Search results for: organic rankine cycle
876 Integrated Design in Additive Manufacturing Based on Design for Manufacturing
Authors: E. Asadollahi-Yazdi, J. Gardan, P. Lafon
Abstract:
Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product’s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability.
Keywords: Additive manufacturing, 3D printing, design for manufacturing, integrated design, interoperability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267875 Selective Solvent Extraction of Calcium and Magnesium from Concentrate Nickel Solutions Using Mixtures of Cyanex 272 and D2EHPA
Authors: Alexandre S. Guimarães, Marcelo B. Mansur
Abstract:
The performance of organophosphorus extractants Cyanex 272 and D2EHPA on the purification of concentrate nickel sulfate solutions was evaluated. Batch scale tests were carried out at pH range of 2 to 7 using a laboratory solution simulating concentrate nickel liquors as those typically obtained when sulfate intermediates from nickel laterite are re-leached and treated for the selective removal of cobalt, zinc, manganese and copper with Cyanex 272 ([Ca] = 0.57 g/L, [Mg] = 3.2 g/L, and [Ni] = 88 g/L). The increase on the concentration of D2EHPA favored the calcium extraction. The extraction of magnesium is dependent on the pH and of ratio of extractants D2EHPA and Cyanex 272 in the organic phase. The composition of the investigated organic phase did not affect nickel extraction. The number of stages is dependent on the magnesium extraction. The most favorable operating condition to selectively remove calcium and magnesium was determined.
Keywords: Solvent extraction, organophosphorus extractants, alkaline earth metals, nickel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482874 Knowledge Based Model for Power Transformer Life Cycle Management Using Knowledge Engineering
Authors: S. S. Bhandari, N. Chakpitak, K. Meksamoot, T. Chandarasupsang
Abstract:
Under the limitation of investment budget, a utility company is required to maximize the utilization of their existing assets during their life cycle satisfying both engineering and financial requirements. However, utility does not have knowledge about the status of each asset in the portfolio neither in terms of technical nor financial values. This paper presents a knowledge based model for the utility companies in order to make an optimal decision on power transformer with their utilization. CommonKADS methodology, a structured development for knowledge and expertise representation, is utilized for designing and developing knowledge based model. A case study of One MVA power transformer of Nepal Electricity Authority is presented. The results show that the reusable knowledge can be categorized, modeled and utilized within the utility company using the proposed methodologies. Moreover, the results depict that utility company can achieve both engineering and financial benefits from its utilization.Keywords: CommonKADS, Knowledge Engineering, LifeCycle Management, Power Transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314873 Quantification of Biomethane Potential from Anaerobic Digestion of Food Waste at Vaal University of Technology
Authors: Kgomotso Matobole, Pascal Mwenge, Tumisang Seodigeng
Abstract:
The global urbanisation and worldwide economic growth have caused a high rate of food waste generation, resulting in environmental pollution. Food waste disposed on landfills decomposes to produce methane (CH4), a greenhouse gas. Inadequate waste management practices contribute to food waste polluting the environment. Thus effective organic fraction of municipal solid waste (OFMSW) management and treatment are attracting widespread attention in many countries. This problem can be minimised by the employment of anaerobic digestion process, since food waste is rich in organic matter and highly biodegradable, resulting in energy generation and waste volume reduction. The current study investigated the Biomethane Potential (BMP) of the Vaal University of Technology canteen food waste using anaerobic digestion. Tests were performed on canteen food waste, as a substrate, with total solids (TS) of 22%, volatile solids (VS) of 21% and moisture content of 78%. The tests were performed in batch reactors, at a mesophilic temperature of 37 °C, with two different types of inoculum, primary and digested sludge. The resulting CH4 yields for both food waste with digested sludge and primary sludge were equal, being 357 Nml/g VS. This indicated that food waste form this canteen is rich in organic and highly biodegradable. Hence it can be used as a substrate for the anaerobic digestion process. The food waste with digested sludge and primary sludge both fitted the first order kinetic model with k for primary sludge inoculated food waste being 0.278 day-1 with R2 of 0.98, whereas k for digested sludge inoculated food waste being 0.034 day-1, with R2 of 0.847.
