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Abstract—With ever-increasing use of equipment, device or more
generally any electrical or electronic system, the chance of
Electromagnetic incompatibility incidents has considerably increased
which demands more attention to ensure the possible risks of these
technologies. Therefore, complying with certain Electromagnetic
compatibility (EMC) rules and not overtaking an acceptable level of
radiated emissions are utmost importance for the diffusion of
electronic products. In this paper, developed measure tool and a
convolutional neural network were used to propose a method to reduce
the required time to carry out the final measurement phase of
Electromagnetic interference (EMI) measurement according to the
norm EN 55032 by predicting the radiated emission and determining
the height of the antenna that meets the maximum radiation value.

Keywords—Antenna height, Convolutional Neural Network,
Electromagnetic Compatibility, Mean Absolute Error, position error.

1. INTRODUCTION

ITH the exploding growth in use of electronic equipment

in past decades, EMC issues have drawn great attention
in science, engineering communities and, government agencies.
EMC ensures equipment, device or more generally any
electrical or electronic system functions satisfactorily in the
presence of electromagnetic waves induced or generated by
similar devices or natural causes in its vicinity [1], [2]. EMC
also requires the device to properly work without introducing
or generating unacceptable electromagnetic disturbance to
other equipment in the environment. To confirm that the
equipment and electrical or electronic systems are complying
with standards, therefore emission and immunity tests have to
be performed as described in norms.

Deep learning has emerged in the last few years as a premier
technology for building intelligent systems that learn from data.
Deep Neural Networks (DNN), originally roughly inspired by
how the human brain learns, are trained with large amounts of
data to solve complex tasks with unprecedented accuracy. DNN
has been widely used in the field of electromagnetics. In [3],
DNN uses the magnitude and phase information of the radiation
field to perform near-field prediction at a single frequency. A
new method for equivalent magnetic dipole prediction is
established based on convolutional neural network proposed in
[4].

EMI radiated emission measurements are often referred to
the field strength value obtained at a given distance [5]. To
perform EMI measurement, many environments could be used:
semi-anechoic chamber (SAC), fully anechoic room (FAR), or
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reverberation chamber (RC) and even near-field scanning
(NFS) technique. In our paper radiated emission tests are
carried out in a 3 m SAC. These emission tests have some
evident obstacles. To perform an EMI measurement, all EMI
emission in any direction and for all possible test setups must
be captured, therefore, one has to turn a turntable, change the
antenna height, and measure in two polarizations. Furthermore,
all the measurement equipment also has to follow requirements
defined by CISPR 16-1 standard [6]. Therefore, the desired cost
and the test time to measure the emission in SAC must be
considered.

Several papers have been published on SAC measurements.
In [7], an experimental analysis of radiated emission limits
regarding test facilities according to EN 55032 [8] was
performed. The characteristics of the two SACs below 30 MHz
were measured using monopole and loop antennas to present a
new method to evaluate the test sites for such EMI
measurement [9].

In this paper, we propose a measurement method to lessen
the requested test time to perform EMC radiated measurement
in SAC below 1 GHz according to the EN 55032 Class B by
using a DNN.

The rest of this paper is organized as follows: The
performance of the electromagnetic measurement is discussed
in Section II, in Section III, 1D convolution neural network is
cleared. Sections IV and V explain the construction of the
proposed 1D CNN and the implementation of the measurement
method using different scenarios. In Section VI we verify our
results by comparing them with the real measurements which
were carried out in SAC. Finally, Section VII concludes the

paper.

II. ELECTROMAGNETIC EMISSION MEASUREMENT
PERFORMANCE ACCORDING TO EN 55032 IN THE FREQUENCY
RANGE 30 MHZ 1O 1 GHZ IN SAC

Measurements are performed in Normalized Site Attenuation
(NSA) compliant SAC according to EMC basic standard. The
test site is compliant to CISPER 16-1-4:2010 [10] and ANSI
C63.4:2009 chap 5.4.2 to 5.4.4 [11].

To carry out this measurement, two steps are required:

- Pre-measurement: The equipment under test (EUT) is set
to perform in the worst-case operating mode. The test is
done by variation of turntable positions, the Azimuth step
of turntable is set to 90°, and for every position antenna is
set to heights 1.0 m & 1.82 and two polarizations
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(Horizontal/Vertical). The tests are also carried out with
Peak Detector (PK), repetitive scan and max-hold mode.
The results are documented.

