
 

 

  
Abstract—In this paper we present an efficient approach for the 

prediction of two sunspot-related time series, namely the Yearly 
Sunspot Number and the IR5 Index, that are commonly used for 
monitoring solar activity. The method is based on exploiting partially 
recurrent Elman networks and it can be divided into three main steps: 
the first one consists in a “de-rectification” of the time series under 
study in order to obtain a new time series whose appearance, similar 
to a sum of sinusoids, can be modelled by our neural networks much 
better than the original dataset. After that, we normalize the de-
rectified data so that they have zero mean and unity standard 
deviation and, finally, train an Elman network with only one input, a 
recurrent hidden layer and one output using a back-propagation 
algorithm with variable learning rate and momentum. The achieved 
results have shown the efficiency of this approach that, although very 
simple, can perform better than most of the existing solar activity 
forecasting methods. 
 

Keywords—Elman neural networks, sunspot, solar activity, time 
series prediction.  

I. INTRODUCTION 
OLAR activity prediction is nowadays a topic of great 
interest in the scientific community because the emission 

of solar particles and electromagnetic radiations affects not 
only telecommunication systems, electric power transmission 
lines, space activities concerning operations of low-Earth 
orbiting satellites, but also long term climate variations, 
weather and other ionospheric parameters. Consequently, it is 
very important to know in advance the future behavior of 
solar activity, that is strongly related to the number of dark 
spots observed on the sun. 

For this reason, the monthly and yearly sunspot numbers as 
well as the related time series are the most suitable indexes 
used to characterize the level of solar activity. In this work, 
we use data provided by the Sunspot Index Data Center of the 
Federation of Astronomical and Geophysical Data Analysis 
Services [1]. In the last years, a lot of studies have been made 
on the forecast of solar activity and in most cases the used 
predictors are based on learning machines, particularly  
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Artificial Neural Networks (ANNs) [2], [3], [4], [5]. This is 
surely due to their well-known characteristics of adaptability 
and nonlinear universal mapping approximation. For example, 
we can cite the work presented in [2], that compares numerous 
neural architectures for the prediction of the IR5 Index, or the 
study in [5], that combines fossil and sunspot data to train a 
neural system to forecast the Yearly Sunspot Number. 
However, it is important to point out that interesting results 
have been also obtained using other prediction approaches [6].  

This paper presents a forecasting methodology for sunspot-
related time series exploiting partially recurrent Elman 
networks as predictor tools. Our choice has been addressed to 
this kind of neural model because it works well to process 
temporal patterns. We have developed an efficient data pre-
processing phase consisting in two different steps before the 
training of the network, in order to convert the original time 
series into a new sequence that can be easily modeled by the 
chosen neural architectures, and to accelerate the learning 
phase. The combination of this approach with Elman networks 
has allowed to build a simple and very efficient prediction 
system for sunspot-related time series that performs better 
than most existing methods. Elman networks have been 
previously employed in literature to deal with the prediction of 
sunspot time series [2]. However, we train these models using 
a completely different method of presenting the training data 
to the network, with the advantage of obtaining better results 
using a much lower number of adjustable parameters.        

The paper is organized as follows. The next Section 
describes the sunspot-related time series analyzed in this 
work. An overview on the neural structures used as 
forecasting tools is given in Section 3. In Section 4, the 
description of the proposed methodology is provided. Section 
5 is dedicated to the experimental results obtained and Section 
6, finally, gives the concluding remarks. 

II. SUNSPOT DATA 
 Solar activity is regularly monitored by many world 
observatories and research centers that are able to provide the 
relative number of dark spots observed on the sun day after 
day. These data are recorded to give the so-called sunspot 
related time series.  
 In this work we employ the Yearly Sunspot Number, 
showed in Fig. 1, that contains the yearly number of dark 
spots from 1700 to 2004, and the IR5 Index, a five-month  
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running mean of the monthly sunspot number MR: 

where IR5t is the index for month t and MRt is the mean 
sunspot number of the same month. This time series is 
currently used, for example, by the French Telecom’s research 
center, the Centre National d’Ètudes des Télécommunications 
(CNET), which regularly publishes and distributes reports 
about six-month ahead predictions of the IR5 Index to its 
users. The time series we take into account starts from January 
1849 and ends in May 2004 (Fig. 2). Obviously, both the time 
series continue until now, but to make correct comparisons we 
have used the same set of values of other previous works. 
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Fig. 1 The Yearly Sunspot Number 
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       Fig. 2 The IR5 Index Time Series 