Keywords: Anaerobic digestion, biogas, biomethane potential, food waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 945872 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet
Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel
Abstract:
Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.Keywords: Sanitation systems, nano membrane toilet, LCA, stochastic uncertainty analysis, Monte Carlo Simulations, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994871 The Failed Criminalization of Homelessness: The Need for New Interventions and the Implementation of Salt Lake City’s Kayak Court
Authors: Stephen D. Fanale
Abstract:
Criminalization creates sizable barriers to housing and perpetuates the cycle of homelessness. Not only does criminalization leave people on the streets and in shelters indefinitely, it also unnecessarily costs the taxpayers. Homelessness is a growing issue throughout the world and criminalizing these human beings is a violation of basic human rights. While ending the criminalization of homelessness may seem like an insurmountable obstacle, there is something that can be done while fighting that battle. While they are under researched as a whole, specialty courts, specifically homeless courts, are a growing vessel that can address some of the barriers associated with criminalization. They divert individuals away from jail while connecting them to services that will help their situation instead of hindering it. The model being used in Salt Lake City, while similar to others throughout the United States, stands alone in its outreach efforts, and should be paving the way for the rest of the world. The following will look at criminalization and different ways of addressing it, and, finally, Salt Lake City’s current operations, including the unique outreach court: Kayak Court.
Keywords: Barriers to housing, criminalization, cycle of homelessness, homeless court, diversion, Kayak Court.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96870 Comparison of Vermicompost and Vermiwash Bio-Fertilizers from Vermicomposting Waste Corn Pulp
Authors: M. M. Manyuchi, A. Phiri, P. Muredzi, T. Chitambwe
Abstract:
Vermicomposting is the conversion of organic waste into bio-fertilizers through the action of earthworm. This technology is widely used for organic solid waste management. Waste corn pulp blended with cow dung manure was vermicomposted over 30 days using Eisenia fetida earthworms species. pH, temperature, moisture content, and electrical conductivity were daily monitored. The feedstock, vermicompost and vermiwash were analyzed for nutrient composition. The average temperature and moisture content in the vermi-reactor was 22.5°C and 42.5% respectively. The vermicompost and vermiwash had an almost neutral pH whilst the electrical conductivity was 21% higher in the vermicompost. The nitrogen and potassium content was 57% and 79.6% richer in the vermicompost respectively compared to the vermiwash. However, the vermiwash was 84% richer in phosphorous as compared to vermicompost. Furthermore, the vermiwash was 89.1% and 97.6% richer in Ca and Mg respectively and was 97.8% richer in Na salts compared to the vermicompost. The vermiwash also indicated a significantly higher amount of micronutrients. Both bio-fertilizers were rich in nutrients specification for fertilizers.Keywords: Vermicompost, vermiwash, nutrient composition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6799869 Extracts of Cola acuminata, Lupinus arboreus and Bougainvillea spectabilis as Natural Photosensitizers for Dye-Sensitized Solar Cells
Authors: M. L. Akinyemi, T. J. Abodurin, A. O. Boyo, J. A. O. Olugbuyiro
Abstract:
Organic dyes from Cola acuminata (C. acuminata), Lupinus arboreus (L. arboreus) and Bougainvillea spectabilis (B. spectabilis) leaves and their mixtures were used as sensitizers to manufacture dye-sensitized solar cells (DSSC). Photoelectric measurements of C. acuminata showed a short circuit current (Jsc) of 0.027 mA/ cm2, 0.026 mA/ cm2 and 0.018 mA/ cm2 with a mixture of mercury chloride and iodine (Hgcl2 + I); potassium bromide and iodine (KBr + I); and potassium chloride and iodine (KCl + I) respectively. The open circuit voltage (Voc) was 24 mV, 25 mV and 20 mV for the three dyes respectively. L. arboreus had Jsc of 0.034 mA/ cm2, 0.021 mA/ cm2 and 0.013 mA/ cm2; and corresponding Voc of 28 mV, 14.2 mV and 15 mV for the three electrolytes respectively. B. spectabilis recorded Jsc 0.023 mA/ cm2, 0.026 mA/ cm2 and 0.015 mA/ cm2; and corresponding Voc values of 6.2 mV, 14.3 mV and 4.0 mV for the three electrolytes respectively. It was observed that the fill factor (FF) was 0.140 for C. acuminata, 0.3198 for L. arboreus and 0.1138 for B. spectabilis. Internal conversions of 0.096%, 0.056% and 0.063% were recorded for three dyes when combined with (KBr + I) electrolyte. The internal efficiency of C. acuminata DSSC was highest in value.Keywords: Dye-sensitized Solar Cells, Organic dye, C. acuminate, L. arboreus, B. spectabilis, Dye Mixture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442868 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies
Authors: Satya P. Dubey, Hrushikesh A. Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann
Abstract:
PLA emerged as a promising polymer because of its property as a compostable, biodegradable thermoplastic made from renewable sources. PLA can be polymerized from monomers (Lactide or Lactic acid) obtained by fermentation processes from renewable sources such as corn starch or sugarcane. For PLA synthesis, ring opening polymerization (ROP) of Lactide monomer is one of the preferred methods. In the literature, the technique mainly developed for ROP of PLA is based on metal/bimetallic catalyst (Sn, Zn and Al) or other organic catalysts in suitable solvent. However, the PLA synthesized using such catalysts may contain trace elements of the catalyst which may cause toxicity. This work estimated the usefulness and drawbacks of using different catalysts as well as effect of alternative energies and future aspects for PLA production.