- Final measurement: The peak values show which were
documented from the previous phase are not maximized
and these values closer than 6 dB to the limit line are
considered as critical frequencies. A maximum search is
done with PK and Quasi-Peak CISPR QP detectors for the

(¢—EUT perimeter
including cables

Center of

Turn table (& =2 m)

Non-conductive
table (h=0.8 m)

critical frequencies. First a frequency zoom within +/-
10*IF-BW of the critical frequency, then the EUT is
rotated continuously and the antenna height changed
between 1 m and 4 m in order to find the worst position.
After defining the worst position, the final measurements
with QP detector are carried out in this position and the
final values are stored.

Reference point
of antenna

d=3m

Turn table _.,:

2700

b, S

Fig. 1 The set-up of SAC for EMC radiated emission test under 1 GHz

The measurement distance is reduced from 10 m to 3 m and
therefore an inverse proportionality factor of 20 dB per decade
(according to CISPER 11 / to CISPER 22 /ANSI ¢63.4/VITR)
is used. A transducer factor with -10.46 dB is used to normalize
the measurement results to the specified distance (10 m).

According to EN 55032, the measurement procedure is
performed using two phases.

III. 1D CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Network (CNN) consists of
convolution layer, pooling layer and other hidden layers. It has
the advantage of incomplete connection, relatively simple
model structure and strong data features extraction ability. CNN
has been applied to time series (a 1-D grid) and an image (a 2-
D grid) [12]. 1D CNNs have been widely applied used for the
optimal design of antennas [13], Signal Processing
Applications [14] and other fields. 1D CNNs show many
advantages:

- Complexity of a 1D CNN is significantly lower than the 2D
CNN.

- Most 1D CNN applications used deep architectures (1-2
hidden CNN layers) with less than 10 k parameters whereas
almost all 2D CNN applications have used these
architectures with more than 1 M parameters. Obviously,
networks with shallow architectures are much easier to
train and implement.

- CNNs are well-suited for real-time and low-cost
applications especially on mobile devices, because of their
low computational requirements.

International Scholarly and Scientific Research & Innovation 17(10) 2023

IV. CONSTRUCTION OF THE PROPOSED 1D CNN MODEL TO
PREDICT THE ELECTROMAGNETIC RADIATION EMISSION IN
SAC ACCORDING TO EN 55032

We briefly introduced the stages to construct a 1D model to
predict the electromagnetic radiation emission according to the
norm EN 55033 Class B.

a. Dataset Source

To train our CNN, a dataset was derived from measurements
using Rode & Schwarz EMC32 software in SAC by
CETECOM GmbH in, Essen Germany as illustrated in Fig. 2.
At first, the pre-measurement was performed, EUT is set under
the worst case and sweeps are performed (varying turntable
positions, heights and polarizations of antenna). After that, the
final measurements were performed for the critical frequencies
to determine the worst turntable (0°-359°) position and antenna
height (1,05 m-3,59 m). We used these turntable sweep files for
learning processing for our proposed measurement method
using 1D CNN model.

The final dataset contains six features: EUT position angles,
Radiation Level (dBm/uV), Antenna Polarization (H/V), EUT
Polarization (H/V), Correlation Factor (dB) and critical
frequency (MHz).

b. Data Processing

The following processing steps were needed before feeding
up data to our CNN model:

- Data Interpolation

The Rode & Schwarz EMC32 software saves the sweep
during the varying of antenna as file contains two columns of
values, one for antenna position height and the other for the
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related electrical filed values. The turntable rotation step was
not the same in every measurement, so we needed to interpolate
the saved file data and resaved them as a sequence in range
(3.59 m-1.05 m) with 2 cm step.

- Data Split

The dataset was blindly separated into three subsets: 70% for
training, 10% for validation and 10% for testing the network.
The dataset will not be shuffled before splitting to indemnify
that loping off the data into windows of consecutive sample is
still possible and to ensure that the validation -test result, being
evaluated on dataset after the model was trained, are more
realistic.