 
 
 
 
 

III. ELMAN NEURAL NETWORKS 
The prediction of a time series consists, given a set of past 

observations (xt , xt-1, …, xt-n), in finding the future value xt+m, 
with m >0. The forecast        is computed on the past history as 
following: 

ANNs, that are well-known as universal function 
approximators, are today extensively employed to estimate the 
unknown function f. In order to process temporal patterns, an 
ANN must contain memory. If the neural model is a Multi 
Layer Perceptron (MLP), the simplest way to build memory 
into the network is to feed the network with a tapped delay 
line which stores past values of the input. The second way 
consists in using positive feedback, that is making the network 
recurrent. 

In an Elman network [7], also known as partially recurrent 
neural network, positive feedback is exploited to build 
memory by adding recurrent connections as shown in Fig. 3.  
These structures are MLPs with the difference that the input 
layer is constituted by input neurons and context units, which 
store delayed hidden layer neurons values from the previous 
time step to present them to the network as additional inputs in 
the current time step. The outputs of the network are not fed 
back to the inputs. It is important to point out that each hidden 
neuron has a context unit, so an Elman network includes as 
many context units as hidden neurons. This means that, even 
if two Elman networks, with the same weights and biases, are 
given identical inputs at a given time step, the outputs can be 
different due to different feedback states. These architectures 
are usually called partially recurrent neural networks since 
the recurrent connections have weights fixed to 1, which are 
not modified during the training process. This results in the 
great advantage that standard back-propagation algorithms can 
be used to train this kind of models. The Elman networks we 
use in this work have only one hidden layer with hyperbolic 
tangent transfer function, and an output layer with linear 
activation function. 

 
Fig. 3 Structure of an Elman network with one input and one output 

IR5t = 1/5 (MRt-3 + MRt-2 + MRt-1 + MRt + MRt+1 )  (1)

         ).,...,,(~
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IV. THE PROPOSED FORECASTING METHODOLOGY FOR  
SUNSPOT TIME SERIES 

In the last years ANNs have been widely used in time series 
prediction tasks and a lot of architectures, training algorithms 
and more and more efficient design procedures have been 
developed. The approach proposed in this work to predict 
sunspot-related time series is principally based on using 
Elman networks as forecasting tools, but it is characterized by 
a fine data pre-processing in order to prepare the most suitable 
training set for the network. Firstly, we use a more natural 
representation of the time series, achieved by “de-rectifying” 
the data so that the sign of the signal is switched at every cycle 
minimum, as shown in Fig. 4 for the Yearly Sunspot Number. 
In fact, as suggested by Wan [5], this is well motivated since 
the approximate 11 year solar cycle actually consists of a 22 
year magnetic cycle that flips polarity every 11 years (see also 
[8]). In this way, the new time series appears more like a sum 
of sinusoids, whose oscillating character can be “learnt” much 
better than the original time series. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 De-rectification of the Yearly Sunspot Number 
 
After that, we normalize data so that they have zero mean 

and unity standard deviation since, among the numerous 
methods of data normalization, this kind of approach has 
proved to match very well with the previous phase of de-
rectification.  

 
 
 
 
 
 
 
 
 
 
 
 
 

The used architectures present only one input neuron, a 
number of hidden units chosen by using trial and error 
procedures and one output unit. After the network design, we 
initialize the weights of the connections with the Nguyen-
Widrow method [9]. Finally, the entire input sequence is 
presented to the network that is trained using a back-
propagation algorithm with variable learning rate and 
momentum. In fact other algorithms, such as the Levenberg-
Marquardt, tend to proceed so rapidly that they do not usually 
work well in an Elman network. After training, we test the 
prediction accuracy on the testing set. Obviously, it is 
necessary to normalize the testing data as previously done for 
the training set before to simulate the network. Fig. 5 shows a 
generic overview of the proposed approach. 

