, thus we 
can calculate the circular points by finding the cross points 
between the circle and the line at infinity.

( , ) : 1     (  is point at infinity)
ao ap

ab op p
bo bp

 (8) 

All the straight lines passing through the center of a circle are 
diameters. Since we have got the center of the circle in advance, 
it is easy to get as many diameters as we want. Thus, the method 
can be used. 

Method III. Since more than four points which do not lie on 
one line has been acquired as described above, Zhang’s method 
also can be used[1]. 

E. Computing the Intrinsic Parameters 

As mentioned above, if we have three or more images of the 
soccer field from different orientations, we can compute out 
every image’s circular points, and then get all the intrinsic 
parameters by using Eq(4) and Cholesky factorization. 

F. Computing Homography Matrix and Extrinsic Parameters 

Computing extrinsic parameters means computing the matrix 
M in Eq(3). Usually we use DLT to obtain our destination[7]. 
First, we will compute the homography matrix H. Then M can 

A

B

D

C

O

d
c

o

b

a

(a) Model plane                         (b) Image plane 
Fig. 1 
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be calculated by equation -1
M = K H (9), so r1, r2 and t are 

acquired. By using r3 = r1 r2 (10), at last we get the ratation 
matrix, and figure out all the extrinsic parameters. 

Every pair of corresponding points between the soccer field 
and its image can provide two equations in Eq(11), 

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9

0 0 0 1
1 0 0 0

0

1 0 0 0

( )

n n n n n n n

T

x y x v y v v
x y x u y u u

x y x u y u u

h h h h h h h h h

h

h

(11) 

thus, at least four pairs of points not lying on one line are 
needed. Least sqrare method will be used if there are more 
points. 

In the orignal image , we can get no more than four points 
lying on one line in most cases. But after we compute the 
intrinsic parameters, more points can be acquired.  

Using the Method I and III in subsection D, we can get the 
images of two cross points between the center circle and the 
diameter perpendicular to the halfway line, enough points are 
acquired. This method uses the points computed in previous 
steps, fast and simple. If we want more points or Method II is 
adopted, the following method can be used. 

Since the coordinates of the cross points between the center 
circle and the halfway line(a diameter) is known in advance, 
should the angle between the halfway line and another diameter 
be computed out, we can calculate the coordinates of the cross 
points between the diameter and the center circle. Since the 
circular points are already calculated out, their dual conic can 

be acquired by using equation * T T
C = IJ + JI (12), and then 

the angle between two lines l and m can be computed by 
following equation(13). 

*

* *
cos

( )( )

T

T T

l C m

l C l m C m
  (13) 

By using Eq(9)(10)(11)(12)(13), all the extrinsic parameters 
can be figured out. 

III. AUTOMATIC CALIBRATION IN SOCCER VIDEO

In using the method introduced in section II, the key problem is 
to recognize the markers. After extracting these elements, we 
can compute their equations, the coordinate of the center point 
of the circle, etc., and then get the calibration parameters. Our 
method is divided into three steps: preprocessing, extraction, 
and calculation. 

A. Preprocessing and Extraction 

The objective of preprocessing is to enhance the image for 
easy to extract the markers(ellipse and lines). Classic methods 
of image processing combine the color information of the 
soccer field can give us a satifying result.  

We know that the color of soccer field is green(grass) and the 
markers white. Of course its green color cannot  be pure green, 
and we find that its green approaches more to red than to blue. 
Then we use the blue component of the image(Fig. 2(a)) instead 
of the grayscale image (Fig. 2(b)), thus sharper contrast can be 

acquired. By using methods such as edge detection, noise 
reduction and so on, an image as Fig. 2(c) is acquired.  

Extracting the ellipse and lines accurately from image is an 
important step for our method. Here we can use the RANSAC 
method [9] to obtain our destination.

B. Computing Parameters 

Having extracted the ellipse and lines, their cross points can 
be easily acquired. Then we can compute the parameters by 
using the method described in Section II. 

In fact, we find that under many circumstances, the IAC is 
not positive definite result in Cholesky decomposition cannot 
be used since the noise and distortion exist. Finding the closest 
positive definite solution is not appropriate as pointed out by 
Hartley[7]. Thus, only the homography matrix can be 
computed by using the method described in subsection F, 
section II. If we need to compute the intrinsic paramethers, an 
appoximate method can be used. Usually, following truth can 
be reasonble: the skew factor s is very small, the principal point 
is not very far from the center of the image, and the rectangular 
pixel is nearly a square. Thus we can assume that s = 0, fu/fv = 1 
and the principle point is the image center. The method 
proposed in[10] can be used to compute the focal length f using 
Eq.(14) 

1 2 4 5

7 8

h h h h
f

h h
  (14) 

Where hi is shown in Eq.(11). Then we can get the 
approximate solution after an iterative optimization method 
which is described in details in[10]. 

