
 

 

  

Abstract—The McEliece cryptosystem is an asymmetric type of 

cryptography based on error correction code. The classical McEliece 

used irreducible binary Goppa code which considered unbreakable 

until now especially with parameter [1024, 524, and 101], but it is 

suffering from large public key matrix which leads to be difficult to 

be used practically. In this work Irreducible and Separable Goppa 

codes have been introduced. The Irreducible and Separable Goppa 

codes used are with flexible parameters and dynamic error vectors. A 

Comparison between Separable and Irreducible Goppa code in 

McEliece Cryptosystem has been done. For encryption stage, to get 

better result for comparison, two types of testing have been chosen; 

in the first one the random message is constant while the parameters 

of Goppa code have been changed. But for the second test, the 

parameters of Goppa code are constant (m=8 and t=10) while the 

random message have been changed. The results show that the time 

needed to calculate parity check matrix in separable are higher than 

the one for irreducible McEliece cryptosystem, which is considered 

expected results due to calculate extra parity check matrix in 

decryption process for g2(z) in separable type, and the time needed to 

execute error locator in decryption stage in separable type is better 

than the time needed to calculate it in irreducible type. The proposed 

implementation has been done by Visual studio C#. 

 

Keywords—McEliece cryptosystem, Goppa code, separable, 

irreducible. 

I. INTRODUCTION 

new horizon for computer industry is in the infancy stage, 

that is quantum computer. It is different from digital 

computers, in that the latter, deals with data either as zeros or 

ones, while in the quantum computation uses quantum bits. 

Shore’s proved that, whenever quantum computer becomes to 

reality, most cryptography algorithms are cryptanalytic 

(especially those cryptosystems that depends on factoring, 

logarithm, and elliptic curve). The only cryptosystem that 

resist the quantum computer is McEliece Cryptosystem. 

McEliece cryptosystem is based on hardness of finding 

nearest codeword for a linear binary code, which is 

considering a NP- hard Problem (Non-deterministic 

Polynomial-time hard),the name stands for McEliece who is 

suggested it in 1978 [1], to use error correction code in order 

to send knowledge in a secure method to destination over 

unsecured channel. This idea is considered out of ordinary due 

to the main principles of coding theory to ensure that the 

message received is correct message; while one of the 
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principles of cryptography is protecting the communication 

over non-secure channels. Error correcting codes harnesses the 

coding theory in order to detect and fix the errors (as depicted 

in Fig. 1). The main drawback of error correcting codes is the 

adding of redundant bits, which makes the message size larger 

than its original size. The reason behind adding redundant bits 

is to detect the errors and then fix it.  
 

 

Fig. 1 Sending message with error correcting 

 

The McEliece cryptosystem suffers from large public key 

matrix, which leads to be difficult for practical use (with all 

platforms which have small memories and virtual memories). 

After that many variants of McEliece cryptosystem were 

proposed in order to reduce the size of public key [2]-[11]. 

Unfortunately most proposed system was broken [12]-[15]. 

Due to the above reasons, McEliece cryptosystem with 

binary Goppa code have been introduced and studied, which is 

classified into irreducible and separable binary Goppa code. 

A few implementations of original McEliece public key 

cryptosystem have been proposed, most of them were dealing 

with a fixed parameters, except an implementation proposed 

by Repka[16] which deals with unfixed parameters, using C++ 

language, and he depends on number theory library (NTL), 

which is use C++ program to factorize, test irreducibility, 

multiplication, division, and other polynomial operations. 

In this paper a new implementation with flexible parameters 

and dynamic errors, using the two types of binary Goppa code, 

have been introduced in order to compare between the two 

types of binary Goppa code. The implementations have been 

done by graphical user interface (GUI) using Visual Studio 

C#. 

The comparison was done from different perspectives, 

which are computation time, security, implementation issue, 

and size of public generator matrix. 

II. BINARY GOPPA CODE 

The Binary Goppa code is denoted by Γ(g(z); L), where 

g(z) is a Goppa generator polynomial of degree t over the 

extension field GF(2
m
) and L is the range of code such that 

L⊆GF(2m) [17]. 

