Search results for: high-bond steel rebar
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 762

Search results for: high-bond steel rebar

432 Product-Based Industrial Information Systems (Application to the Steel Industry)

Authors: Daniel F. Garcia, Diego Gonzalez

Abstract:

This paper shows a simple and effective approach to the design and implementation of Industrial Information Systems (IIS) oriented to control the characteristics of each individual product manufactured in a production line and also their manufacturing conditions. The particular products considered in this work are large steel strips that are coiled just after their manufacturing. However, the approach is directly applicable to coiled strips in other industries, like paper, textile, aluminum, etc. These IIS provide very detailed information of each manufactured product, which complement the general information managed by the ERP system of the production line. In spite of the high importance of this type of IIS to guarantee and improve the quality of the products manufactured in many industries, there are very few works about them in the technical literature. For this reason, this paper represents an important contribution to the development of this type of IIS, providing guidelines for their design, implementation and exploitation.

Keywords: Data storage, industrial information systems, measurement systems integration, signal acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
431 Application of Wavelet Neural Networks in Optimization of Skeletal Buildings under Frequency Constraints

Authors: Mohammad Reza Ghasemi, Amin Ghorbani

Abstract:

The main goal of the present work is to decrease the computational burden for optimum design of steel frames with frequency constraints using a new type of neural networks called Wavelet Neural Network. It is contested to train a suitable neural network for frequency approximation work as the analysis program. The combination of wavelet theory and Neural Networks (NN) has lead to the development of wavelet neural networks. Wavelet neural networks are feed-forward networks using wavelet as activation function. Wavelets are mathematical functions within suitable inner parameters, which help them to approximate arbitrary functions. WNN was used to predict the frequency of the structures. In WNN a RAtional function with Second order Poles (RASP) wavelet was used as a transfer function. It is shown that the convergence speed was faster than other neural networks. Also comparisons of WNN with the embedded Artificial Neural Network (ANN) and with approximate techniques and also with analytical solutions are available in the literature.

Keywords: Weight Minimization, Frequency Constraints, Steel Frames, ANN, WNN, RASP Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
430 Neuro-fuzzy Model and Regression Model a Comparison Study of MRR in Electrical Discharge Machining of D2 Tool Steel

Authors: M. K. Pradhan, C. K. Biswas,

Abstract:

In the current research, neuro-fuzzy model and regression model was developed to predict Material Removal Rate in Electrical Discharge Machining process for AISI D2 tool steel with copper electrode. Extensive experiments were conducted with various levels of discharge current, pulse duration and duty cycle. The experimental data are split into two sets, one for training and the other for validation of the model. The training data were used to develop the above models and the test data, which was not used earlier to develop these models were used for validation the models. Subsequently, the models are compared. It was found that the predicted and experimental results were in good agreement and the coefficients of correlation were found to be 0.999 and 0.974 for neuro fuzzy and regression model respectively

Keywords: Electrical discharge machining, material removal rate, neuro-fuzzy model, regression model, mountain clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
429 Titanium-Aluminum Oxide Coating on Aluminized Steel

Authors: Fuyan Sun, Guang Wang, Xueyuan Nie

Abstract:

In this study, a plasma electrolytic oxidation (PEO) process was used to form titanium-aluminum oxide coating on aluminized steel. The present work was mainly to study the effects of treatment time of PEO process on properties of the titanium coating. A potentiodynamic polarization corrosion test was employed to investigate the corrosion resistance of the coating. The friction coefficient and wear resistance of the coating were studied by using pin-on-disc test. The thermal transfer behaviors of uncoated and PEO-coated aluminized steels were also studied. It could be seen that treatment time of PEO process significantly influenced the properties of the titanium oxide coating. Samples with a longer treatment time had a better performance for corrosion and wear protection. This paper demonstrated different treatment time could alter the surface behavior of the coating material.

