Search results for: Belief propagation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 556

Search results for: Belief propagation

226 Mobile Robot Navigation Using Local Model Networks

Authors: Hamdi. A. Awad, Mohamed A. Al-Zorkany

Abstract:

Developing techniques for mobile robot navigation constitutes one of the major trends in the current research on mobile robotics. This paper develops a local model network (LMN) for mobile robot navigation. The LMN represents the mobile robot by a set of locally valid submodels that are Multi-Layer Perceptrons (MLPs). Training these submodels employs Back Propagation (BP) algorithm. The paper proposes the fuzzy C-means (FCM) in this scheme to divide the input space to sub regions, and then a submodel (MLP) is identified to represent a particular region. The submodels then are combined in a unified structure. In run time phase, Radial Basis Functions (RBFs) are employed as windows for the activated submodels. This proposed structure overcomes the problem of changing operating regions of mobile robots. Read data are used in all experiments. Results for mobile robot navigation using the proposed LMN reflect the soundness of the proposed scheme.

Keywords: Mobile Robot Navigation, Neural Networks, Local Model Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
225 Implementation of Neural Network Based Electricity Load Forecasting

Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw

Abstract:

This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.

Keywords: Neural network, Load forecast, Time series, wavelettransform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
224 Root Growth of Morus alba as Affected by Size of Cuttings and Polythene Low Tunnel

Authors: Irfan Ahmad, Tahir Siddiqui, Rashid Ahmad Khan, Tahir Munir Butt

Abstract:

An effort to find out the smaller size of cuttings for propagation of Morus alba was made in experimental area Department of Forestry, Range Management and Wildlife, University of Agriculture, Faisalabad, Pakistan. Different size of cuttings i.e. 2", 4", 6" and 8" were planted in polythene tubes of 3.5"x7". The effort was also made to compare the performance of cuttings in open air and in polythene low tunnel. Root length, number of root branches, root diameter and root fresh and dry weight were found maximum in two inches cuttings while minimum in four inches cuttings. Root growth was found maximum in open air as compared to under polythene sheet.

Keywords: cutting sizes Morus alba, Open air and polythene sheet, root growth

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3072
223 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network

Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim

Abstract:

In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.

Keywords: Artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082
222 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks

Authors: Salvatore Marra, Francesco C. Morabito

Abstract:

In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.

Keywords: Elman neural networks, sunspot, solar activity, time series prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
221 Development of a Sliding-tearing Mode Fracture Mechanical Tool for Laminated Composite Materials

Authors: Andras Szekrenyes

Abstract:

This work presents the mixed-mode II/III prestressed split-cantilever beam specimen for the fracture testing of composite materials. In accordance with the concept of prestressed composite beams one of the two fracture modes is provided by the prestressed state of the specimen, and the other one is increased up to fracture initiation by using a testing machine. The novel beam-like specimen is able to provide any combination of the mode-II and mode-III energy release rates. A simple closed-form solution is developed using beam theory as a data reduction scheme and for the calculation of the energy release rates in the new configuration. The applicability and the limitations of the novel fracture mechanical test are demonstrated using unidirectional glass/polyester composite specimens. If only crack propagation onset is involved then the mixed-mode beam specimen can be used to obtain the fracture criterion of transparent composite materials in the GII - GIII plane in a relatively simple way.

Keywords: Composite, fracture mechanics, toughness testing, mixed-mode II/III fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
220 A Reduced-Bit Multiplication Algorithm for Digital Arithmetic

Authors: Harpreet Singh Dhillon, Abhijit Mitra

Abstract:

A reduced-bit multiplication algorithm based on the ancient Vedic multiplication formulae is proposed in this paper. Both the Vedic multiplication formulae, Urdhva tiryakbhyam and Nikhilam, are first discussed in detail. Urdhva tiryakbhyam, being a general multiplication formula, is equally applicable to all cases of multiplication. It is applied to the digital arithmetic and is shown to yield a multiplier architecture which is very similar to the popular array multiplier. Due to its structure, it leads to a high carry propagation delay in case of multiplication of large numbers. Nikhilam Sutra, on the other hand, is more efficient in the multiplication of large numbers as it reduces the multiplication of two large numbers to that of two smaller numbers. The framework of the proposed algorithm is taken from this Sutra and is further optimized by use of some general arithmetic operations such as expansion and bit-shifting to take advantage of bit-reduction in multiplication. We illustrate the proposed algorithm by reducing a general 4x4-bit multiplication to a single 2 x 2-bit multiplication operation.