 ���� � 	∑ �	�	
	��        (1) 
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and 	 � �∀	�	 	 ∈ ���2��\���	� � 0�         (2) 

A. Parameters of Goppa Code 

Let n=2
m
 be the length of codeword c, which is constricted 

by range L, k is a dimension bounded by k ≥n -mt, and 

minimum distance d ≥2t + 1. Then [n, k, d] denotes to the 

parameters Goppa code Γ(g(z); L) [1]. 

A generated Polynomial g(z) is called separable when the 

polynomial has no roots of multiplicity greater than one (i.e. 

has no repeated roots). In this case the minimum distance of 

the Goppa code will be the larger d ≥ 2t + 1 and can be correct 

t errors. 

Obviously, according (1) and (2) in irreducible Goppa code, 

none of α’s yields the condition ���	� � 0 i.e. L=GF{2
m
}. 

While in separable Goppa code, there exist at least 

ονε 5 σ.τ γ(5)=0. 

B. Parity Check Matrix of the Binary Goppa Code 

Parity Check matrix H is the most important matrix in 

encoding and decoding the message. To determine the matrix 

H: 

 ��	 �	∑ ∑ �
�������	
�������� 	
���������!"∈#      (3) 

 

Remark: If c is a codeword, then the parity check matrix H 

should yield cH
T
=0. 

C. Generator Matrix of the Binary Goppa Code 

The generator matrix G of the binary Goppa code used to 

encode and decode message, while Parity check matrix is 

important for detecting and correcting errors. The generator 

matrix G is derived from parity check matrix H, the row space 

of G is the vectors of nullspace of H modulo 2 such that: 
 	��$ � 0						             (4) 

D. Encoding Message in Binary Goppa Code 

Let [n, k, d] be a parameters of Goppa code Γ (L; g(z)), 

where g(z) is a polynomial of degree t over GF(2
m
) with range 

L⊆GF(2
m
). Then encoding a message by partitioned it into 

blocks of k bits and multiplying each block with the generator 

matrix G [17], i.e.: 

 �%�, %', … ,%��. � � �*�, *', … , *+�														   (5) 

 

 

Fig. 2 Algorithm of Finding Correcting Errors in Separable Goppa 

Code 

E. Error Correcting of Binary Goppa Code 

Finding and fixing errors differs from irreducible than 

separable Goppa code. Each one have it is own algorithm to 

fixing errors (as shown in Figs. 2 and 3). 

 

 

Fig. 3 Algorithm of Finding Correcting Errors in Irreducible Goppa 

Code 

F. Decoding a Message in Binary Goppa Code 

When the errors are fixed in codeword, the received 

message can be decoded [17], using the (5), which can be 

written as matrix representation: 
 

�$ . ,%�⋮%�. � 	,*�⋮*+. 

 

For computing the message, Gauss elimination method is 

applied in order to remove generator matrix G: 

 

,�$/*�⋮*+. 	∼ 	⋯ 	∼ 	2,34/�5⋮�6.3 7       (6) 

 

where Ik is the identity matrix with size k × k and P is a matrix 

with size (n - k) × (k + 1). 

III. MCELIECE CRYPTOSYSTEM 

The McEliece Cryptosystem is one of the major types of 

public key cryptosystem. It is classified into three processes 

(as shown in Fig. 4), namely: Key generation, Encryption 

process, and Decryption process. 
 

 

Fig. 4 McEliece Cryptosystem 

A. Key Generation of McEliece Cryptosystem 

Public key cryptosystem based on two types of keys (public 

and private), which are linked to get her mathematically. A 
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public key is published and used to cipher a message, while a 

private key must be keep it secret and used it to decipher the 

message [2].To prepare keys depending on Goppa code, the 

following approaches should be used [1]: 

1. The secret key of McEliece PKC depends on three 

Parameters: 

• The first one depends on setup Goppa code, a random 

polynomial g(z) of degree t over GF(2
m
) could be 

selected. The Goppa code Γ(L; g(z)) has parameters [n; 

k≥ n -mt; d ≥ 2t + 1]. Based on given parameters calculate 

the k × n private generator matrix G of the Goppa code as 

explained in Section II (A-C). 

• Pick a random k × k matrix S, s.t S × B= I. The matrix B 

is derived from Gauss elimination method. This approach 

are faster than to determining the determinant of a matrix, 

at the same time reduce the probability of choosing 

invertible matrix because in our assumption the matrix B 

is not necessary to be an inverse for picked matrix S. 

