Search results for: forming error compensation
1331 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator
Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira
Abstract:
True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).Keywords: Distillation curve, petroleum distillation, simulation, true boiling point curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261330 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings
Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies
Abstract:
Average temperatures worldwide are expected to continue to rise. At the same time, major cities in developing countries are becoming increasingly populated and polluted. Governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of a model, which is able to estimate the occupant exposure to extreme temperatures and high air pollution within domestic buildings. Building physics simulations were performed using the EnergyPlus building physics software. An accurate metamodel is then formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) have been compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.Keywords: Neural Networks, Radial Basis Functions, Metamodelling, Python machine learning libraries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21221329 Performance Comparison of Real Time EDAC Systems for Applications On-Board Small Satellites
Authors: Y. Bentoutou
Abstract:
On-board Error Detection and Correction (EDAC) devices aim to secure data transmitted between the central processing unit (CPU) of a satellite onboard computer and its local memory. This paper presents a comparison of the performance of four low complexity EDAC techniques for application in Random Access Memories (RAMs) on-board small satellites. The performance of a newly proposed EDAC architecture is measured and compared with three different EDAC strategies, using the same FPGA technology. A statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in commercial memories onboard Alsat-1 is given for a period of 8 yearsKeywords: Error Detection and Correction; On-board computer; small satellite missions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22651328 Joint Design of MIMO Relay Networks Based on MMSE Criterion
Authors: Seungwon Choi, Seungri Jin, Ayoung Heo, Jung-Hyun Park, Dong-Jo Park
Abstract:
This paper deals with wireless relay communication systems in which multiple sources transmit information to the destination node by the help of multiple relays. We consider a signal forwarding technique based on the minimum mean-square error (MMSE) approach with multiple antennas for each relay. A source-relay-destination joint design strategy is proposed with power constraints at the destination and the source nodes. Simulation results confirm that the proposed joint design method improves the average MSE performance compared with that of conventional MMSE relaying schemes.Keywords: minimum mean squre error (MMSE), multiple relay, MIMO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17191327 Integrating Blogging into Peer Assessment on College Students’ English Writing
Authors: Su-Lien Liao
Abstract:
Most of college students in Taiwan do not have sufficient English proficiency to express themselves in written English. Teachers spent a lot of time correcting the errors in students’ English writing, but the results are not satisfactory. This study aims to use blogs as a teaching and learning tool in written English. Before applying peer assessment, students should be trained to be good reviewers. The teacher starts the course by posting the error analysis of students’ first English composition on blogs as the comment models for students. Then the students will go through the process of drafting, composing, peer response and last revision on blogs. Evaluation questionnaires and interviews will be conducted at the end of the course to see the impact and also students’ perception for the course.
Keywords: Blog, Peer assessment, English writing, Error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19411326 A New Image Psychovisual Coding Quality Measurement based Region of Interest
Authors: M. Nahid, A. Bajit, A. Tamtaoui, E. H. Bouyakhf
Abstract:
To model the human visual system (HVS) in the region of interest, we propose a new objective metric evaluation adapted to wavelet foveation-based image compression quality measurement, which exploits a foveation setup filter implementation technique in the DWT domain, based especially on the point and region of fixation of the human eye. This model is then used to predict the visible divergences between an original and compressed image with respect to this region field and yields an adapted and local measure error by removing all peripheral errors. The technique, which we call foveation wavelet visible difference prediction (FWVDP), is demonstrated on a number of noisy images all of which have the same local peak signal to noise ratio (PSNR), but visibly different errors. We show that the FWVDP reliably predicts the fixation areas of interest where error is masked, due to high image contrast, and the areas where the error is visible, due to low image contrast. The paper also suggests ways in which the FWVDP can be used to determine a visually optimal quantization strategy for foveation-based wavelet coefficients and to produce a quantitative local measure of image quality.
Keywords: Human Visual System, Image Quality, ImageCompression, foveation wavelet, region of interest ROI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15011325 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an Artificial Neural Network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study include granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R2), Root Mean Square Error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.