Keywords: Multiplication, algorithm, Vedic mathematics, digital arithmetic, reduced-bit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3454
219 The Development and Examination of a Teaching Commitment Scale for Elementary School Health and Physical Education Teachers

Authors: Yi-Hsiang Pan, Wei-Ting Hsu, Chang-Pang Lin

Abstract:

The purpose of this study was to develop and examine a Teaching Commitment Scale of Health and Physical Education (TCS-HPE) for Taiwanese elementary school teachers. First of all, based on teaching commitment related theory and literatures to develop a original scale with 40 items, later both stratified random sampling and cluster sampling were used to sample participants. During the first stage, 300 teachers were sampled and 251 valid scales (83.7%) returned. Later, the data was analyzed by exploratory factor analysis to obtain 74.30% of total variance for the construct validity. The Cronbach-s alpha coefficient of sum scale reliability was 0.94, and subscale coefficients were between 0.80 and 0.96. In the second stage, 400 teachers were sampled and 318 valid scales (79.5%) returned. Finally, this study used confirmatory factor analysis to test validity and reliability of TCS-HPE. The result showed that the fit indexes reached acceptable criteria(¤ç2 (246 ) =557.64 , p<.05, RMSEA= 0.03, GFI = 0.96, AGFI = 0.95, NFI = 0.91, CFI = 0.98, RMR = 0.04, SRMR = 0.03). In conclusion, TCS-HPE has four dimensions with 24 items, including teaching identification, teaching involvement, teaching objectives and tendency towards work continuation. It is an acceptable measurement instrument with reliability and validity.

Keywords: Attitude, belief, construct validity, teachers' professional development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
218 Prediction of Phenolic Compound Migration Process through Soil Media using Artificial Neural Network Approach

Authors: Supriya Pal, Kalyan Adhikari, Somnath Mukherjee, Sudipta Ghosh

Abstract:

This study presents the application of artificial neural network for modeling the phenolic compound migration through vertical soil column. A three layered feed forward neural network with back propagation training algorithm was developed using forty eight experimental data sets obtained from laboratory fixed bed vertical column tests. The input parameters used in the model were the influent concentration of phenol(mg/L) on the top end of the soil column, depth of the soil column (cm), elapsed time after phenol injection (hr), percentage of clay (%), percentage of silt (%) in soils. The output of the ANN was the effluent phenol concentration (mg/L) from the bottom end of the soil columns. The ANN predicted results were compared with the experimental results of the laboratory tests and the accuracy of the ANN model was evaluated.

Keywords: Modeling, Neural Networks, Phenol, Soil media

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
217 Issues in Deploying Smart Antennas in Mobile Radio Networks

Authors: Rameshwar Kawitkar

Abstract:

With the exponentially increasing demand for wireless communications the capacity of current cellular systems will soon become incapable of handling the growing traffic. Since radio frequencies are diminishing natural resources, there seems to be a fundamental barrier to further capacity increase. The solution can be found in smart antenna systems. Smart or adaptive antenna arrays consist of an array of antenna elements with signal processing capability, that optimize the radiation and reception of a desired signal, dynamically. Smart antennas can place nulls in the direction of interferers via adaptive updating of weights linked to each antenna element. They thus cancel out most of the co-channel interference resulting in better quality of reception and lower dropped calls. Smart antennas can also track the user within a cell via direction of arrival algorithms. This implies that they are more advantageous than other antenna systems. This paper focuses on few issues about the smart antennas in mobile radio networks.