We divided the sequence into multiple input/output patterns
called samples. The CNN model will learn a function that maps
a sequence of past observation as input to an output observation.

- Data Normalization

Considering features of the collected data sets have different
dimensions and unit, the original data should be normalized
first to ensure that these features have the same order of
magnitude. Normalization of the features has the additional
benefit of improving the accuracy of the DNN model and
accelerating its training process. It is done by subtracting the
mean and dividing by the standard deviation of each feature.
Only the training dataset should be used to computed the mean
and standard deviation so that the models have no access to the
values in validation and test set.

- Data Windowing

Windows of consecutive samples from the dataset will be
used to get the predicted values. The main features of these
windows are the width (sum of the input values (measured
steps and label values (predicted steps)), in our case it is 128
steps, offset between them and which features used as inputs,
labels or both. Every window will be split and converted to a
window of inputs and a window of labels. Fig. 3 illustrates data
windowing process.

Fig. 2 The set-up of SAC for EMI radiated emission according to EN
55032 in Cetecom Essen, Germany

¢. Training and Validation of the 1D CNN
The data in our dataset will be divided into standard single
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sequences. This sequence begins at High = 3,59 m and ends at
1.25 m. Every sequence will be transformed into input/output
samples to train the model. The number of the steps as inputs
will be the number we chose when we prepared our dataset
according to certain scenarios. Our module was built depend on
Multivariate Multi-step CNN model [15]. The architecture of the
proposed model is depicted in Fig. 4.

Total Windows Width = 128steps

[ \
| |

S0 S1 S2 S3

T T
Input Width - /

S0 S1 S2 S3

Sn+1 Sm-1  Sm

Fig. 3 Data Split to Input and Output (labels) to be used as learning
data for Neural Network

Input: (batch,Steps, features)
Input_1:InputLayer
Output: | (batch,Steps,features)
Input: (batch,Steps,features)
Input_1:InputLayer
Output: | (batch, Conv_width , features)
Input: (batch, Conv_width , features)
Convld:ConvlD
Output: | (batch, 1, out_steps*features)
Input: (batch,1, out_ steps*features)
Dense
Output: (batch, out_steps, features)

Fig. 4 The architecture of Multivariate Multi-step 1D CNN mode

The following parameters were used to train our module:
Batch size = 128, convolution width = 3, features = 6, filters =
256, max_epoch =1000. We have used the Relu [16] as
activation function. The mode was trained using different input/
output steps (Scenariol (0.2 m, 3.39 m), Scenario2 (0.8 m, 2.79
m), Scenario3 (1.2 m, 2.39 m), Scenario4 (1.8 m, 1.79 m),
Scenario5 (2 m, 1.59 m), Scenario6 (2.2 m, 1.39 m), as
illustrated in Fig. 5 and saved separately.

Early stopping technique was used to avoid overfitting
assuring better generalization performance. The Adam
optimizer is demonstrated to have faster and more stable
convergence in the training process, which also illustrates the
best accuracy in this work.

The model was validated and evaluated with test data. Mean
Absolute Error is selected as criterion for training and validation
loss on our database. The form of MAE is [16]:

MEA=%ZiIYL-—XL-I (1)
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Y; and X; represent the observed and predicted value for the it
observation, n is the total number of observations.
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Fig. 6 shows the training and validation results using scenario
1.
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Fig. 5 Different Scenarios for Input/Output steps of Multivariate Multi-Stepp CNN mode
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Fig. 6 Training and validation loss for our module using Scenario 1

As shown in Fig. 6, the training and validation losses start to
diverge considerably after 120 epochs. The loss on the training
dataset will always be lower than on the validation dataset.

Fig. 7 shows the overall performance of our module for
different input scenarios.
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Fig. 7 The overall performance of the our 1D CNN module for
different output ranges

V. IMPLEMENTATION OF THE PROPOSED MEASUREMENT
METHOD
To discharge the proposed measurement method, a Python
code was developed to carry out the performance EMI radiation
measurements between 30 MHz and 1 GHz according to Norm
EN 55032. Fig. 8 shows GUI for the developed software.
The software will implement maximum search with PK and
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Quasi-Peak CISPR QP detectors for the critical frequencies.
After the setting of frequency zoom, then the angle of the
maximum radiation will be found by rotate the turntable
continuously in range (0°-359°).