• Pick an arbitrary n × n permutation matrix P, Where P is a 

matrix that contains one ones in each row and each 

column.  

2. The Public generator matrix �∗ is calculated by �∗ � 9	 ×�	 × ;	and should be published with degree of random 

generator polynomial t. 

B. Encryption Process in McEliece Cryptosystem 

To encrypt any message, the following steps (as seen in Fig. 

5) should be followed: 

1. Obviously, in encryption process, there is public generator 

matrix ��×+∗  and degree of an arbitrary generator 

polynomial t. 

2. Convert each character to decimal number using ASCII 

code, where each character should have 7 bits length. 

3. Collect all binary string together. 

4. In case length of message mod k ≠ 0, the message with (k-

(length of message mod k)) zero’s in the last of the 

message, should be padding. 

5. Each fetching process for k bits from the message should 

perform steps 6-10. 

6. Calculate fetched message × G
*
. 

7. Create error vector e with size n and include (≤ t) errors 

(i.e. e has n zero’s and convert (≤ t) zero’s to one’s). 

 

 

Fig. 5 Encryption Process 

 

C. Decryption Process in McEliece Cryptosystem 

To recover plain message from cipher message c, the 

following steps should be done (as depicted in Fig. 6): 

1. The receiver has the following information: Goppa code 

parameters with secret generator matrix��×+, Nonsingular 

Matrix S, and Permutation matrix P. 

2. Compute the invertible of matrix S, and the inverse of 

Permutation matrix. 

3. Partition the cipher message into parts, where each part 

contains k bits. 

4. For each entity should perform steps 5-9. 

5. Compute %9� ′ � * × ;�� � %9�; +	;′ � %9� +	= ′. 
6. Use efficient decoding algorithm (if the Goppa code is 

separable (as shown in Fig. 2) or irreducible (as shown in 

Fig. 3) to find error location = ′. 

7. Calculate %9� = %9� ′ +	= ′. 
8. Removing secret generator matrix G using Gaussian 

elimination method to get (mS). (as explained in Section 

II (F). 

9. Compute% � %9 × 9��. 

10. Collect all computing message together. 

11. Make sure length (message) mod 7 =0; in case of 

inequality we could remove (length (message) mod 7) 

zero’s from the last of the message. 

12. Fetch every time 7 bits from the message and convert it to 

decimal number. 

13. Convert each decimal number to character using ASCII 

code table, and then collect all characters together to 

obtain the plain message. 

 

 

Fig. 6 Decryption Process 

 

IV. A PROTOTYPE FOR DESIGNED SYSTEM USING VISUAL 

STUDIO C# 

The designed platforms have been done by three stages 

using Visual Studio c#, the first one is to generate secret and 

public key for the required cryptosystem, and the second stage 

is for encryption process, while the last one used to decrypt 

the message. It has the following specifications: 
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1. The system randomly generate a Goppa code Γ(L; g(z)) 

and then tested it, if the code match the condition of 

Goppa code (Irreducible or separable) then it starts the 

process, whereas the system will inform the user why the 

condition dose not yield then start to generate a new code. 

2. The designed system deals with flexible parameters and 

dynamic error vectors. The dynamic error (dynamic errors 

means that the sender have the right to choose number of 

errors less than from published one without notifying the 

receiver and for the next block of message the error 

locations are changed randomly with a new number of 

errors). This process increases the time attacks (which are 

based on finding minimum codewords) against McEliece 

cryptosystem. 

3. The designed system, record every details and operations 

required by McEliece cryptosystem (for key generation, 

encryption, and decryption process) in text files. This 

process helps the researchers to do a well studying for the 

designed cryptosystem and it is useful for teaching 

propose. 

A. Key Generation Stage 

In this stage many forms has designed in order to determine 

each needed operation separately. The designed system begin 

from factoring polynomial and testing irreducibility and ended 

with generating public generator matrix as explained in 

Section III (A). Figs. 7-9 declare how the key generation 

stages are designed. These figures are part of several forms. 

 

 

Fig. 7 Generating Secret Matrix 

 

 

Fig. 8 Parameters of Code 

 

 

Fig. 9 Generating Public Matrix 

 

 

Fig. 10 Encryption Stage 

 

B. Encryption Stage 

This stage consists of three forms, the two forms used to 

enter the message in two ways. The First way is about import 

file from specified folder, while the second form is entering 

the message within the textbox. During the two forms the 

message has partitioned and converted to a numbers using 

ASCII code. Whereas the third form begin to encrypt the 

message as shown in Fig. 10. 