Keywords: Smart/Adaptive Antenna, Multipath fading, Beamforming, Radio propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2668
216 Self-Perceived Employability of Students of International Relations of University of Warmia and Mazury in Poland

Authors: Marzena Świgoń

Abstract:

Nowadays, graduates should be prepared for serious challenges in the internal and external labor market. The notion that a degree is a “passport to employment” has been relegated to the past. In the last few years a phenomenon in the form of the increasing unemployment of highly educated young people in EU countries, including Poland has been observed. Empirical studies were conducted among Polish students in the scope of the so-called self-perceived employability review. In this study, a special scale was used which consisted of 19 statements regarding five components: student’s perception of university; field of study; self-belief; state of the external labor market; and, personal knowledge management. The respondent group consisted of final-year master’s students of International Relations at the University of Warmia and Mazury in Olsztyn, Poland. The findings of the empirical studies were compiled using statistical methods: descriptive statistics and inferential statistics. In general, in light of the conducted studies, the self-perceived employability of the Polish students was not high. Limitations of the studies were discussed, as well as the implications for future research in the scope of the students’ employability.

Keywords: Self-perceived employability, students of international relations, university education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
215 An Overview of the Advice Process and the Scientific Production of the Adviser-Advised Relationship in the Areas of Engineering

Authors: Tales H. J. Moreira, Thiago M. R. Dias, Gray F. Moita

Abstract:

The adviser-advised relationship, in addition to the evident propagation of knowledge, can provide an increase in the scientific production of the advisors. Specifically, in post-graduate programs, in which the advised submit diverse papers in different means of publication, these end up boosting the production of their advisor, since in general the advisors appear as co-authors, responsible for instructing and assisting in the development of the work. Therefore, to visualize the orientation process and the scientific production resulting from this relation is another important way of analyzing the scientific collaboration in the different areas of knowledge. In this work, are used the data of orientations and postgraduate supervisions from the Lattes curricula, from the main advisors who work in the Engineering area, to obtain an overview of the process of orientation of this group, and even, to produce Academic genealogical trees, where it is possible to verify how knowledge has spread in the diverse areas of engineering.

Keywords: Academic genealogy, advice, engineering, lattes platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
214 Spatial Correlation of Channel State Information in Real LoRa Measurement

Authors: Ahmed Abdelghany, Bernard Uguen, Christophe Moy, Dominique Lemur

Abstract:

The Internet of Things (IoT) is developed to ensure monitoring and connectivity within different applications. Thus, it is critical to study the channel propagation characteristics in Low Power Wide Area Network (LPWAN), especially LoRaWAN. In this paper, an in-depth investigation of the reciprocity between the uplink and downlink Channel State Information (CSI) is done by performing an outdoor measurement campaign in the area of Campus Beaulieu in Rennes. At each different location, the CSI reciprocity is quantified using the Pearson Correlation Coefficient (PCC) which shows a very high linear correlation between the uplink and downlink CSI. This reciprocity feature could be utilized for the physical layer security between the node and the gateway. On the other hand, most of the CSI shapes from different locations are highly uncorrelated with each other. Hence, it can be anticipated that this could achieve significant localization gain by utilizing the frequency hopping in the LoRa systems to get access to a wider band.

Keywords: IoT, LPWAN, LoRa, RSSI, effective signal power, onsite measurement, smart city, channel reciprocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501
213 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions

Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic

Abstract:

Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.

Keywords: Absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
212 A Boundary Fitted Nested Grid Model for Tsunami Computation along Penang Island in Peninsular Malaysia

Authors: Md. Fazlul Karim, Ahmad Izani Ismail, Mohammed Ashaque Meah

Abstract:

This paper focuses on the development of a 2-D boundary fitted and nested grid (BFNG) model to compute the tsunami propagation of Indonesian tsunami 2004 along the coastal region of Penang in Peninsular Malaysia.

In the presence of a curvilinear coastline, boundary fitted grids are suitable to represent the model boundaries accurately. On the other hand, when large gradient of velocity within a confined area is expected, the use of a nested grid system is appropriate to improve the numerical accuracy with the least grid numbers.

This paper constructs a shallow water nested and orthogonal boundary fitted grid model and presents computational results of the tsunami impact on the Penang coast due to the Indonesian tsunami of 2004. The results of the numerical simulations are compared with available data.