Keywords: National development, granite, profitability assessment, ANN models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931324 Stochastic Resonance in Nonlinear Signal Detection
Authors: Youguo Wang, Lenan Wu
Abstract:
Stochastic resonance (SR) is a phenomenon whereby the signal transmission or signal processing through certain nonlinear systems can be improved by adding noise. This paper discusses SR in nonlinear signal detection by a simple test statistic, which can be computed from multiple noisy data in a binary decision problem based on a maximum a posteriori probability criterion. The performance of detection is assessed by the probability of detection error Per . When the input signal is subthreshold signal, we establish that benefit from noise can be gained for different noises and confirm further that the subthreshold SR exists in nonlinear signal detection. The efficacy of SR is significantly improved and the minimum of Per can dramatically approach to zero as the sample number increases. These results show the robustness of SR in signal detection and extend the applicability of SR in signal processing.Keywords: Probability of detection error, signal detection, stochastic resonance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15361323 High-Power Amplifier Pre-distorter Based on Neural Networks for 5G Satellite Communications
Authors: Abdelhamid Louliej, Younes Jabrane
Abstract:
Satellites are becoming indispensable assets to fifth-generation (5G) new radio architecture, complementing wireless and terrestrial communication links. The combination of satellites and 5G architecture allows consumers to access all next-generation services anytime, anywhere, including scenarios, like traveling to remote areas (without coverage). Nevertheless, this solution faces several challenges, such as a significant propagation delay, Doppler frequency shift, and high Peak-to-Average Power Ratio (PAPR), causing signal distortion due to the non-linear saturation of the High-Power Amplifier (HPA). To compensate for HPA non-linearity in 5G satellite transmission, an efficient pre-distorter scheme using Neural Networks (NN) is proposed. To assess the proposed NN pre-distorter, two types of HPA were investigated: Travelling Wave Tube Amplifier (TWTA) and Solid-State Power Amplifier (SSPA). The results show that the NN pre-distorter design presents an Error Vector Magnitude (EVM) improvement by 95.26%. Normalized Mean Square Error (NMSE) and Adjacent Channel Power Ratio (ACPR) were reduced by -43,66 dB and 24.56 dBm, respectively. Moreover, the system suffers no degradation of the Bit Error Rate (BER) for TWTA and SSPA amplifiers.
Keywords: Satellites, 5G, Neural Networks, High-Power Amplifier, Travelling Wave Tube Amplifier, Solid-State Power Amplifier, EVM, NMSE, ACPR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171322 Automatic Generation Control of an Interconnected Power System with Capacitive Energy Storage
Authors: Rajesh Joseph Abraham, D. Das, Amit Patra
Abstract:
This paper is concerned with the application of small rating Capacitive Energy Storage units for the improvement of Automatic Generation Control of a multiunit multiarea power system. Generation Rate Constraints are also considered in the investigations. Integral Squared Error technique is used to obtain the optimal integral gain settings by minimizing a quadratic performance index. Simulation studies reveal that with CES units, the deviations in area frequencies and inter-area tie-power are considerably improved in terms of peak deviations and settling time as compared to that obtained without CES units.Keywords: Automatic Generation Control, Capacitive EnergyStorage, Integral Squared Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28001321 Determination of Cd, Zn, K, pH, TNV, Organic Material and Electrical Conductivity (EC) Distribution in Agricultural Soils using Geostatistics and GIS (Case Study: South- Western of Natanz- Iran)
Authors: Abbas Hani, Seyed Ali Hoseini Abari
Abstract:
Soil chemical and physical properties have important roles in compartment of the environment and agricultural sustainability and human health. The objectives of this research is determination of spatial distribution patterns of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) in agricultural soils of Natanz region in Esfehan province. In this study geostatistic and non-geostatistic methods were used for prediction of spatial distribution of these parameters. 64 composite soils samples were taken at 0-20 cm depth. The study area is located in south of NATANZ agricultural lands with area of 21660 hectares. Spatial distribution of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) was determined using geostatistic and geographic information system. Results showed that Cd, pH, TNV and K data has normal distribution and Zn, OC and EC data had not normal distribution. Kriging, Inverse Distance Weighting (IDW), Local Polynomial Interpolation (LPI) and Redial Basis functions (RBF) methods were used to interpolation. Trend analysis showed that organic carbon in north-south and east to west did not have trend while K and TNV had second degree trend. We used some error measurements include, mean absolute error(MAE), mean squared error (MSE) and mean biased error(MBE). Ordinary kriging(exponential model), LPI(Local polynomial interpolation), RBF(radial basis functions) and IDW methods have been chosen as the best methods to interpolating of the soil parameters. Prediction maps by disjunctive kriging was shown that in whole study area was intensive shortage of organic matter and more than 63.4 percent of study area had shortage of K amount.Keywords: Electrical conductivity, Geostatistics, Geographical Information System, TNV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27051320 An Adaptive Least-squares Mixed Finite Element Method for Pseudo-parabolic Integro-differential Equations
Authors: Zilong Feng, Hong Li, Yang Liu, Siriguleng He
Abstract:
In this article, an adaptive least-squares mixed finite element method is studied for pseudo-parabolic integro-differential equations. The solutions of least-squares mixed weak formulation and mixed finite element are proved. A posteriori error estimator is constructed based on the least-squares functional and the posteriori errors are obtained.