 

Fig. 11 Syndrome and Error Locations Form 
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C. Decryption Stage 

In this stage several forms have been designed in order to 

determine each needed operations separately. The designed 

system begin from determine parity check matrix in case of 

separable Goppa code, decoding algorithm, etc. as explained 

in Section III (C). Figs. 11 and 12 show how the decryption 

stages are designed. These figures are part of several forms. 

 

  

Fig. 12 Decryption Stage 

 

V. COMPARISON BETWEEN SEPARABLE AND IRREDUCIBLE 

GOPPA CODE IN MCELIECE CRYPTOSYSTEM 

A. Collecting Data 

In order to compare between separable and irreducible 

Goppa code, two measurement types have been recorded. The 

first one records the average computation time for Parity 

check matrix (in case of separable type, time computation in 

encryption and decryption process have been counted), error 

locator polynomial (sigma), and encryption stage for (50 Byte) 

message.  
 

TABLE I 
 COMPUTATION TIME OF PARITY CHECK MATRIX FOR SEPARABLE AND 

IRREDUCIBLE GOPPA CODE\CPU TICKS 

Degree of g(z) t Extension 

number (m) 

Av. Separable\ 

CPU Ticks 

Av. Irreducible\ 

CPU Ticks 

2 4 1.26E+04 4.64E+03 

3 4 1.75E+04 6.74E+03 

4 5 6.47E+04 2.30E+04 

5 5 6.55E+04 2.81E+04 

6 6 2.86E+05 8.94E+04 

7 6 3.64E+05 9.65E+04 

8 7 2.55E+06 6.70E+05 

9 7 2.35E+06 5.63E+05 

10 8 1.19E+07 3.22E+06 

11 8 1.46E+07 3.60E+06 

 

TABLE II 

COMPUTATION TIME OF ERROR LOCATOR FOR SEPARABLE AND IRREDUCIBLE 

GOPPA CODE\CPU TICKS 

Degree of g(z) t Extension 

number (m) 

Av. Separable\ 

CPU Ticks 

Av. Irreducible\ 

CPU Ticks 

2 4 7.01E+02 1.43E+03 

3 4 1.03E+03 2.12E+03 

4 5 2.23E+03 4.58E+03 

5 5 3.01E+03 5.31E+03 

6 6 6.85E+03 1.35E+04 

7 6 7.57E+03 1.83E+04 

8 7 3.45E+04 1.06E+05 

9 7 3.11E+04 1.04E+05 

10 8 1.25E+05 8.37E+05 

11 8 1.60E+05 8.37E+05 

TABLE III 

COMPUTATION TIME TO ENCRYPT (50 BYTE) MESSAGE FOR SEPARABLE AND 

IRREDUCIBLE GOPPA CODE\CPU TICKS 

Degree of g(z) t Extension 
number (m) 

Av. Separable\ 
CPU Ticks 

Av. Irreducible\ 
CPU Ticks 

2 4 1.42E+05 8.28E+04 

3 4 4.74E+05 3.23E+05 

4 5 6.10E+02 6.47E+04 

5 5 3.20E+05 1.61E+05 

6 6 2.13E+04 2.22E+04 

7 6 4.88E+04 3.65E+04 

8 7 1.58E+04 1.98E+04 

9 7 2.26E+04 2.01E+04 

10 8 1.42E+04 1.77E+04 

11 8 1.64E+04 1.98E+04 

 

The designed system is implemented for random parameters 

m=4, 5, ...,8 and for each extension number (m), two degree of 

random generator polynomial is implemented, which is starts 

from 2 to 11 respectively (as shown in Tables I-III). 
 