Keywords: Corrosion, plasma electrolytic oxidation, thermal property, titanium-aluminum oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3583
428 Nonlinear Finite Element Modeling of Unbonded Steel Reinforced Concrete Beams

Authors: Fares Jnaid, Riyad Aboutaha

Abstract:

In this paper, a nonlinear Finite Element Analysis (FEA) was carried out using ANSYS software to build a model able of predicting the behavior of Reinforced Concrete (RC) beams with unbonded reinforcement. The FEA model was compared to existing experimental data by other researchers. The existing experimental data consisted of 16 beams that varied from structurally sound beams to beams with unbonded reinforcement with different unbonded lengths and reinforcement ratios. The model was able to predict the ultimate flexural strength, load-deflection curve, and crack pattern of concrete beams with unbonded reinforcement. It was concluded that when the when the unbonded length is less than 45% of the span, there will be no decrease in the ultimate flexural strength due to the loss of bond between the steel reinforcement and the surrounding concrete regardless of the reinforcement ratio. Moreover, when the reinforcement ratio is relatively low, there will be no decrease in ultimate flexural strength regardless of the length of unbond.

Keywords: FEA, ANSYS, Unbond, Strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3241
427 Analytical Modelling of Average Bond Stress within the Anchorage of Tensile Reinforcing Bars in Reinforced Concrete Members

Authors: Maruful H. Mazumder, Raymond I. Gilbert, Zhen- T. Chang

Abstract:

A reliable estimate of the average bond stress within the anchorage of steel reinforcing bars in tension is critically important for the design of reinforced concrete member. This paper describes part of a recently completed experimental research program in the Centre for Infrastructure Engineering and Safety (CIES) at the University of New South Wales, Sydney, Australia aimed at assessing the effects of different factors on the anchorage requirements of modern high strength steel reinforcing bars. The study found that an increase in the anchorage length and bar diameter generally leads to a reduction of the average ultimate bond stress. By the extension of a well established analytical model of bond and anchorage, it is shown here that the differences in the average ultimate bond stress for different anchorage lengths is associated with the variable degree of plastic deformation in the tensile zone of the concrete surrounding the bar.

Keywords: Anchorage, Bond stress, Development length, Reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3109
426 Fatigue Failure Analysis in AISI 304 Stainless Wind Turbine Shafts

Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho

Abstract:

Wind turbines are equipment of great importance for generating clean energy in countries and regions with abundant winds. However, complex loadings fluctuations to which they are subject can cause premature failure of these equipment due to the material fatigue process. This work evaluates fatigue failures in small AISI 304 stainless steel turbine shafts. Fractographic analysis techniques, chemical analyzes using energy dispersive spectrometry (EDS), and hardness tests were used to verify the origin of the failures, characterize the properties of the components and the material. The nucleation of cracks on the shafts' surface was observed due to a combined effect of variable stresses, geometric stress concentrating details, and surface wear, leading to the crack's propagation until the catastrophic failure. Beach marks were identified in the macrographic examination, characterizing the probable failure due to fatigue. The sensitization phenomenon was also observed.

Keywords: Fatigue, sensitization phenomenon, stainless steel shafts, wind turbine failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
425 Methods for Better Assessment of Fatigue and Deterioration in Bridges and Other Steel or Concrete Constructions

Authors: J. Menčík, B. Culek, Jr., L. Beran, J. Mareš

Abstract:

Large metal and concrete structures suffer by various kinds of deterioration, and accurate prediction of the remaining life is important. This paper informs about two methods for its assessment. One method, suitable for steel bridges and other constructions exposed to fatigue, monitors the loads and damage accumulation using information systems for the operation and the finite element model of the construction. In addition to the operation load, the dead weight of the construction and thermal stresses can be included into the model. The second method is suitable for concrete bridges and other structures, which suffer by carbonatation and other degradation processes, driven by diffusion. The diffusion constant, important for the prediction of future development, can be determined from the depth-profile of pH, obtained by pH measurement at various depths. Comparison with measurements on real objects illustrates the suitability of both methods.