Keywords: Pseudo-parabolic integro-differential equation, least squares mixed finite element method, adaptive method, a posteriori error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13211319 Equilibrium, Kinetic and Thermodynamic Studies on Biosorption of Cd (II) and Pb (II) from Aqueous Solution Using a Spore Forming Bacillus Isolated from Wastewater of a Leather Factory
Authors: Sh. Kianfar, A. Moheb, H. Ghaforian
Abstract:
The equilibrium, thermodynamics and kinetics of the biosorption of Cd (II) and Pb(II) by a Spore Forming Bacillus (MGL 75) were investigated at different experimental conditions. The Langmuir and Freundlich, and Dubinin-Radushkevich (D-R) equilibrium adsorption models were applied to describe the biosorption of the metal ions by MGL 75 biomass. The Langmuir model fitted the equilibrium data better than the other models. Maximum adsorption capacities q max for lead (II) and cadmium (II) were found equal to 158.73mg/g and 91.74 mg/g by Langmuir model. The values of the mean free energy determined with the D-R equation showed that adsorption process is a physiosorption process. The thermodynamic parameters Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) changes were also calculated, and the values indicated that the biosorption process was exothermic and spontaneous. Experiment data were also used to study biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients were calculated and discussed. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.Keywords: biosorption, kinetics, Metal ion removal, thermodynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20591318 Improvement of Parallel Compressor Model in Dealing Outlet Unequal Pressure Distribution
Authors: Kewei Xu, Jens Friedrich, Kevin Dwinger, Wei Fan, Xijin Zhang
Abstract:
Parallel Compressor Model (PCM) is a simplified approach to predict compressor performance with inlet distortions. In PCM calculation, it is assumed that the sub-compressors’ outlet static pressure is uniform and therefore simplifies PCM calculation procedure. However, if the compressor’s outlet duct is not long and straight, such assumption frequently induces error ranging from 10% to 15%. This paper provides a revised calculation method of PCM that can correct the error. The revised method employs energy equation, momentum equation and continuity equation to acquire needed parameters and replace the equal static pressure assumption. Based on the revised method, PCM is applied on two compression system with different blades types. The predictions of their performance in non-uniform inlet conditions are yielded through the revised calculation method and are employed to evaluate the method’s efficiency. Validating the results by experimental data, it is found that although little deviation occurs, calculated result agrees well with experiment data whose error ranges from 0.1% to 3%. Therefore, this proves the revised calculation method of PCM possesses great advantages in predicting the performance of the distorted compressor with limited exhaust duct.Keywords: Parallel Compressor Model (PCM), Revised Calculation Method, Inlet Distortion, Outlet Unequal Pressure Distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16891317 Comparison between Separable and Irreducible Goppa Code in McEliece Cryptosystem
Authors: Thuraya M. Qaradaghi, Newroz N. Abdulrazaq
Abstract:
The McEliece cryptosystem is an asymmetric type of cryptography based on error correction code. The classical McEliece used irreducible binary Goppa code which considered unbreakable until now especially with parameter [1024, 524, and 101], but it is suffering from large public key matrix which leads to be difficult to be used practically. In this work Irreducible and Separable Goppa codes have been introduced. The Irreducible and Separable Goppa codes used are with flexible parameters and dynamic error vectors. A Comparison between Separable and Irreducible Goppa code in McEliece Cryptosystem has been done. For encryption stage, to get better result for comparison, two types of testing have been chosen; in the first one the random message is constant while the parameters of Goppa code have been changed. But for the second test, the parameters of Goppa code are constant (m=8 and t=10) while the random message have been changed. The results show that the time needed to calculate parity check matrix in separable are higher than the one for irreducible McEliece cryptosystem, which is considered expected results due to calculate extra parity check matrix in decryption process for g2(z) in separable type, and the time needed to execute error locator in decryption stage in separable type is better than the time needed to calculate it in irreducible type. The proposed implementation has been done by Visual studio C#.Keywords: McEliece cryptosystem, Goppa code, separable, irreducible.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22151316 Exploring the Relationships between Job Satisfaction, Work Engagement and Loyalty of Academic Staff
Authors: I. Ludviga, A. Kalvina
Abstract:
This paper aims to link together the concepts of job satisfaction, work engagement, trust, job meaningfulness and loyalty to the organisation focusing on specific type of employment – academic jobs. The research investigates the relationships between job satisfaction, work engagement and loyalty as well as the impact of trust and job meaningfulness on the work engagement and loyalty. The survey was conducted in one of the largest Latvian higher education institutions and the sample was drawn from academic staff (n=326). Structured questionnaire with 44 reflective type questions was developed to measure the constructs. Data was analysed using SPSS and Smart-PLS software. Variance based structural equation modelling (PLS-SEM) technique was used to test the model and to predict the most important factors relevant to employee engagement and loyalty. The first order model included two endogenous constructs (loyalty and intention to stay and recommend to work in this organisation, and employee engagement), as well as six exogenous constructs (feeling of fair treatment and trust in management; career growth opportunities; compensation, pay and benefits; management; colleagues and teamwork; and finally job meaningfulness). Job satisfaction was developed as second order construct and both: first and second order models were designed for data analysis. It was found that academics are more engaged than satisfied with their work and main reason for that was found to be job meaningfulness, which is significant predictor for work engagement, but not for job satisfaction. Compensation is not significantly related to work engagement, but only to job satisfaction. Trust was not significantly related neither to engagement, nor to satisfaction, however, it appeared to be significant predictor of loyalty and intentions to stay with the University. Paper revealed academic jobs as specific kind of employment where employees can be more engaged than satisfied and highlighted the specific role of job meaningfulness in the University settings.
Keywords: Job satisfaction, job meaningfulness, higher education, work engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29261315 Corruption, Economic Growth, and Income Inequality: Evidence from Ten Countries in Asia
Authors: Chiung-Ju Huang
Abstract:
This study utilizes the panel vector error correction model (PVECM) to examine the relationship among corruption, economic growth, and income inequality experienced within ten Asian countries over the 1995 to 2010 period. According to the empirical results, we do not support the common perception that corruption decreases economic growth. On the contrary, we found that corruption increases economic growth. Meanwhile, an increase in economic growth will cause an increase in income inequality, although the effect is insignificant. Similarly, an increase in income inequality will cause an increase in economic growth but a decrease in corruption, although the effect is also insignificant.Keywords: Corruption, economic growth, income inequality, panel vector error correction model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33691314 Heat Stress Monitor by Using Low-Cost Temperature and Humidity Sensors
Authors: Kiattisak Batsungnoen, Thanatchai Kulworawanichpong
Abstract:
The aim of this study is to develop a cost-effective WBGT heat stress monitor which provides precise heat stress measurement. The proposed device employs SHT15 and DS18B20 as a temperature and humidity sensors, respectively, incorporating with ATmega328 microcontroller. The developed heat stress monitor was calibrated and adjusted to that of the standard temperature and humidity sensors in the laboratory. The results of this study illustrated that the mean percentage error and the standard deviation from the measurement of the globe temperature was 2.33 and 2.71 respectively, while 0.94 and 1.02 were those of the dry bulb temperature, 0.79 and 0.48 were of the wet bulb temperature, and 4.46 and 1.60 were of the relative humidity sensor. This device is relatively low-cost and the measurement error is acceptable.
Keywords: Heat stress monitor, WBGT, Temperature and Humidity Sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25091313 Selection of Rayleigh Damping Coefficients for Seismic Response Analysis of Soil Layers
Authors: Huai-Feng Wang, Meng-Lin Lou, Ru-Lin Zhang
Abstract:
One good analysis method in seismic response analysis is direct time integration, which widely adopts Rayleigh damping. An approach is presented for selection of Rayleigh damping coefficients to be used in seismic analyses to produce a response that is consistent with Modal damping response. In the presented approach, the expression of the error of peak response, acquired through complete quadratic combination method, and Rayleigh damping coefficients was set up and then the coefficients were produced by minimizing the error. Two finite element modes of soil layers, excited by 28 seismic waves, were used to demonstrate the feasibility and validity.Keywords: Rayleigh damping, modal damping, damping coefficients, seismic response analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29211312 Predicting Oil Content of Fresh Palm Fruit Using Transmission-Mode Ultrasonic Technique
Authors: Sutthawee Suwannarat, Thanate Khaorapapong, Mitchai Chongcheawchamnan
Abstract:
In this paper, an ultrasonic technique is proposed to predict oil content in a fresh palm fruit. This is accomplished by measuring the attenuation based on ultrasonic transmission mode. Several palm fruit samples with known oil content by Soxhlet extraction (ISO9001:2008) were tested with our ultrasonic measurement. Amplitude attenuation data results for all palm samples were collected. The Feedforward Neural Networks (FNNs) are applied to predict the oil content for the samples. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of the FNN model for predicting oil content percentage are 7.6186 and 5.2287 with the correlation coefficient (R) of 0.9193.Keywords: Non-destructive, ultrasonic testing, oil content, fresh palm fruit, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18101311 A C1-Conforming Finite Element Method for Nonlinear Fourth-Order Hyperbolic Equation
Authors: Yang Liu, Hong Li, Siriguleng He, Wei Gao, Zhichao Fang
Abstract:
In this paper, the C1-conforming finite element method is analyzed for a class of nonlinear fourth-order hyperbolic partial differential equation. Some a priori bounds are derived using Lyapunov functional, and existence, uniqueness and regularity for the weak solutions are proved. Optimal error estimates are derived for both semidiscrete and fully discrete schemes.