IV. EXPERIMENTS RESULTS

In this section, the proposed algorithm has been tested on both 
synthetic and real images for evaluating its robustness and 
accuracy. 

A. Computer Simulation 

In the simulation, the camera’s property is: fu = 1250, fv = 
1100, s = 1.0, u0 = 380, v0 = 280. The image resolution is 720

540. Three model planes are used, and the rotation angles 
and translate vectors are: r1 = [7.5o, 12o, 0]T, t1 =
[-135,-95,154]T, r2 = [22.5o,20o,5o]T, t2 = [-135,-95,150]T, r3 =
[5.625o,15o,-5o]T, t3 = [-135,-95,145]T. A Gaussian noise with 0 
mean and standard deviation is added to the projected image 
points. The noise level varies from 0.2 pixels to 4.0 pixels. 
Every results is the average of 100 independent trials. Note that, 
the relative errors of (u0, v0) are measured with respect to fu, as 
proposed by Triggs in[11]. And since s represent the tangent of 
the skew angle which commonly is so small that the value of s
is very close to the angle itself, its relative error is also 

(a)                                   (b)                                    (c) 
Fig. 2  (a) Blue component  (b) Grayscale image  (c)Binary 
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measured with respect to fu. We find that the effects of the three 
methods are very similar, so Fig. 3 shows only the result of 
Method II. TABLE 1 shows the absolute value of some of the 
results. Since the algorithm is too dependent on the precision of 
the coordinate of the image of the circle’s center point, the 
robustness is a little worse than Meng’s [3]. 

B. Real Data 

The images used were taken by a Panasonic NV-MX2500 
video camera whose resolution is 720 480.  

We use images of a model plane contains a pattern like the 
markers on the soccer field(only one image shown in Fig. 4(a)) 
first, and then images of a real soccer field(Fig. 4(b)(c)) are 
used. For comparison, Zhang’s method[1] is used to calibrate 
the same camera. And we find that only the approximate result 
can be acquired(TABLE 2, the column e(%) means the 
releative error with respect to the result of Zhang’s method). 
The relative errors are computed as described in subsection A. 

The reason of why the robustness in the computer simulation 
experiment is good but deteriorated when real images are used 
is that the adoption of least square method to fitting the 
equations of ellipse and lines can minimize the infection of 
Gaussian noise but cannot be effective when measurement 
errors and lens distortion exist. We can see that the relative 
error of the images of soccer field is greater than the model 
plane’s because the using of a wide-angle lens (Panasonic 
VW-LW 4307M) which results in much greater distortion than 
that of the images of model plane.

V. CONCLUSION AND FUTURE WORK

The algorithm presented here is applicable for practical use. 
Though only a few markers can be acquired which means the 
camera cannot be calibrated by traditional method, we can 
compute the calibration parameters by using the properties of 
the images of ellipse and line. The robustness is good when 
only Gaussian noise exists, even if other noises, measurement 

errors and lens distortion make IAC not positive definite 
resulting in parameters cannot be calculated, at least the 
homography matrix can be computed, thus, an approximate 
solution can be acquired. If intrinsic parameters are known in 
advance, only the images of a circle and one of its diameters are 
needed for extrinsic parameters calibration. The shortcoming is 
the distortion parameters cannot be calibrated. In addition, the 
speed cannot satisfy the real-time  requirements since 
RANSAC method is adopted. 

In the future, we will try to use the  deformation of straight 
lines on the image to eliminate the distortion before calibration. 
Besides, the robustness will be considered further. Increasing 
the speed is also a direction of work. 
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TABLE 2
RESULTS OF REAL DATA 

Model plane Soccer Field Paramete
rs Zhang’s Ours e(%) Zhang’s Ours e(%)

fu 1924.34 2092.21 8.72 617.27 702.75 13.78
fv 1724.95 1784.33 3.44 539.48 591.84 9.71
s 3.36 0 0.18 5.37 5.14 0.04
u0 376.46 360 0.86 351.27 367.67 2.66
v0 266.39 273.60 0.37 266.01 214.98 8.27

Fig. 4  (a) Images of a model plane contains simulation markers  
(b) (c) other two images of soccer field 

TABLE 1
CALIBRATION RESULTS AT DIFFERENT NOISE OF METHOD II 

Noise 
level

fu fv s u0 v0

0.2 1250.6 1100.4 1.1691 380.25 279.48
0.6 1249.5 1099.1 1.071 377.64 280.52
1.0 1253.9 1103.5 2.5642 381.19 276.11
1.6 1262.6 1112.1 5.9256 385.37 268.85
2.0 1261.5 1110.2 7.0858 379.26 270.86
3.0 1280.3 1126.9 16.179 381.88 254.21

Fig. 3   Relative errors of Method II 
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