Keywords: Bridges, carbonatation, concrete, diagnostics, fatigue, life prediction, monitoring, railway, simulation, structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
424 Experimental Study on Machinability of Laser- Sintered Material in Ball End Milling

Authors: Abdullah Yassin, Takashi Ueda, Syed Tarmizi Syed Shazali

Abstract:

This paper presents an experimental investigation on the machinability of laser-sintered material using small ball end mill focusing on wear mechanisms. Laser-sintered material was produced by irradiating a laser beam on a layer of loose fine SCM-Ni-Cu powder. Bulk carbon steel JIS S55C was selected as a reference steel. The effects of powder consolidation mechanisms and unsintered powder on the tool life and wear mechanisms were carried out. Results indicated that tool life in cutting laser-sintered material is lower than that in cutting JIS S55C. Adhesion of the work material and chipping were the main wear mechanisms of the ball end mill in cutting laser-sintered material. Cutting with the unsintered powder surrounding the tool and laser-sintered material had caused major fracture on the cutting edge.

Keywords: Laser-sintered material, tool life, wear mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
423 Reliability of Slender Reinforced Concrete Columns: Part 1

Authors: Metwally Abdel Aziz Ahmed, Ahmed Shaban Abdel Hay Gabr, Inas Mohamed Saleh

Abstract:

The main objective of structural design is to ensure safety and functional performance requirements of a structural system for its target reliability levels. In this study, the reliability index for the reinforcement concrete slender columns with rectangular cross section is studied. The variable parameters studied include the loads, the concrete compressive strength, the steel yield strength, the dimensions of concrete cross-section, the reinforcement ratio, and the location of steel placement. Risk analysis program was used to perform the analytical study. The effect of load eccentricity on the reliability index of reinforced concrete slender column was studied and presented. The results of this study indicate that the good quality control improve the performance of slender reinforced columns through increasing the reliability index β.

Keywords: Reliability, reinforced concrete, safety, slender column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
422 Performance Evaluation of Powder Metallurgy Electrode in Electrical Discharge Machining of AISI D2 Steel Using Taguchi Method

Authors: Naveen Beri, S. Maheshwari, C. Sharma, Anil Kumar

Abstract:

In this paper an attempt has been made to correlate the usefulness of electrodes made through powder metallurgy (PM) in comparison with conventional copper electrode during electric discharge machining. Experimental results are presented on electric discharge machining of AISI D2 steel in kerosene with copper tungsten (30% Cu and 70% W) tool electrode made through powder metallurgy (PM) technique and Cu electrode. An L18 (21 37) orthogonal array of Taguchi methodology was used to identify the effect of process input factors (viz. current, duty cycle and flushing pressure) on the output factors {viz. material removal rate (MRR) and surface roughness (SR)}. It was found that CuW electrode (made through PM) gives high surface finish where as the Cu electrode is better for higher material removal rate.

Keywords: Electrical discharge machining (EDM), Powder Metallurgy (PM), Taguchi method, Material Removal Rate (MRR), Surface Roughness (SR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4318
421 Finite Element Approach to Evaluate Time Dependent Shear Behavior of Connections in Hybrid Steel-PC Girder under Sustained Loading

Authors: Mohammad Najmol Haque, Takeshi Maki, Jun Sasaki

Abstract:

Headed stud shear connections are widely used in the junction or embedded zone of hybrid girder to achieve whole composite action with continuity that can sustain steel-concrete interfacial tensile and shear forces. In Japan, Japan Road Association (JRA) specifications are used for hybrid girder design that utilizes very low level of stud capacity than those of American Institute of Steel Construction (AISC) specifications, Japan Society of Civil Engineers (JSCE) specifications and EURO code. As low design shear strength is considered in design of connections, the time dependent shear behavior due to sustained external loading is not considered, even not fully studied. In this study, a finite element approach was used to evaluate the time dependent shear behavior for headed studs used as connections at the junction. This study clarified, how the sustained loading distinctively impacted on changing the interfacial shear of connections with time which was sensitive to lodging history, positions of flanges, neighboring studs, position of prestress bar and reinforcing bar, concrete strength, etc. and also identified a shear influence area. Stud strength was also confirmed through pushout tests. The outcome obtained from the study may provide an important basis and reference data in designing connections of hybrid girders with enhanced stud capacity with due consideration of their long-term shear behavior.