TABLE IV 
COMPUTATION TIME TO ENCRYPT MESSAGE FOR SEPARABLE AND 

IRREDUCIBLE GOPPA CODE\CPU TICKS 

Message Size\ 

Byte 

Av. Separable 

with One Root 

Av. Separable\ 

CPU Ticks with 
t root 

Av. Irreducible\ 

CPU Ticks 

118 8.36E+04 5.14E+04 8.54E+04 

223 1.78E+05 1.29E+05 1.74E+05 

348 3.18E+05 2.48E+05 2.95E+05 

413 6.12E+05 3.52E+05 4.50E+05 

558 8.31E+05 6.73E+05 8.70E+05 

657 1.15E+06 9.50E+05 1.21E+06 

751 1.76E+06 1.31E+06 1.53E+06 

836 2.01E+06 1.75E+06 2.03E+06 

964 2.58E+06 2.26E+06 2.66E+06 

1136 4.17E+06 3.74E+06 4.17E+06 

 

While second measurement records the computation time 

for encryption process with different random message size, 
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which is start from 100 Byte to 1kB. Due to yield notable 

chart, smaller Goppa code (m=8, t=10) have been 

implemented (as shown in Table IV). 

A. Analyzing Time Computation 

As shown in Fig. 13, which is derived from Table I, the 

computation time for calculating parity check matrix is higher 

than the time needed to calculate it in irreducible McEliece 

cryptosystem. It is expected results due to determining 

additional parity check matrix in decryption process for g
2
(z) 

in separable type. Actually this is one of the reasons behind 

preference irreducible type over separable type. 

 

 

Fig. 13 Average Computation Time of Parity Check Matrix in 

Respect to Degree of g(z) for Separable and Irreducible Types 

 

 

Fig. 14 Average Computation Error Locator Polynomial (Sigma) in 

Respect to Degree of g(z) for Separable and Irreducible Types 

 

 

 

Fig. 15 Average Computation Time of Encryption Process for (50 

Byte) Random Message in Respect to Degree of g(z) for Separable 

and Irreducible Types 

Fig. 14 shows that the time needed to execute error locator 

in decryption process for separable type, is better than the 

computing time in irreducible type. For encryption stage, to 

get better result for comparison, two types of testing have been 

chosen, in the first one the random message is constant while 

the parameter of Goppa code are changed. But in the second 

test, the parameters of Goppa code are constant (m=8 and 

t=10), while the random message are changed. The result 

shows that the time needed to execute it is closed especially 

for big (m)’s (choosing big (m)’s are better for security 

propose) (as shown in Figs. 15 and 16)). 

 

 

Fig. 16 Average Computation Time of Encryption Process in Respect 

to Random Message for Separable and Irreducible Types 

VI. SEVERAL PERSPECTIVES ON COMPARISON BETWEEN 

SEPARABLE AND IRREDUCIBLE GOPPA CODE IN MCELIECE 

CRYPTOSYSTEM 

In general, the separable and irreducible McEliece 

cryptosystem can be compared in four perspectives, as below: 

1. Time Computation 

It is clear, the consuming time are closed to be balance, 

which is disprove that vision about preference irreducible over 

separable type. 

2. Security 

Till now, there is no study mentioned that there is an active 

attack on separable type except that attacks on cyclic and 

dyadic Goppa code which is depend on separable type (the 

attack depends on secret matrix which is generated by cyclic 

the first row of matrix while in the designed system, the secret 

matrix are generated by the null space). 

3. Implementation Issues 

Due to calculating a parity check matrix for g
2
(z), it may 

cause a problem with enlarge t in implementation time (i.e. 

maximize the size of matrix from (t× no. of columns) to (2t × 

no. of columns), which may cause a problem with big t. 

4. Memory 

The size of generator public matrix in original McEliece 

cryptosystem is large, which is considering an effective 

drawback. Using separable Goppa code, reduces the size of 

public key, for example if m=8 and t=10 have been selected, 

the size of public key in irreducible type [256, 176, 21] will be 
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256 × 176 = 45056 bits, while in separable type [246, 166, 21] 

will be 246 × 166 = 40836 bits 

VII. CONCLUSIONS 

A graphical user interface of McEliece public key 

cryptosystem, have been designed using the two types of 

Goppa code (irreducible and separable) with unfixed 

parameters and dynamic errors. The designed system increases 

the attacking time against attacks based on finding minimum 

codeword. Also, a comparison between separable and 

irreducible have been done, and founded in general 

implementation the two types are closed to be balanced. 

Separable type may cause a problem in implementation time 

for those programming languages that deals with smaller size 

of integer data types (which is convert to exponential format), 

whenever degree of generator polynomial are big. On the 

other hand, separable type needs less memory than irreducible 

Goppa code to store public generator matrix. 
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