Keywords: Boundary Fitted Nested Model, Tsunami, Penang Island, 2004 Indonesian Tsunami.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
211 Improving Spatiotemporal Change Detection: A High Level Fusion Approach for Discovering Uncertain Knowledge from Satellite Image Database

Authors: Wadii Boulila, Imed Riadh Farah, Karim Saheb Ettabaa, Basel Solaiman, Henda Ben Ghezala

Abstract:

This paper investigates the problem of tracking spa¬tiotemporal changes of a satellite image through the use of Knowledge Discovery in Database (KDD). The purpose of this study is to help a given user effectively discover interesting knowledge and then build prediction and decision models. Unfortunately, the KDD process for spatiotemporal data is always marked by several types of imperfections. In our paper, we take these imperfections into consideration in order to provide more accurate decisions. To achieve this objective, different KDD methods are used to discover knowledge in satellite image databases. Each method presents a different point of view of spatiotemporal evolution of a query model (which represents an extracted object from a satellite image). In order to combine these methods, we use the evidence fusion theory which considerably improves the spatiotemporal knowledge discovery process and increases our belief in the spatiotemporal model change. Experimental results of satellite images representing the region of Auckland in New Zealand depict the improvement in the overall change detection as compared to using classical methods.

Keywords: Knowledge discovery in satellite databases, knowledge fusion, data imperfection, data mining, spatiotemporal change detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
210 Numerical Simulation of Flow and Combustionin an Axisymmetric Internal Combustion Engine

Authors: Nureddin Dinler, Nuri Yucel

Abstract:

Improving the performance of internal combustion engines is one of the major concerns of researchers. Experimental studies are more expensive than computational studies. Also using computational techniques allows one to obtain all the required data for the cylinder, some of which could not be measured. In this study, an axisymmetric homogeneous charged spark ignition engine was modeled. Fluid motion and combustion process were investigated numerically. Turbulent flow conditions were considered. Standard k- ε turbulence model for fluid flow and eddy break-up model for turbulent combustion were utilized. The effects of valve angle on the fluid flow and combustion are analyzed for constant air/fuel and compression ratios. It is found that, velocities and strength of tumble increases in-cylinder flow and due to increase in turbulence strength, the flame propagation is faster for small valve angles.

Keywords: CFD simulation, eddy break-up model, k-εturbulence model, reciprocating engine flow and combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
209 Neural Network Optimal Power Flow(NN-OPF) based on IPSO with Developed Load Cluster Method

Authors: Mat Syai'in, Adi Soeprijanto

Abstract:

An Optimal Power Flow based on Improved Particle Swarm Optimization (OPF-IPSO) with Generator Capability Curve Constraint is used by NN-OPF as a reference to get pattern of generator scheduling. There are three stages in Designing NN-OPF. The first stage is design of OPF-IPSO with generator capability curve constraint. The second stage is clustering load to specific range and calculating its index. The third stage is training NN-OPF using constructive back propagation method. In training process total load and load index used as input, and pattern of generator scheduling used as output. Data used in this paper is power system of Java-Bali. Software used in this simulation is MATLAB.

Keywords: Optimal Power Flow, Generator Capability Curve, Improved Particle Swarm Optimization, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
208 Recognition of Noisy Words Using the Time Delay Neural Networks Approach

Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha

Abstract:

This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.

Keywords: Neural networks, Noise, Speech Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
207 Reliability Analysis of Underground Pipelines Using Subset Simulation

Authors: Kong Fah Tee, Lutfor Rahman Khan, Hongshuang Li

Abstract:

An advanced Monte Carlo simulation method, called Subset Simulation (SS) for the time-dependent reliability prediction for underground pipelines has been presented in this paper. The SS can provide better resolution for low failure probability level with efficient investigating of rare failure events which are commonly encountered in pipeline engineering applications. In SS method, random samples leading to progressive failure are generated efficiently and used for computing probabilistic performance by statistical variables. SS gains its efficiency as small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment. It is hoped that the development work can promote the use of SS tools for uncertainty propagation in the decision-making process of underground pipelines network reliability prediction.