Keywords: Finite element approach, hybrid girder, headed stud shear connections, sustained loading, time dependent shear behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
420 Performance of BRBF System and Comparing it with the OCBF

Authors: E.Talebi, F.Zahmatkesh

Abstract:

Buckling-Restrained Braced Frame system(BRBFs) are a new type of steel seismic-load-resisting system that has found use in several countries because of its efficiency and its promise of seismic performance far superior to that of conventional braced frames. The system is addressed in the 2005 edition of the AISC Seismic Provisions for Structural Steel Buildings, also a set of design provisions has been developed by NEHRP. This report illustrates the seismic design of buckling restrained braced frames and compares the result of design in the application of earthquake load for ordinary bracing systems and buckling restrained bracing systems to see the advantage and disadvantages of this new type of seismic resisting system in comparison with the old Ordinary Concentric Braced Frame systems (OCBFs); they are defined by the provisions governing their design.

Keywords: Buckling Restrained Braced Frame system (BRBFs), Ordinary Concentric Braced Frame systems (OCBFs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2963
419 Seismic Vulnerability of Structures Designed in Accordance with the Allowable Stress Design and Load Resistant Factor Design Methods

Authors: Mohammadreza Vafaei, Amirali Moradi, Sophia C. Alih

Abstract:

The method selected for the design of structures not only can affect their seismic vulnerability but also can affect their construction cost. For the design of steel structures, two distinct methods have been introduced by existing codes, namely allowable stress design (ASD) and load resistant factor design (LRFD). This study investigates the effect of using the aforementioned design methods on the seismic vulnerability and construction cost of steel structures. Specifically, a 20-story building equipped with special moment resisting frame and an eccentrically braced system was selected for this study. The building was designed for three different intensities of peak ground acceleration including 0.2 g, 0.25 g, and 0.3 g using the ASD and LRFD methods. The required sizes of beams, columns, and braces were obtained using response spectrum analysis. Then, the designed frames were subjected to nine natural earthquake records which were scaled to the designed response spectrum. For each frame, the base shear, story shears, and inter-story drifts were calculated and then were compared. Results indicated that the LRFD method led to a more economical design for the frames. In addition, the LRFD method resulted in lower base shears and larger inter-story drifts when compared with the ASD method. It was concluded that the application of the LRFD method not only reduced the weights of structural elements but also provided a higher safety margin against seismic actions when compared with the ASD method.

Keywords: Allowable stress design, load resistant factor design, nonlinear time history analysis, seismic vulnerability, steel structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1111
418 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading

Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui

Abstract:

Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.

Keywords: Blast loading, finite element modeling, steel honeycomb sandwich panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
417 A Comparison of Double Sided Friction Stir Welding in Air and Underwater for 6mm S275 Steel Plate

Authors: Philip Baillie, Stuart W. Campbell, Alexander M. Galloway, Stephen R. Cater, Norman A. McPherson

Abstract:

This study compared the mechanical and microstructural properties produced during friction stir welding (FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to a lower degree of recrystallization caused by the higher rate of heat loss experienced when welding underwater. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air.

Keywords: Charpy impact toughness, distortion, fatigue, friction stir welding (FSW), micro-hardness, underwater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735
416 Closely Parametrical Model for an Electrical Arc Furnace

Authors: Labar Hocine, Dgeghader Yacine, Kelaiaia Mounia Samira, Bounaya Kamel

Abstract:

To maximise furnace production it-s necessary to optimise furnace control, with the objectives of achieving maximum power input into the melting process, minimum network distortion and power-off time, without compromise on quality and safety. This can be achieved with on the one hand by an appropriate electrode control and on the other hand by a minimum of AC transformer switching. Electrical arc is a stochastic process; witch is the principal cause of power quality problems, including voltages dips, harmonic distortion, unbalance loads and flicker. So it is difficult to make an appropriate model for an Electrical Arc Furnace (EAF). The factors that effect EAF operation are the melting or refining materials, melting stage, electrode position (arc length), electrode arm control and short circuit power of the feeder. So arc voltages, current and power are defined as a nonlinear function of the arc length. In this article we propose our own empirical function of the EAF and model, for the mean stages of the melting process, thanks to the measurements in the steel factory.