Keywords: Alternative energy, bio-degradable, metal catalyst, poly lactic acid (PLA), ring opening polymerization (ROP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801867 Implementation of a Low-Cost Instrumentation for an Open Cycle Wind Tunnel to Evaluate Pressure Coefficient
Authors: Cristian P. Topa, Esteban A. Valencia, Victor H. Hidalgo, Marco A. Martinez
Abstract:
Wind tunnel experiments for aerodynamic profiles display numerous advantages, such as: clean steady laminar flow, controlled environmental conditions, streamlines visualization, and real data acquisition. However, the experiment instrumentation usually is expensive, and hence, each test implies a incremented in design cost. The aim of this work is to select and implement a low-cost static pressure data acquisition system for a NACA 2412 airfoil in an open cycle wind tunnel. This work compares wind tunnel experiment with Computational Fluid Dynamics (CFD) simulation and parametric analysis. The experiment was evaluated at Reynolds of 1.65 e5, with increasing angles from -5° to 15°. The comparison between the approaches show good enough accuracy, between the experiment and CFD, additional parametric analysis results differ widely from the other methods, which complies with the lack of accuracy of the lateral approach due its simplicity.Keywords: Wind tunnel, low cost instrumentation, experimental testing, CFD simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825866 Organoclay of Cetyl Trimethyl Ammonium- Montmorillonite: Preparation and Study in Adsorption of Benzene-Toluene-2-Chlorophenol
Authors: Is Fatimah, Winda Novita, Yopi Andika, Imam Sahroni, Basitoh Djaelani, Yuyun Yunani N.
Abstract:
Contamination of aromatic compounds in water can cause severe long-lasting effects not only for biotic organism but also on human health. Several alternative technologies for remediation of polluted water have been attempted. One of these is adsorption process of aromatic compounds by using organic modified clay mineral. Porous structure of clay is potential properties for molecular adsorptivity and it can be increased by immobilizing hydrophobic structure to attract organic compounds. In this work natural montmorillonite were modified with cetyltrimethylammonium (CTMA+) and was evaluated for use as adsorbents of aromatic compounds: benzene, toluene, and 2-chloro phenol in its single and multicomponent solution by ethanol:water solvent. Preparation of CTMA-montmorillonite was conducted by simple ion exchange procedure and characterization was conducted by using x-day diffraction (XRD), Fourier-transform infra red (FTIR) and gas sorption analysis. The influence of structural modification of montmorillonite on its adsorption capacity and adsorption affinity of organic compound were studied. It was shown that adsorptivity of montmorillonite was increased by modification associated with arrangements of CTMA+ in the structure even the specific surface area of modified montmorillonite was lower than raw montmorillonite. Adsorption rate indicated that material has affinity to adsorb compound by following order: benzene> toluene > 2-chloro phenol. The adsorption isotherms of benzene and toluene showed 1st order adsorption kinetic indicating a partition phenomenon of compounds between the aqueous and organophilic CTMAmontmorillonite.Keywords: Adsorption, Desorption, Montmorillonite, Organoclay, Surfactant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447865 Weaving Social Development: An Exploratory Study of Adapting Traditional Textiles Using Indigenous Organic Wool for the Modern Interior Textiles Market
Authors: Seema Singh, Puja Anand, Alok Bhasin
Abstract:
The interior design profession aims to create aesthetically pleasing design solutions for human habitats but of late, growing awareness about depleting environmental resources, both tangible and intangible, and damages to the eco-system led to the quest for creating healthy and sustainable interior environments. The paper proposes adapting traditionally produced organic wool textiles for the mainstream interior design industry. This can create sustainable livelihoods whereby eco-friendly bridges can be built between Interior designers and consumers and pastoral communities. This study focuses on traditional textiles produced by two pastoral communities from India that use organic wool from indigenous sheep varieties. The Gaddi communities of Himachal Pradesh use wool from the Gaddi sheep breed to create Pattu (a multi-purpose textile). The Kurumas of Telangana weave a blanket called the Gongadi, using wool from the Black Deccani variety of sheep. These communities have traditionally reared indigenous sheep breeds for their wool and produce hand-spun and hand-woven textiles for their own consumption, using traditional processes that are chemical free. Based on data collected personally from field visits and documentation of traditional crafts of these pastoral communities, and using traditionally produced indigenous organic wool, the authors have developed innovative textile samples by including design interventions and exploring dyeing and weaving techniques. As part of the secondary research, the role of pastoralism in sustaining the eco-systems of Himachal Pradesh and Telangana was studied, and also the role of organic wool in creating healthy interior environments. The authors found that natural wool from indigenous sheep breeds can be used to create interior textiles that have the potential to be marketed to an urban audience, and this will help create earnings for pastoral communities. Literature studies have shown that organic & sustainable wool can reduce indoor pollution & toxicity levels in interiors and further help in creating healthier interior environments. Revival of indigenous breeds of sheep can further help in rejuvenating dying crafts, and promotion of these indigenous textiles can help in sustaining traditional eco-systems and the pastoral communities whose way of life is endangered today. Based on research and findings, the authors propose that adapting traditional textiles can have potential for application in Interiors, creating eco-friendly spaces. Interior textiles produced through such sustainable processes can help reduce indoor pollution, give livelihood opportunities to traditional economies, and leave almost zero carbon foot-print while being in sync with available natural resources, hence ultimately benefiting the society. The win-win situation for all the stakeholders in this eco-friendly model makes it pertinent to re-think how we design lifestyle textiles for interiors. This study illustrates a specific example from the two pastoral communities and can be used as a model that can work equally well in any community, regardless of geography.Keywords: Design Intervention, Eco-Friendly, Healthy Interiors, Indigenous, Organic Wool, Pastoralism, Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398864 Vitamin C Status and Nitric Oxide in Buffalo Ovarian Follicular Fluid in Relation to Seasonal Heat Stress and Phase of Estrous Cycle
Authors: H. F. Hozyen, A. M. Abo-El Maaty
Abstract:
Heat stress is a recognized problem causing huge economic losses to the buffalo breeders as well as dairy industry. The aim of the present work was to study the pattern of vitamin C and nitric oxide in follicular fluid of buffalo during different seasons of the year considering phase of estrous cycle. This study was conducted on 208 cyclic buffaloes slaughtered at Al-Qaliobia governorate, Egypt, over one year. The obtained results revealed that vitamin C in follicular fluid was significantly lower in summer than winter and spring. On the other hand, nitric oxide (NO) was significantly higher in summer and autumn than winter and spring. Both vitamin C and NO did not differ significantly between follicular and luteal phases. In conclusion, the present study revealed that alterations in concentrations of follicular fluid vitamin C and NO that occur in summer could be related to low summer fertility in buffalo.
