Search results for: network intrusion detection.
701 Connectionist Approach to Generic Text Summarization
Authors: Rajesh S.Prasad, U. V. Kulkarni, Jayashree.R.Prasad
Abstract:
As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591700 Neural Networks for Short Term Wind Speed Prediction
Authors: K. Sreelakshmi, P. Ramakanthkumar
Abstract:
Predicting short term wind speed is essential in order to prevent systems in-action from the effects of strong winds. It also helps in using wind energy as an alternative source of energy, mainly for Electrical power generation. Wind speed prediction has applications in Military and civilian fields for air traffic control, rocket launch, ship navigation etc. The wind speed in near future depends on the values of other meteorological variables, such as atmospheric pressure, moisture content, humidity, rainfall etc. The values of these parameters are obtained from a nearest weather station and are used to train various forms of neural networks. The trained model of neural networks is validated using a similar set of data. The model is then used to predict the wind speed, using the same meteorological information. This paper reports an Artificial Neural Network model for short term wind speed prediction, which uses back propagation algorithm.Keywords: Short term wind speed prediction, Neural networks, Back propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3068699 Intelligent Heart Disease Prediction System Using CANFIS and Genetic Algorithm
Authors: Latha Parthiban, R. Subramanian
Abstract:
Heart disease (HD) is a major cause of morbidity and mortality in the modern society. Medical diagnosis is an important but complicated task that should be performed accurately and efficiently and its automation would be very useful. All doctors are unfortunately not equally skilled in every sub specialty and they are in many places a scarce resource. A system for automated medical diagnosis would enhance medical care and reduce costs. In this paper, a new approach based on coactive neuro-fuzzy inference system (CANFIS) was presented for prediction of heart disease. The proposed CANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach which is then integrated with genetic algorithm to diagnose the presence of the disease. The performances of the CANFIS model were evaluated in terms of training performances and classification accuracies and the results showed that the proposed CANFIS model has great potential in predicting the heart disease.
Keywords: CANFIS, genetic algorithms, heart disease, membership function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3996698 ANN Models for Microstrip Line Synthesis and Analysis
Authors: Dr.K.Sri Rama Krishna, J.Lakshmi Narayana, Dr.L.Pratap Reddy
Abstract:
Microstrip lines, widely used for good reason, are broadband in frequency and provide circuits that are compact and light in weight. They are generally economical to produce since they are readily adaptable to hybrid and monolithic integrated circuit (IC) fabrication technologies at RF and microwave frequencies. Although, the existing EM simulation models used for the synthesis and analysis of microstrip lines are reasonably accurate, they are computationally intensive and time consuming. Neural networks recently gained attention as fast and flexible vehicles to microwave modeling, simulation and optimization. After learning and abstracting from microwave data, through a process called training, neural network models are used during microwave design to provide instant answers to the task learned.This paper presents simple and accurate ANN models for the synthesis and analysis of Microstrip lines to more accurately compute the characteristic parameters and the physical dimensions respectively for the required design specifications.Keywords: Neural Models, Algorithms, Microstrip Lines, Analysis, Synthesis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151697 Use of Caffeine and Human Pharmaceutical Compounds to Identify Sewage Contamination
Authors: Jingming Wu, Junqi Yue, Ruikang Hu, Zhaoguang Yang, Lifeng Zhang
Abstract:
Fecal coliform bacteria are widely used as indicators of sewage contamination in surface water. However, there are some disadvantages in these microbial techniques including time consuming (18-48h) and inability in discriminating between human and animal fecal material sources. Therefore, it is necessary to seek a more specific indicator of human sanitary waste. In this study, the feasibility was investigated to apply caffeine and human pharmaceutical compounds to identify the human-source contamination. The correlation between caffeine and fecal coliform was also explored. Surface water samples were collected from upstream, middle-stream and downstream points respectively, along Rochor Canal, as well as 8 locations of Marina Bay. Results indicate that caffeine is a suitable chemical tracer in Singapore because of its easy detection (in the range of 0.30-2.0 ng/mL), compared with other chemicals monitored. Relative low concentrations of human pharmaceutical compounds (< 0.07 ng/mL) in Rochor Canal and Marina Bay water samples make them hard to be detected and difficult to be chemical tracer. However, their existence can help to validate sewage contamination. In addition, it was discovered the high correlation exists between caffeine concentration and fecal coliform density in the Rochor Canal water samples, demonstrating that caffeine is highly related to the human-source contamination.Keywords: Caffeine, Human Pharmaceutical Compounds, Chemical Tracer, Sewage Contamination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515696 Skin Lesion Segmentation Using Color Channel Optimization and Clustering-based Histogram Thresholding