Keywords: Nonlinear fourth-order hyperbolic equation, Lyapunov functional, existence, uniqueness and regularity, conforming finite element method, optimal error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18971310 Fast Document Segmentation Using Contourand X-Y Cut Technique
Authors: Boontee Kruatrachue, Narongchai Moongfangklang, Kritawan Siriboon
Abstract:
This paper describes fast and efficient method for page segmentation of document containing nonrectangular block. The segmentation is based on edge following algorithm using small window of 16 by 32 pixels. This segmentation is very fast since only border pixels of paragraph are used without scanning the whole page. Still, the segmentation may contain error if the space between them is smaller than the window used in edge following. Consequently, this paper reduce this error by first identify the missed segmentation point using direction information in edge following then, using X-Y cut at the missed segmentation point to separate the connected columns. The advantage of the proposed method is the fast identification of missed segmentation point. This methodology is faster with fewer overheads than other algorithms that need to access much more pixel of a document.
Keywords: Contour Direction Technique, Missed SegmentationPoints, Page Segmentation, Recursive X-Y Cut Technique
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27871309 Effects of Canned Cycles and Cutting Parameters on Hole Quality in Cryogenic Drilling of Aluminum 6061-6T
Authors: M. N. Islam, B. Boswell, Y. R. Ginting
Abstract:
The influence of canned cycles and cutting parameters on hole quality in cryogenic drilling has been investigated experimentally and analytically. A three-level, three-parameter experiment was conducted by using the design-of-experiment methodology. The three levels of independent input parameters were the following: for canned cycles—a chip-breaking canned cycle (G73), a spot drilling canned cycle (G81), and a deep hole canned cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting speeds—60, 75, and 100 m/min. The selected work and tool materials were aluminum 6061-6T and high-speed steel (HSS), respectively. For cryogenic cooling, liquid nitrogen (LN2) was used and was applied externally. The measured output parameters were the three widely used quality characteristics of drilled holes—diameter error, circularity, and surface roughness. Pareto ANOVA was applied for analyzing the results. The findings revealed that the canned cycle has a significant effect on diameter error (contribution ratio 44.09%) and small effects on circularity and surface finish (contribution ratio 7.25% and 6.60%, respectively). The best results for the dimensional accuracy and surface roughness were achieved by G81. G73 produced the best circularity results; however, for dimensional accuracy, it was the worst level.Keywords: Circularity, diameter error, drilling canned cycle, Pareto ANOVA, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11461308 Order Reduction by Least-Squares Methods about General Point ''a''
Authors: Integral square error, Least-squares, Markovparameters, Moment matching, Order reduction.
Abstract:
The concept of order reduction by least-squares moment matching and generalised least-squares methods has been extended about a general point ?a?, to obtain the reduced order models for linear, time-invariant dynamic systems. Some heuristic criteria have been employed for selecting the linear shift point ?a?, based upon the means (arithmetic, harmonic and geometric) of real parts of the poles of high order system. It is shown that the resultant model depends critically on the choice of linear shift point ?a?. The validity of the criteria is illustrated by solving a numerical example and the results are compared with the other existing techniques.