Keywords: Buffalo, follicular fluid, vitamin C, NO and heat stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219863 Antioxidant Capacity of Different Broccoli Cultivars at Various Harvesting Dates
Authors: S. Graeff-Hönninger, J. Pfenning, V. Gutsal, S. Wolf, S. Zikeli, W. Claupein
Abstract:
Broccoli is considered as being a rich source of AOX like flavonoids, polyphenols, anthocyanins etc. and of major interest especially in the organic sector. However, AOX is environment dependent and often varies between cultivars. Aim of the study was to investigate the impact of cultivar and harvest date on AOX in broccoli. Activity of the AOX was determined using a Photochem®-Analyzer and a kit of reagent solutions for analysis. Results of the study showed that the lipid (ACL) and water-soluble antioxidant potential (AWC) of broccoli heads varied significantly between the four harvesting dates, but not among the different cultivars. The highest concentration of ACL was measured in broccoli heads harvested in September 2011, followed by heads harvested at the beginning of July in 2012. ACW was highest in heads harvested in October 2011. Lowest concentrations of ACW were measured in heads harvested in June 2012. Overall, the study indicated that the harvest date and thus growing conditions seem to be of high importance for final antioxidant capacity of broccoli.Keywords: Antioxidant activity, open pollinating, organic agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046862 Work Function Engineering of Functionally Graded ZnO+Ga2O3 Thin Film for Solar Cell and Organic Light Emitting Diodes Applications
Authors: Yong-Taeg Oh, Won Song, Seok-Eui Choi, Bo-Ra Koo, Dong-Chan Shin
Abstract:
ZnO+Ga2O3 functionally graded thin films (FGTFs) were examined for their potential use as Solar cell and organic light emitting diodes (OLEDs). FGTF transparent conducting oxides (TCO) were fabricated by combinatorial RF magnetron sputtering. The composition gradient was controlled up to 10% by changing the plasma power of the two sputter guns. A Ga2O3+ZnO graded region was placed on the top layer of ZnO. The FGTFs showed up to 80% transmittance. Their surface resistances were reduced to < 10% by increasing the Ga2O3: pure ZnO ratio in the TCO. The FGTFs- work functions could be controlled within a range of 0.18 eV. The controlled work function is a very promising technology because it reduces the contact resistance between the anode and Hall transport layers of OLED and solar cell devices.Keywords: Work Function, TCO, Functionally Graded Thin Films, Resistance, Transmittance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375861 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings
Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez
Abstract:
Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.
Keywords: Life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908860 A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell
Authors: Bharat Mishra, Sanjay Kumar Awasthi, Raj Kumar Rajak
Abstract:
The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production.
Keywords: Substrates, electrodes, membranes, microbial fuel cells, voltage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451859 Effects of Global Warming on Climate Change in Udon Thani Province in the Period in 60 Surrounding Years (A.D.1951-2010)
Authors: T. Santiboon
Abstract:
This research were investigated, determined, and analyzed of the climate characteristically change in the provincial Udon Thani in the period of 60 surrounding years from 1951 to 2010 A.D. that it-s transferred to effects of climatologically data for determining global warming. Statistically significant were not found for the 60 years- data (R2<0.81). Statistically significant were found after adapted data followed as the Sun Spot cycle in 11 year periods, at the level 0.001 (R2= 1.00). These results indicate the Udon Thani-s weather are affected change; temperatures and evaporation were increased, but rainfall and number days of rainfall, cyclone storm, wind speed, and humidity, forest assessment were decreased. The effects of thermal energy from the sun radiation energy and human activities that they-re followed as the sunspot cycle are able to be predicted from the last to the future of the uniformitarian-s the climate change and global warming effect of the world.Keywords: Climate Change, Global Warming, Udon Thani Province Weather
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115858 Network of Coupled Stochastic Oscillators and One-way Quantum Computations
Authors: Eugene Grichuk, Margarita Kuzmina, Eduard Manykin
Abstract:
A network of coupled stochastic oscillators is proposed for modeling of a cluster of entangled qubits that is exploited as a computation resource in one-way quantum computation schemes. A qubit model has been designed as a stochastic oscillator formed by a pair of coupled limit cycle oscillators with chaotically modulated limit cycle radii and frequencies. The qubit simulates the behavior of electric field of polarized light beam and adequately imitates the states of two-level quantum system. A cluster of entangled qubits can be associated with a beam of polarized light, light polarization degree being directly related to cluster entanglement degree. Oscillatory network, imitating qubit cluster, is designed, and system of equations for network dynamics has been written. The constructions of one-qubit gates are suggested. Changing of cluster entanglement degree caused by measurements can be exactly calculated.Keywords: network of stochastic oscillators, one-way quantumcomputations, a beam of polarized light.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408857 Total Organic Carbon, Porosity and Permeability Correlation: A Tool for Carbon Dioxide Storage Potential Evaluation in Irati Formation of the Parana Basin, Brazil
Authors: Richardson M. Abraham-A., Colombo Celso Gaeta Tassinari
Abstract:
The correlation between Total Organic Carbon (TOC) and flow units have been carried out to predict and compare the carbon dioxide (CO2) storage potential of the shale and carbonate rocks in Irati Formation of the Parana Basin. The equations for permeability (K), reservoir quality index (RQI) and flow zone indicator (FZI) are redefined and engaged to evaluate the flow units in both potential reservoir rocks. Shales show higher values of TOC compared to carbonates, as such, porosity (Ф) is most likely to be higher in shales compared to carbonates. The increase in Ф corresponds to the increase in K (in both rocks). Nonetheless, at lower values of Ф, K is higher in carbonates compared to shales. This shows that at lower values of TOC in carbonates, Ф is low, yet, K is likely to be high compared to shale. In the same vein, at higher values of TOC in shales, Ф is high, yet, K is expected to be low compared to carbonates. Overall, the flow unit factors (RQI and FZI) are better in the carbonates compared to the shales. Moreso, within the study location, there are some portions where the thicknesses of the carbonate units are higher compared to the shale units. Most parts of the carbonate strata in the study location are fractured in situ, hence, this could provide easy access for the storage of CO2. Therefore, based on these points and the disparities between the flow units in the evaluated rock types, the carbonate units are expected to show better potentials for the storage of CO2. The shale units may be considered as potential cap rocks or seals.