After that, the second phase of final measurement must be
started (varying antenna height). We observed from the training
data that the maximal radiation height was always in range 1.05
m until 2.25 m; therefore, to make our proposed measurement
method more effectively, the antenna height varying direction
is reversed. Measurement result will be interpolated to 2 cm

step and used with the Polarizations of EUT and antenna,
critical frequency and the total attention at this frequency (the
attention values tables were defined in our software) as inputs
to our trained CNN model, which will predict the residual
radiation values until 1.05 m and return the antenna height of
the founded worth case (maximal radiation value). After
defining the worst position, the final measurements with QP
detector are carried out in this position and stored as a final
result.
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Fig. 8 GUI of our Software to performance our proposed measurement method and many EMC measurements

V.PERFORMANCE AND EFFICIENCY COMPARISON OF THE
PROPOSED MEASUREMENT METHOD

To verify our proposed measured method, a comparison
between the predicted values from our 1D CNN model, and the
target labelled values from final measurement process using
Rode & Schwarz EMC32 Software was done. The final
measurement values of the radiation during antenna variation
for determined critical frequency acquired from our developed
Software, EUT and antenna polarizations and the total
transducer function were used as input to our module.

Different input scenarios (Fig. 5) were used to compare the
worst case (maximal radiation) height position found by
carrying out final measurements using proposed method with
that one from measurements using Rode & Schwarz EMC32
Software.

Three EMI measurements for three different EUT were
carried out using our developed software in SAC as shown in
Fig. 9.

From each measurement, one critical frequency will be
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picked up, and the final measurement will be carried out. first
the turntable should be turned in range (0° until 359°) to find
the angle of the worst case (maximal radiation), then the
turntable position will be switched to the position of the worth
case. After that, the height of the antenna will be changed from
3.59 m until a certain high depended on our selected scenario
(Fig. 5). These values, EUT and antenna polarizations were
used as inputs for our proposed neural network model which
predicted the residual values till 1.05 m, determined the worst-
case height and returned it to our software to set the antenna at
this position.

After the definition of worst-case position, the software
carried out final measurements with QP detector and the final
value is stored.

Table I illustrates the additional input parameters for the
tested seven scenarios which will be fed in addition to the
radiation measured value in a certain angle range to our neural
network.
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Fig. 9 EMI measurement results for three different EUTs in SAC,
Cetecom GmbH Essen, Germany

A comparison between the radiation values measured by
complete variation of antenna height using Rode &Schwarz
software and the predicted radiation values from our CNN is
accomplished. The blue line represents the measured values
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(taken from EMC software by this example and will be
exported from our software by the future EMI measurements)
which we used as Input to our CNN in addition to other inputs
from Table I. The length of this input sequence variance
depended on the tested scenario; red line represents the
predicted values. Real and predicted maximal radiation values
and position, as well as the position and level errors for the final
measurement result are illustrated in Figs. 10-12.

TABLEI
THE CHOSEN CRITICAL FREQUENCIES FROM THE EMI MEASUREMENTS IN
SAC

Measurement Critical EUT . Ant.enn-a Transducer

Frequency  Polarization Polarization factor (dB)
measurement 1 124.99 H \% 1.98
measurement 2 648.01 H H 12.7
measurement 3 124.8 H v 1.91

Data Vs Prediction
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—#~ Predicted Max Values
3.0 1
'é 2.5 1
=
E]
= Real Max Value=29.4304dBu
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Predicted Max High =1.31m
MEA_NN=2 567 B
Position Error=11.9658 %
154 Prediction Error=2.6104 %
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()

Fig. 10 Position and radiation level errors of predicted high and
radiation level for critical frequency 124.99 MHz: (a) senariol and
(b) scenario 7
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Fig. 12 Position and radiation level errors of predicted high and
radiation level for critical frequency 124.8 MHz: (a) senariol and (b)
scenario 2

From Figs. 11 and 12, an obvious variation with radiation
level is noticed. The reason for that is the EUT operating modes.
We can remark the impact of the outliner filter during learning

process for CNN.

Table II-IV show the position and radiation level errors of
predicted height and radiation level for the critical frequencies.