Keywords: Integral square error, Least-squares, Markovparameters, Moment matching, Order reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16971307 Optimization of Electromagnetic Interference Measurement by Convolutional Neural Network
Authors: Hussam Elias, Ninovic Perez, Holger Hirsch
Abstract:
With ever-increasing use of equipment, device or more generally any electrical or electronic system, the chance of Electromagnetic incompatibility incidents has considerably increased which demands more attention to ensure the possible risks of these technologies. Therefore, complying with certain Electromagnetic compatibility (EMC) rules and not overtaking an acceptable level of radiated emissions are utmost importance for the diffusion of electronic products. In this paper, developed measure tool and a convolutional neural network were used to propose a method to reduce the required time to carry out the final measurement phase of Electromagnetic interference (EMI) measurement according to the norm EN 55032 by predicting the radiated emission and determining the height of the antenna that meets the maximum radiation value.
Keywords: Antenna height, Convolutional Neural Network, Electromagnetic Compatibility, Mean Absolute Error, position error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591306 Finite Element Analysis of Sheet Metal Airbending Using Hyperform LS-DYNA
Authors: Himanshu V. Gajjar, Anish H. Gandhi, Harit K. Raval
Abstract:
Air bending is one of the important metal forming processes, because of its simplicity and large field application. Accuracy of analytical and empirical models reported for the analysis of bending processes is governed by simplifying assumption and do not consider the effect of dynamic parameters. Number of researches is reported on the finite element analysis (FEA) of V-bending, Ubending, and air V-bending processes. FEA of bending is found to be very sensitive to many physical and numerical parameters. FE models must be computationally efficient for practical use. Reported work shows the 3D FEA of air bending process using Hyperform LSDYNA and its comparison with, published 3D FEA results of air bending in Ansys LS-DYNA and experimental results. Observing the planer symmetry and based on the assumption of plane strain condition, air bending problem was modeled in 2D with symmetric boundary condition in width. Stress-strain results of 2D FEA were compared with 3D FEA results and experiments. Simplification of air bending problem from 3D to 2D resulted into tremendous reduction in the solution time with only marginal effect on stressstrain results. FE model simplification by studying the problem symmetry is more efficient and practical approach for solution of more complex large dimensions slow forming processes.Keywords: Air V-bending, Finite element analysis, HyperformLS-DYNA, Planner symmetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32121305 Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)
Authors: Hajir Karimi, Fakheri Yousefi, Mahmood Reza Rahimi
Abstract:
An accurate and proficient artificial neural network (ANN) based genetic algorithm (GA) is developed for predicting of nanofluids viscosity. A genetic algorithm (GA) is used to optimize the neural network parameters for minimizing the error between the predictive viscosity and the experimental one. The experimental viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 to 343.15 K and volume fraction up to 15% were used from literature. The result of this study reveals that GA-NN model is outperform to the conventional neural nets in predicting the viscosity of nanofluids with mean absolute relative error of 1.22% and 1.77% for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results of this work have also been compared with others models. The findings of this work demonstrate that the GA-NN model is an effective method for prediction viscosity of nanofluids and have better accuracy and simplicity compared with the others models.Keywords: genetic algorithm, nanofluids, neural network, viscosity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20871304 Nonlinear Integral-Type Sliding Surface for Synchronization of Chaotic Systems with Unknown Parameters
Authors: Hongji Tang, Yanbo Gao, Yue Yu
Abstract:
This paper presents a new nonlinear integral-type sliding surface for synchronizing two different chaotic systems with parametric uncertainty. On the basis of Lyapunov theorem and average dwelling time method, we obtain the control gains of controllers which are derived to achieve chaos synchronization. In order to reduce the gains, the error system is modeled as a switching system. We obtain the sufficient condition drawn for the robust stability of the error dynamics by stability analysis. Then we apply it to guide the design of the controllers. Finally, numerical examples are used to show the robustness and effectiveness of the proposed control strategy.
Keywords: Chaos synchronization, Nonlinear sliding surface, Control gains, Sliding mode control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20281303 A Special Algorithm to Approximate the Square Root of Positive Integer
Authors: Hsian Ming Goo
Abstract:
The paper concerns a special approximate algorithm of the square root of the specific positive integer, which is built by the use of the property of positive integer solution of the Pell’s equation, together with using some elementary theorems of matrices, and then takes it to compare with general used the Newton’s method and give a practical numerical example and error analysis; it is unexpected to find its special property: the significant figure of the approximation value of the square root of positive integer will increase one digit by one. It is well useful in some occasions.
Keywords: Special approximate algorithm, square root, Pell’s equation, Newton’s method, error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28071302 Reduction of Impulsive Noise in OFDM System Using Adaptive Algorithm
Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh
Abstract:
The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.Keywords: OFDM, Impulsive Noise, SSRLS, BER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2702