Keywords: Total organic carbon, flow units, carbon dioxide storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882856 Enzymatic Esterification of Carboxylic Acids and Higher Alcohols in Organic Medium
Authors: D.T. Mirzarakhmetova
Abstract:
The studying of enzymatic esterification of carboxylic acids and higher alcohols was performed by esterase Saccharomyces cerevisiae in water-organic medium. Investigation of the enzyme specificity to acetic substrates showed the best result with acetic acid in esterification reactions with ethanol whereas within other carboxylic acids the esterification decreased with acids: hexanoic > pentanoic > butyric > decanoic. In relation to higher alcohols C3-C5, esterification increased with alcohols propanol < butanol < amylol. Also it was determined that esterase was more specific to alcohols with branched chain such as isobutyl alcohol and isoamyl alcohol. Data obtained may have important practical implications, for example, for application of yeast esterase in producing various volatile esters as well as in enzymatic transformation of volatile acids and toxic fusel alcohols into volatile esters by providing the production of the high quality alcoholic beverages with redused content of higher alcohols as well as with improved degustational and hygienic properties.Keywords: enzymes in non-conventional media, esterification, higher alcohols, volatile esters, yeast esterase
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3506855 Simulation of Organic Matter Variability on a Sugarbeet Field Using the Computer Based Geostatistical Methods
Authors: M. Rüstü Karaman, Tekin Susam, Fatih Er, Servet Yaprak, Osman Karkacıer
Abstract:
Computer based geostatistical methods can offer effective data analysis possibilities for agricultural areas by using vectorial data and their objective informations. These methods will help to detect the spatial changes on different locations of the large agricultural lands, which will lead to effective fertilization for optimal yield with reduced environmental pollution. In this study, topsoil (0-20 cm) and subsoil (20-40 cm) samples were taken from a sugar beet field by 20 x 20 m grids. Plant samples were also collected from the same plots. Some physical and chemical analyses for these samples were made by routine methods. According to derived variation coefficients, topsoil organic matter (OM) distribution was more than subsoil OM distribution. The highest C.V. value of 17.79% was found for topsoil OM. The data were analyzed comparatively according to kriging methods which are also used widely in geostatistic. Several interpolation methods (Ordinary,Simple and Universal) and semivariogram models (Spherical, Exponential and Gaussian) were tested in order to choose the suitable methods. Average standard deviations of values estimated by simple kriging interpolation method were less than average standard deviations (topsoil OM ± 0.48, N ± 0.37, subsoil OM ± 0.18) of measured values. The most suitable interpolation method was simple kriging method and exponantial semivariogram model for topsoil, whereas the best optimal interpolation method was simple kriging method and spherical semivariogram model for subsoil. The results also showed that these computer based geostatistical methods should be tested and calibrated for different experimental conditions and semivariogram models.Keywords: Geostatistic, kriging, organic matter, sugarbeet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578854 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses
Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal
Abstract:
Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.