Keywords: Underground pipelines, Probability of failure, Reliability and Subset Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554
206 Discrete Polynomial Moments and Savitzky-Golay Smoothing

Authors: Paul O'Leary, Matthew Harker

Abstract:

This paper presents unified theory for local (Savitzky- Golay) and global polynomial smoothing. The algebraic framework can represent any polynomial approximation and is seamless from low degree local, to high degree global approximations. The representation of the smoothing operator as a projection onto orthonormal basis functions enables the computation of: the covariance matrix for noise propagation through the filter; the noise gain and; the frequency response of the polynomial filters. A virtually perfect Gram polynomial basis is synthesized, whereby polynomials of degree d = 1000 can be synthesized without significant errors. The perfect basis ensures that the filters are strictly polynomial preserving. Given n points and a support length ls = 2m + 1 then the smoothing operator is strictly linear phase for the points xi, i = m+1. . . n-m. The method is demonstrated on geometric surfaces data lying on an invariant 2D lattice.

Keywords: Gram polynomials, Savitzky-Golay Smoothing, Discrete Polynomial Moments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790
205 Design of Wireless and Traceable Sensors for Internally Illuminated Photoreactors

Authors: Alexander Sutor, David Demetz

Abstract:

We present methods for developing wireless and traceable sensors for photobioreactors or photoreactors in general. The main focus of application are reactors which are wirelessly powered. Due to the promising properties of the propagation of magnetic fields under water we implemented an inductive link with an on/off switched hartley-oscillator as transmitter and an LC-tank as receiver. For this inductive link we used a carrier frequency of 298 kHz. With this system we performed measurements to demonstrate the independence of the magnetic field from water or salty water. In contrast we showed the strongly reduced range of RF-transmitter-receiver systems at higher frequencies (433 MHz and 2.4 GHz) in water and in salty water. For implementing the traceability of the sensors, we performed measurements to show the well defined orientation of the magnetic field of a coil. This information will be used in future work for implementing an inductive link based traceability system for our sensors.

Keywords: Wireless sensors, traceable sensors, photoreactor, internal illumination, wireless power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793
204 Improvement in Performance and Emission Characteristics of a Single Cylinder S.I. Engine Operated on Blends of CNG and Hydrogen

Authors: Sarbjot Singh Sandhu

Abstract:

This paper presents the experimental results of a single cylinder Enfield engine using an electronically controlled fuel injection system which was developed to carry out exhaustive tests using neat CNG, and mixtures of hydrogen in compressed natural gas (HCNG) as 0, 5, 10, 15 and 20% by energy. Experiments were performed at 2000 and 2400 rpm with wide open throttle and varying the equivalence ratio. Hydrogen which has fast burning rate, when added to compressed natural gas, enhances its flame propagation rate. The emissions of HC, CO, decreased with increasing percentage of hydrogen but NOx was found to increase. The results indicated a marked improvement in the brake thermal efficiency with the increase in percentage of hydrogen added. The improved thermal efficiency was clearly observed to be more in lean region as compared to rich region. This study is expected to reduce vehicular emissions along with increase in thermal efficiency and thus help in reduction of further environmental degradation.

Keywords: Hydrogen, CNG, HCNG, Emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2712
203 Application of Feed-Forward Neural Networks Autoregressive Models in Gross Domestic Product Prediction

Authors: Ε. Giovanis

Abstract:

In this paper we present an autoregressive model with neural networks modeling and standard error backpropagation algorithm training optimization in order to predict the gross domestic product (GDP) growth rate of four countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer after the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model in the out-of-sample period. The idea behind this approach is to propose a parametric regression with weighted variables in order to test for the statistical significance and the magnitude of the estimated autoregressive coefficients and simultaneously to estimate the forecasts.

Keywords: Autoregressive model, Error back-propagation Feed-Forward neural networks, , Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
202 Accessibility and Visibility through Space Syntax Analysis of the Linga Raj Temple in Odisha, India

Authors: S. Pramanik

Abstract:

Since the early ages, the Hindu temples have been interpreted through various Vedic philosophies. These temples are visited by pilgrims which demonstrate the rituals and religious belief of communities, reflecting a variety of actions and behaviors. Darsana a direct seeing, is a part of the pilgrimage activity. During the process of Darsana, a devotee is prepared for entry in the temple to realize the cognizing Truth culminating in visualizing the idol of God, placed at the Garbhagriha (sanctum sanctorum). For this, the pilgrim must pass through a sequential arrangement of spaces. During the process of progress, the pilgrims visualize the spaces differently from various points of views. The viewpoints create a variety of spatial patterns in the minds of pilgrims coherent to the Hindu philosophies. The space organization and its order are perceived by various techniques of spatial analysis. A temple, as examples of Kalinga stylistic variations, has been chosen for the study. This paper intends to demonstrate some visual patterns generated during the process of Darsana (visibility) and its accessibility by Point Isovist Studies and Visibility Graph Analysis from the entrance (Simha Dwara) to The Sanctum sanctorum (Garbhagriha).

Keywords: Hindu Temple Architecture, Point Isovist, space syntax analysis, visibility graph analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
201 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction

Authors: E. Giovanis

Abstract:

In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.

Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
200 Myths of Thangal Origin from an Anthropological Perspective

Authors: Monoranjan Maibam, Arundhati Maibam, Bojen Akoijam

Abstract:

Myths may be understood as a special kind of literature though not found in written form. Through myths, anthropologists make attempts to describe a world which members of a literate society can barely imagine. Mythical stories about origin of numerous ethnic and tribal communities have helped in tracing their route of migration and the long journey undertaken before arriving at their present places of settlement. This study intends to highlight the myths associated with the origin of the Thangal tribe of Manipur from an anthropological perspective and interpret the stories in the context of evolution, migration and relationship with other neighbouring groups. Fieldwork was conducted using an interview guide to collect primary data and published literatures were consulted for secondary data. The result show two popular versions of origin myths are found among the Thangal- first is origin from a cave at Makhel located in the Maram area and second is the belief that the Thangal, the Tangkhul and the Meitei are brothers who emerged out of a cave long ago. In conclusion, the origin myths of the Thangal may be confirmed and established through archaeological findings in the form of artefacts. Mention of erection of memorial stones in the second version is a good clue to start an archaeological survey of the sites which are believed to have been once occupied by the people.

Keywords: Anthropology, migration, myth, Thangal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
199 Theoretical Appraisal of Satisfactory Decisions: Uncertainty, Evolutionary Ideas and Beliefs, and Satisfactory Time Use

Authors: Okay Gunes

Abstract:

Unsatisfactory experiences due to an information shortage regarding the future pay-offs of actual choices, yield satisficing decision-making. This research will examine, for the first time in the literature, the motivation behind suboptimal decisions due to uncertainty by subjecting Adam Smith’s and Jeremy Bentham’s assumptions about the nature of the actions that lead to satisficing behavior, in order to clarify the theoretical background of a “consumption-based satisfactory time” concept. The contribution of this paper with respect to the existing literature is threefold: firstly, it is showed in this paper that Adam Smith’s uncertainty is related to the problem of the constancy of ideas and not related directly to beliefs. Secondly, possessions, as in Jeremy Bentham’s oeuvre, are assumed to be just as pleasing, as protecting and improving the actual or expected quality of life, so long as they reduce any displeasure due to the undesired outcomes of uncertainty. Finally, each consumption decision incurs its own satisfactory time period, owed to not feeling hungry, being healthy, not having transportation…etc. This reveals that the level of satisfaction is indeed a behavioral phenomenon where its value would depend on the simultaneous satisfaction derived from all activities.

Keywords: Decision-making, idea and belief, satisficing, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
198 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher

Authors: M. F. Haroun, T. A. Gulliver

Abstract:

In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.

Keywords: Chaotic systems, image encryption, 3D Lorenz attractor, non-autonomous modulation, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
197 Linear Quadratic Gaussian/Loop Transfer Recover Control Flight Control on a Nonlinear Model

Authors: T. Sanches, K. Bousson

Abstract:

As part of the development of a 4D autopilot system for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path control based on the flight sensors data output that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy filter or the Linear Quadratic Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, the utter complexity of the control system, together with the robustness and reliability required of such a system on a UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its ,performance. As such, a nonlinear algorithm based upon the LQG/LTR, is validated through computational simulation testing, is proposed on this paper.

Keywords: Autonomous flight, LQG/LTR, nonlinear state estimator, robust flight control and stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695