V. EXPERIMENTAL RESULTS 
 The proposed methodology has been applied to predict the 
previously introduced sunspot-related time series. Since the 
temporal patterns under study are often used to test the quality 
of a prediction method, we can compare our approach with 
numerous results found in literature. According to the 
common practice, the accuracy of the prediction is evaluated 
in terms of the Normalized Mean Squared Error (NMSE), also 
called by some authors the Average Relative Variance (ARV):  

where:  
xi = actual value of the ith point of the series of length N; 
   = predicted value; 
σ2 = variance of the true time series in the prediction interval N. 

A. Yearly Sunspot Number 
 The first time series we take into account is the Yearly 
Sunspot Number. Usually, data from 1700 to 1920 are used 
for the training phase, and the performance of the model is 
evaluated on two or three testing set: from 1921 to 1955 
(Test1), from 1956 to 1979 (Test2), and from 1980 to 1994 
(Test3). After few experiments, we have found optimal 
performance using an Elman network with only 2 neurons in 
the hidden layer, for a total number of parameters of 11. Table 
I summarizes the prediction accuracy on the single-step 
prediction  task  and  shows  several  comparisons  with  many  
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Fig. 5 Generic overview of the proposed method 
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previous works on this time series. For each design method 
we give the number of free variables used and the lowest 
NMSE (see [10] and [11] for the comparison results). From 
the results in Table I it is possible to observe that our approach 
outperforms simple Auto-Regressive models (AR), feed-
forward MLPs such as the Weight Elimination Feed Forward 
Network (WNet) [12], fully recurrent neural networks as the 
Dynamical Recurrent Neural Network (DRNN) [13], the Soft 
Weight Sharing Network (SSNet) [14], the Scale Neural 
Network (ScaleNet) presented in [15], the Committee 
Prediction method of Wan [7], the recurrent networks trained 
with the Back Propagation Through Time algorithm (BPTT) 
and one of its variant, the Constructive BPTT developed in 
[11]. Only the Violation Guided Back Propagation technique 
(VGBP) [10], based on a recurrent Finite Impulse Response 
(FIR) network, is more accurate than our method on the first 
two tests. To our knowledge, the prediction result obtained on 
Test3 is better than that of any other existing approach. Fig. 6 
graphically illustrates the achieved results. As regards the 
multi-step prediction task, it is known that one can train a 
network to directly forecast the desired prediction horizon as 
well as using the iterated method, that is exploiting the values 
predicted in the previous time steps as inputs for subsequent 
predictions. Analyzing both the approaches we have observed 
that, in this case and for this kind of neural architecture, the 
direct method is the best for this time series. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Also in this prediction task, the networks have only 2 hidden 
neurons. Table II summarizes the mean results obtained until a 
prediction horizon of 6. In order to make a comparison with the 
most recent results published in literature about a medium-term 
horizon prediction of the Yearly Sunspot Number, we have 
computed the NMSEs on the cumulated test set involving Test1 
and Test2. In all the multi-step predictions, the Elman networks 
designed and trained using the proposed approach present the 
best performance, as one can see also from Fig. 7, that illustrates 
a graph showing a comparison between the presented 
forecasting methodology and three Recurrent Neural Networks 
(RNNs) trained with the BPTT algorithm, the CBPTT and the 
Exploratory BPTT (EBPTT) [11]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 NMSEs obtained by various methods on the cumulated 
 test set (1921-1979) versus the prediction horizon 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE I 
COMPARISON BETWEEN DESIGN METHODS FOR THE SINGLE STEP PREDICTION 

OF THE YEARLY SUNSPOT NUMBER 
NMSE Training 

Set Design Method  Para. Test1 
(1921-1955) 

Test2 
(1956-1979) 

Test3 
(1980-1994) 

AR (12) 14 0.427 0.966 0.238 
WNet 113 0.086 0.350 0.219 
SSNet N/A 0.077 N/A N/A 
DRNN 30 0.091 0.273 N/A 
COMM N/A 0.065 0.240 0.148 