Keywords: Modelling, electrical arc, melting, power, EAF, steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3248
415 Investigation of Electromagnetic Force in 3P5W Busbar System under Peak Short-Circuit Current

Authors: Farhana Mohamad Yusop, Syafrudin Masri, Dahaman Ishak, Mohamad Kamarol

Abstract:

Electromagnetic forces on three-phase five-wire (3P5W) busbar system is investigated under three-phase short-circuits current. The conductor busbar placed in compact galvanized steel enclosure is in the rectangular shape. Transient analysis from Opera-2D is carried out to develop the model of three-phase short-circuits current in the system. The result of the simulation is compared with the calculation result, which is obtained by applying the theories of Biot Savart’s law and Laplace equation. Under this analytical approach, the moment of peak short-circuit current is taken into account. The effect upon geometrical arrangement of the conductor and the present of the steel enclosure are considered by the theory of image. The result depict that the electromagnetic force due to the transient short-circuit from simulation is agreed with the calculation.

Keywords: Busbar, electromagnetic force, short-circuit current, transient analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3997
414 Probabilistic Characteristics of older PR Frames in the Mid-America Earthquake Region

Authors: Do-Hwan Kim, Roberto Leon

Abstract:

Probabilistic characteristics of seismic responses of the Partially Restrained connection rotation (PRCR) and panel zone deformation (PZD) installed in older steel moment frames were investigated in accordance with statistical inference in decision-making process. The 4, 6 and 8 story older steel moment frames with clip angle and T-stub connections were designed and analyzed using 2%/50yrs ground motions in four cities of the Mid-America earthquake region. The probability density function and cumulative distribution function of PRCR and PZD were determined by the goodness-of-fit tests based on probabilistic parameters measured from the results of the nonlinear time-history analyses. The obtained probabilistic parameters and distributions can be used to find out what performance level mainly PR connections and panel zones satisfy and how many PR connections and panel zones experience a serious damage under the Mid-America ground motions.

Keywords: Mid-America earthquake, Panel zone, PR connection, Probabilistic characteristics, seismic performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
413 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads

Authors: Salah R. Al Zaidee, Ali S. Mahdi

Abstract:

Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.

Keywords: Meta-modal, objective function, steel frames, seismic analysis, design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
412 Influence of Raw Material Composition on Microstructure and Mechanical Properties of Nodular Cast Iron

Authors: Alan Vaško, Juraj Belan, Lenka Hurtalová, Eva Tillová

Abstract:

The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and microfractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by different ratio of pig iron and steel scrap and by different additive for regulation of chemical composition (silicon carbide or ferrosilicon). The results show differences in mechanical and fatigue properties, which are connected with the microstructure. SiC additive positively influences microstructure. Consequently, mechanical and fatigue properties of nodular cast iron are improved, especially in the melts with higher ratio of steel scrap in the charge.

Keywords: Nodular cast iron, silicon carbide, microstructure, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
411 Crack Opening Investigation in Fiberconcrete

Authors: Arturs Macanovskis, Vitalijs Lusis, Andrejs Krasnikovs

Abstract:

This work had three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. On the obtained forcedisplacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiberconcrete prisms (with dimensions 10x10x40cm) subjected to 4-point bending. After testing was analyzed main crack. At the third stage elaborated prediction model for the fiberconcrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack. Experimental and theoretical (modeling) data were compared.

Keywords: Fiberconcrete, pull-out, fiber channel, layered fiberconcrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
410 Influence of Initial Surface Roughness on Severe Wear Volume for SUS304 Austenitic Stainless Steels

Authors: A. Kawamura, K. Ishida, K. Okada, T. Sato

Abstract:

Simultaneous measurements of the curves for wear versus distance, wear rate versus distance, and coefficient of friction versus distance were performed in situ to distinguish the transition from severe running-in wear to mild wear. The effects of the initial surface roughness on the severe running-in wear volume were investigated. Disk-on-plate friction and wear tests were carried out with SUS304 austenitic stainless steel in contact with itself under repeated dry sliding conditions at room temperature. The wear volume was dependent on the initial surface roughness. The wear volume when the initial surfaces on the plate and disk had dissimilar roughness was lower than that when these surfaces had similar roughness. For the dissimilar roughness, the wear volume decreased with decreasing initial surface roughness and reached a minimum; it stayed nearly constant as the roughness was less than the mean size of the oxide particles.