Keywords: Heavy metals, municipal sewage sludge, sustainable agriculture, soil fertility, quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314853 Ageing Deterioration of Silicone Rubber Polymer Insulator under Salt Water Dip Wheel Test
Authors: J. Grasaesom, S.Thong-om, W. Payakcho, B. Marungsri
Abstract:
This paper presents the experimental results of silicone rubber polymer insulators for 22 kV systems under salt water dip wheel test based on IEC 62217. Straight shed silicone rubber polymer insulators having leakage distance 685 mm were tested continuously 30,000 cycles. One test cycle includes 4 positions, energized, de-energized, salt water dip and deenergized, respectively. For one test cycle, each test specimen remains stationary for about 40 second in each position and takes 8 second for rotate to next position. By visual observation, sever surface erosion was observed on the trunk near the energized end of tested specimen. Puncture was observed on the upper shed near the energized end. In addition, decreasing in hydrophobicity and increasing in hardness were measured on tested specimen comparing with new specimen. Furthermore, chemical analysis by ATR-FTIR was conducted in order to elucidate the chemical change of tested specimens comparing with new specimen.
Keywords: ageing of silicone rubber, salt water dip wheeltest, silicone rubber polymer insulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2660852 Volatile Organochlorine Compounds Emitted by Temperate Coniferous Forests
Authors: Jana Doležalová, Josef Holík, Zdeněk Wimmer, Sándor T. Forczek
Abstract:
Chlorine is one of the most abundant elements in nature, which undergoes a complex biogeochemical cycle. Chlorine bound in some substances is partly responsible for atmospheric ozone depletion and contamination of some ecosystems. As due to international regulations anthropogenic burden of volatile organochlorines (VOCls) in atmosphere decreases, natural sources (plants, soil, abiotic formation) are expected to dominate VOCl production in the near future. Examples of plant VOCl production are methyl chloride, and bromide emission from (sub)tropical ferns, chloroform, 1,1,1-trichloroethane and tetrachloromethane emission from temperate forest fern and moss. Temperate forests are found to emit in addition to the previous compounds tetrachloroethene, and brominated volatile compounds. VOCls can be taken up and further metabolized in plants. The aim of this work is to identify and quantitatively analyze the formed VOCls in temperate forest ecosystems by a cryofocusing/GC-ECD detection method, hence filling a gap of knowledge in the biogeochemical cycle of chlorine.Keywords: chloroform, cryofocusing-GC-ECD, ozonedepletion, volatile organochlorines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432851 Sensitivity Analysis for Determining Priority of Factors Controlling SOC Content in Semiarid Condition of West of Iran
Authors: Y. Parvizi, M. Gorji, M.H. Mahdian, M. Omid
Abstract:
Soil organic carbon (SOC) plays a key role in soil fertility, hydrology, contaminants control and acts as a sink or source of terrestrial carbon content that can affect the concentration of atmospheric CO2. SOC supports the sustainability and quality of ecosystems, especially in semi-arid region. This study was conducted to determine relative importance of 13 different exploratory climatic, soil and geometric factors on the SOC contents in one of the semiarid watershed zones in Iran. Two methods canonical discriminate analysis (CDA) and feed-forward back propagation neural networks were used to predict SOC. Stepwise regression and sensitivity analysis were performed to identify relative importance of exploratory variables. Results from sensitivity analysis showed that 7-2-1 neural networks and 5 inputs in CDA models output have highest predictive ability that explains %70 and %65 of SOC variability. Since neural network models outperformed CDA model, it should be preferred for estimating SOC.Keywords: Soil organic carbon, modeling, neural networks, CDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440850 Culture of Oleaginous Yeasts in Dairy Industry Wastewaters to Obtain Lipids Suitable for the Production of II-Generation Biodiesel
Authors: Domenico Pirozzi, Angelo Ausiello, Gaetano Zuccaro, Filomena Sannino, Abu Yousuf
Abstract:
The oleaginous yeasts Lipomyces starkey were grown in the presence of dairy industry wastewaters (DIW). The yeasts were able to degrade the organic components of DIW and to produce a significant fraction of their biomass as triglycerides. When using DIW from the Ricotta cheese production or residual whey as growth medium, the L. starkey could be cultured without dilution nor external organic supplement. On the contrary, the yeasts could only partially degrade the DIW from the Mozzarella cheese production, due to the accumulation of a metabolic product beyond the threshold of toxicity. In this case, a dilution of the DIW was required to obtain a more efficient degradation of the carbon compounds and an higher yield in oleaginous biomass. The fatty acid distribution of the microbial oils obtained showed a prevalence of oleic acid, and is compatible with the production of a II generation biodiesel offering a good resistance to oxidation as well as an excellent cold-performance.Keywords: Yeasts, Lipids, Biodiesel, Dairy industry wastewaters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085849 Influence of Environment-Friendly Organic Wastes on the Properties of Sandy Soil under Growing Zea mays L. in Arid Regions