By comparing real und predicted radiation levels in Figs. 10-
12, Table II-IV, it can be seen that the height position and
radiation value predicting errors are very small. Fig. 13 shows
the saved time and the expected position error for the tested
scenarios to determine the height of the antenna according to
the maximal radiation point.

TABLEII
HEIGHT, RADIATION LEVEL AND MEAN ABSOLUTE ERRORS FOR THE FIRST
MEASUREMENT
Scenario  Predicted Predicted Position ~ Radiation = MEA
Height radiation level ~ Error Level Error
dBmuV/m
1 1.31m 28.6621 11.96% 2.6104%  23.366%
2 1.2Im 28.4228 3.41% 2.6404%  22.772%
3 1.13m 28.4994 3.1633%  3.4188% 16.082%
4 1.17m 28.0653 0% 4.6384% 10.932%
5 1.17m 28.1986 0% 4.1856%  9.3529%
6 1.17m 28.3458 0% 3.6861%  9.2452%
f=124.99 MHz, Real antenna hight = 1.17 m, real radiation level = 29.4304
dbuv\m
TABLE III
HEIGHT, RADIATION LEVEL AND MEAN ABSOLUTE ERRORS FOR THE SECOND
MEASUREMENT
Scenario  Predicted Predicted Position  Radiation =~ MEA
Height radiation level ~ Error Level Error
dBmuV/m
1 1.93m 31.7398 5.4645%  3.6556% 20.426%
2 1.77m 32.2723 3.2787%  2.0392% 17.013%
3 1.83m 31.752 0% 3.6184% 18.811%
4 1.83m 32.9441 0% 0% 14.894%
5 1.83m 32.9441 0% 0% 17.394%
6 1.83m 32.9441 0% 0% 7.2.38%
f=648.01 MHz, Real antenna heigh = 1.83 m, real radiation level = 32.9441

231

1SNI:0000000091950263



Open Science Index, Electronics and Communication Engineering Vol:17, No:10, 2023 publications.waset.org/10013262. pdf

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering
Vol:17, No:10, 2023

dbuv\m
TABLE IV
HEIGHT, RADIATION LEVEL AND MEAN ABSOLUTE ERRORS FOR THE THIRD
MEASUREMENT
Scenario Predicted Predicted Position Radiation MEA
Height radiation level ~ Error Level Error
dBmuV/m

1 2.27m 34.8103 8.0972% 6.2821%  35.775%
2 2.23m 36.5259 9.7166% 1.6634%  24.651%
3 2.47m 37.1437 0% 0% 20.875%
4 2.47m 37.1437 0% 0% 23.564%
5 2.47m 37.1437 0% 0% 17.142%
6 2.47m 37.1437 0% 0% 14.922%

f=124.8 MHz, Real antenna hight = 2.47 m, real radiation level = 37.1437
dbuv\m

e of Final Measurement

83,29%
66,57%

49,86% TEL

38,72%

0,00% 0,00% 0,00%

Scenariol  Scenario 2 Scenario3  Scenariod  Scenario5  Scenario 6

Fig. 13 Average position Error/Saved time of final measurement of
six scenarios

The results indicate that with approximately 9% error on the
position prediction, 94% from the required time to find the high
of the antenna according to worth position is saved, and this
time saving can be very effective especially in case of many
critical frequencies.

VI. CONCLUSION

In this paper, a measuring method was introduced to speed
up the final measurement process by predicting the radiation
emission during the variation of the height of the antenna and
determining the maximum radiated emission position using 1D
CNN. Firstly, a python tool was developed to carry out the EMI
measurement, according to EN55032 in this paper, then data
taken from real measurements (performed in SAC by Cetecom
GmbH, Essen, Germany) were used to build up a dataset and
used it to train our 1D CNN. Our model was validated and
evaluated with test data for six scenarios and mean absolute
error was calculated for each scenario. To verify our proposed
our method, three EMI measurements were compared with the
predicted values from our CNN and the predicted height of the
worst case with the measured values from R&S EMC32
software. The comparison results show that the prediction
performance of the proposed measured method could be
successfully applied to reduce the required time to find the
height position of the maximal radiation produced from the
EUT. This method can save costs and also provides an option
for solving problem of the long required time to complete the
final measurement phase by EMI test.
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