ScaleNET N/A 0.057 0.130 N/A 
RNN+BPTT 155 0.084 0.300 N/A 

RNN+CBPTT 15 0.092 0.251 N/A 
VGBP 11 0.033 0.052 0.033 

1700-
1920 
(220 

points) 

Proposed 11 0.043 0.080 0.028 

TABLE II 
NMSEs OBTAINED BY VARIOUS METHODS FOR MULTI STEP PREDICTION OF 

THE YEARLY SUNSPOT NUMBER  
Design Methods Steps 

Ahead Proposed  RNN+EBPTT RNN+CBPTT RNN+BPTT 
2 0.153 0.53 0.69 0.88 
3 0.238 0.79 0.99 1.14 
4 0.231 0.80 1.17 1.22 
5 0.239 0.88 0.99 1.01 
6 0.288 0.84 1.01 1.02 
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 Fig. 6 Single-step prediction of the Yearly Sunspot Number 
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B. IR5 Index 
The second dataset we consider in this work is the IR5 

Index, used in several research centers in order to produce 
reports on monthly predictions of the solar activity. The 
CNET center, for example, constantly provides reports to its 
users about six-month ahead predictions of the IR5 Index. 
According to other previous works on this time series [2], [3], 
data from January 1849 to February 1972 (1478 points) are 
used for the training phase, whereas the samples from March 
1972 to December 1991 (238 points) are employed to test the 
model. Since the time series continues until now, in order to 
give more results and for a further evaluation of the proposed 
methodology, we also use a test set ranging from March 1972 
to May 2004 (387 points). We are interested in predicting the 
IR5 Index five or six months afterwards. To begin, we have 
“de-rectified” the time series as previously done for the Yearly 
Sunspot Number. After some attempts, we have obtained the 
results summarizes in Table III using an Elman network with 
3 hidden units for a total number of 19 free parameters. As it 
can be see from the NMSEs summarized in Table III (see [3] 
for the comparison results), the proposed approach performs 
better than the simple heuristic used by the CNET prediction 
service, a simple MLP, Modular Architecture, Expert Mixture, 
and the Conditional Distribution Discrimination Tree (CDTT) 
presented in [6]. Fig 8 shows the 5-month ahead prediction 
achieved on the testing set from March 1972 to May 2004.  

We wish to point out that, unlike reported in [6], we 
distinguish between the results found in literature on 5-month 
ahead predictions, as obtained by the CDTT in [6], and 6-
month ahead predictions, as summarized in [3]. It is very 
interesting to observe that the accuracy of the predictions we 
obtain on the first testing set is very close to that achieved in 
the second (and much larger) testing set. This confirms the 
quality of the proposed forecasting methodology. 

VI. CONCLUSIONS 
In this paper we have proposed a forecasting methodology 

based on using neural networks for sunspot-related time 
series. Among the numerous architectures proposed in these 
last years for time series prediction tasks, we have decided to 
exploit partially recurrent Elman networks for their simple and 
well-organized structure able to process temporal sequences. 
Moreover, an efficient data pre-processing phase to prepare 
the most suitable training set for the model have been 
developed. In fact the “de-rectification” process of this kind of 
data together with the normalization procedure with zero 
mean and unity standard deviation has proved to be an 
excellent coupling before the training of the network. 

In addition, the Nguyen-Widrow method has surely 
contributed to correctly initialize the set of weights and to 
speed up the learning phase. The results achieved on the 
predictions of the Yearly Sunspot Number are very good, 
especially on a medium-term horizon, and have been obtained 
using a neural architecture with a very small number of free 
parameters, which shows the efficiency of the proposed  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 5-month ahead prediction of the IR5 Index 
 
methodology. The same remarks can be said for the prediction 
of the IR5 Index, surely a task more difficult than the previous 
one, for which work in progress aims to further improve the 
prediction accuracy. In conclusion, we would like to point out 
the importance of forecasting sunspots remembering that 
Skylab, the space laboratory launched by the USA in the 1973, 
was brought to a premature demise in 1979 due to improperly 
forecasting increased atmospheric drag associated to a sunspot 
maximum. 
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