Authors: Mohamed Rashad, Mohamed Hafez, Mohamed Emran, Emad Aboukila, Ibrahim Nassar
Abstract:
Environment-friendly organic wastes of Brewers' spent grain, a byproduct of the brewing process, have recently used as soil amendment to improve soil fertility and plant production. In this work, treatments of 1% (T1) and 2% (T2) of spent grains, 1% (C1) and 2% (C2) of compost and mix of both sources (C1T1) were used and compared to the control for growing Zea mays L. on sandy soil under arid Mediterranean climate. Soils were previously incubated at 65% saturation capacity for a month. The most relevant soil physical and chemical parameters were analysed. Water holding capacity and soil organic matter (OM) increased significantly along the treatments with the highest values in T2. Soil pH decreased along the treatments and the lowest pH was in C1T1. Bicarbonate decreased by 69% in C1T1 comparing to control. Total nitrogen (TN) and available P varied significantly among all treatments and T2, C1T1 and C2 treatments increased 25, 17 and 11 folds in TN and 1.2, 0.6 and 0.3 folds in P, respectively related to control. Available K showed the highest values in C1T1. Soil micronutrients increased significantly along all treatments with the highest values in T2. After corn germination, significant variation was observed in the velocity of germination coefficients (VGC) among all treatments in the order of C1T1>T2>T1>C2>C1>control. The highest records of final germination and germination index were in C1T1 and T2. The spent grains may compensate deficiencies of macro and micronutrients in newly reclaimed sandy soils without adverse effects to sustain crop production with a rider that excessive or continuous use need to be circumvented.Keywords: Spent grain, compost, micronutrients, macronutrients, water holding capacity, plant growth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147848 Treatment of Chrome Tannery Wastewater by Biological Process - A Mini Review
Authors: Supriyo Goswami, Debabrata Mazumder
Abstract:
Chrome tannery wastewater causes serious environmental hazard due to its high pollution potential. As a result, rigorous treatment is necessary for abatement of pollution from this type of wastewater. There are many research studies on chrome tannery wastewater treatment in the field of physical, chemical, and biological methods. In general, biological treatment process is found ineffective for direct application because of adverse effects by toxic chromium, sulphide, chloride etc. However, biological methods were employed mainly for a few sub processes generating significant amount of organic matter and without chromium, chlorides etc. In this context the present paper reviews the characteristics feature and pollution potential of wastewater generated from chrome tannery units and treatment of the same. The different biological processes used earlier and their chronological development for treatment of the chrome tannery wastewater are thoroughly reviewed in this paper. In this regard, the scope of hybrid bioreactor - an advanced technology option has also been explored, as this kind of treatment is well suited for the wastewater having inhibitory substances.
Keywords: Composite tannery wastewater, biological treatment, Hybrid bioreactor, Organic removal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4232847 Usage of Military Continuity Management System for Supporting of Emergency Management
Authors: R. Hajkova, J. Palecek, H. Malachova, A. Oulehlova
Abstract:
Ensuring of continuity of business is basic strategy of every company. Continuity of organization activities includes comprehensive procedures that help in solving unexpected situations of natural and anthropogenic character (for example flood, blaze, economic situations). Planning of continuity operations is a process that helps identify critical processes and implement plans for the security and recovery of key processes. The aim of this article is to demonstrate application of system approach to managing business continuity called business continuity management systems in military issues. This article describes the life cycle of business continuity management which is based on the established cycle PDCA (Plan- Do-Check-Act). After this is carried out by activities which are making by University of Defence during activation of forces and means of the integrated rescue system in case of emergencies - accidents at a nuclear power plant in Czech Republic. Activities of various stages of deployment earmarked forces and resources are managed and evaluated by using MCMS application (Military Continuity Management System).Keywords: Business continuity management system, emergency management, military, nuclear safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138