Keywords: Austenitic stainless steel, initial surface roughness, running-in, severe wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
409 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads

Authors: Behzad Mohammadzadeh, Huyk Chun Noh

Abstract:

Plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 1mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.

Keywords: Impulsive loaded plates, dynamic analysis, abaqus, material nonlinearity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
408 The Effect of the Tool Geometry and Cutting Conditions on the Tool Deflection and Cutting Forces

Authors: A. Fata, B. Nikuei

Abstract:

In this paper by measuring the cutting forces the effect of the tool shape and qualifications (sharp and worn cutting tools of both vee and knife edge profile) and cutting conditions (depth of cut and cutting speed) in the turning operation on the tool deflection and cutting force is investigated. The workpiece material was mild steel and the cutting tool was made of high speed steel. Cutting forces were measured by a dynamometer (type P.E.I. serial No 154). The dynamometer essentially consisted of a cantilever structure which held the cutting tool. Deflection of the cantilever was measured by an L.V.D.T (Mercer 122) deflection indicator. No cutting fluid was used during the turning operations. A modern CNC lathe machine (Okuma LH35-N) was used for the tests. It was noted that worn vee profile tools tended to produce a greater increase in the vertical force component than the axial component, whereas knife tools tended to show a more pronounced increase in the axial component.

Keywords: Cutting force, Tool deflection, Turning, Cuttingconditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3352
407 Hot Deformability of Si-Steel Strips Containing Al

Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar

Abstract:

The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a  was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.

Keywords: Si-steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
406 Correlation between Heat Treatment, Microstructure and Properties of Trip-Assisted Steels

Authors: A. Talapatra, N. R. Bandhyopadhyay, J. Datta

Abstract:

In the present study, two TRIP-assisted steels were designated as A (having no Cr and Cu content) and B (having higher Ni, Cr and Cu content) heat treated under different conditions, and the correlation between its heat treatment, microstructure and properties were investigated. Micro structural examination was carried out by optical microscope and scanning electron microscope after electrolytic etching. Non-destructive electrochemical and ultrasonic testing on two TRIP-assisted steels was used to find out corrosion and mechanical properties of different alter microstructure phase’s steels. Furthermore, micro structural studies accompanied by the evaluation of mechanical properties revealed that steels having martensite phases with higher corrosive and hardness value were less sound velocity and also steel’s microstructure having finer grains that was more grain boundary was less corrosion resistance. Steel containing more Cu, Ni and Cr was less corrosive compared to other steels having same processing or microstructure.

Keywords: TRIP-assisted steels, heat treatment, corrosion, electrochemical techniques, micro-structural characterization, non-destructive (ultrasonic) technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3017
405 Envelope Echo Signal of Metal Sphere in the Fresh Water

Authors: A. Mahfurdz, Sunardi, H. Ahmad

Abstract:

An envelope echo signal measurement is proposed in this paper using echo signal observation from the 200 kHz echo sounder receiver. The envelope signal without any object is compared with the envelope signal of the sphere. Two diameter size steel ball (3.1 cm & 2.2 cm) and two diameter size air filled stainless steel ball (4.8 cm & 7.4 cm) used in this experiment. The target was positioned about 0.5 m and 1.0 meter from the transducer face using nylon rope. From the echo observation in time domain, it is obviously shown that echo signal structure is different between the size, distance and type of metal sphere. The amplitude envelope voltage for the bigger sphere is higher compare to the small sphere and it confirm that the bigger sphere have higher target strength compare to the small sphere. Although the structure signal without any object are different compare to the signal from the sphere, the reflected signal from the tank floor increase linearly with the sphere size. We considered this event happened because of the object position approximately to the tank floor.

Keywords: echo sounder, target strength, sphere, echo signal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
404 Studying Frame-Resistant Steel Structures under Near Field Ground Motion

Authors: S. A. Hashemi, A. Khoshraftar

Abstract:

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectlyplastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.

Keywords: Inelastic behavior, non-linear dynamic analysis, steel structure, vertical component.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
403 Simulation of Kinetic Friction in L-Bending of Sheet Metals

Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang

Abstract:

This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.

Keywords: Friction, L-bending, Springback, Stribeck curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400