Authors: Rahil Garnavi, Mohammad Aldeen, M. Emre Celebi, Alauddin Bhuiyan, Constantinos Dolianitis, George Varigos
Abstract:
Automatic segmentation of skin lesions is the first step towards the automated analysis of malignant melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most effective color space for melanoma application. This paper proposes an automatic segmentation algorithm based on color space analysis and clustering-based histogram thresholding, a process which is able to determine the optimal color channel for detecting the borders in dermoscopy images. The algorithm is tested on a set of 30 high resolution dermoscopy images. A comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm, applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. By performing ROC analysis and ranking the metrics, it is demonstrated that the best results are obtained with the X and XoYoR color channels, resulting in an accuracy of approximately 97%. The proposed method is also compared with two state-of-theart skin lesion segmentation methods.Keywords: Border detection, Color space analysis, Dermoscopy, Histogram thresholding, Melanoma, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248695 A Pairwise-Gaussian-Merging Approach: Towards Genome Segmentation for Copy Number Analysis
Authors: Chih-Hao Chen, Hsing-Chung Lee, Qingdong Ling, Hsiao-Jung Chen, Sun-Chong Wang, Li-Ching Wu, H.C. Lee
Abstract:
Segmentation, filtering out of measurement errors and identification of breakpoints are integral parts of any analysis of microarray data for the detection of copy number variation (CNV). Existing algorithms designed for these tasks have had some successes in the past, but they tend to be O(N2) in either computation time or memory requirement, or both, and the rapid advance of microarray resolution has practically rendered such algorithms useless. Here we propose an algorithm, SAD, that is much faster and much less thirsty for memory – O(N) in both computation time and memory requirement -- and offers higher accuracy. The two key ingredients of SAD are the fundamental assumption in statistics that measurement errors are normally distributed and the mathematical relation that the product of two Gaussians is another Gaussian (function). We have produced a computer program for analyzing CNV based on SAD. In addition to being fast and small it offers two important features: quantitative statistics for predictions and, with only two user-decided parameters, ease of use. Its speed shows little dependence on genomic profile. Running on an average modern computer, it completes CNV analyses for a 262 thousand-probe array in ~1 second and a 1.8 million-probe array in 9 secondsKeywords: Cancer, pathogenesis, chromosomal aberration, copy number variation, segmentation analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479694 An Efficient Watermarking Method for MP3 Audio Files
Authors: Dimitrios Koukopoulos, Yiannis Stamatiou
Abstract:
In this work, we present for the first time in our perception an efficient digital watermarking scheme for mpeg audio layer 3 files that operates directly in the compressed data domain, while manipulating the time and subband/channel domain. In addition, it does not need the original signal to detect the watermark. Our scheme was implemented taking special care for the efficient usage of the two limited resources of computer systems: time and space. It offers to the industrial user the capability of watermark embedding and detection in time immediately comparable to the real music time of the original audio file that depends on the mpeg compression, while the end user/audience does not face any artifacts or delays hearing the watermarked audio file. Furthermore, it overcomes the disadvantage of algorithms operating in the PCMData domain to be vulnerable to compression/recompression attacks, as it places the watermark in the scale factors domain and not in the digitized sound audio data. The strength of our scheme, that allows it to be used with success in both authentication and copyright protection, relies on the fact that it gives to the users the enhanced capability their ownership of the audio file not to be accomplished simply by detecting the bit pattern that comprises the watermark itself, but by showing that the legal owner knows a hard to compute property of the watermark.
Keywords: Audio watermarking, mpeg audio layer 3, hard instance generation, NP-completeness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836693 High Accuracy ESPRIT-TLS Technique for Wind Turbine Fault Discrimination
Authors: Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui
Abstract:
ESPRIT-TLS method appears a good choice for high resolution fault detection in induction machines. It has a very high effectiveness in the frequency and amplitude identification. Contrariwise, it presents a high computation complexity which affects its implementation in real time fault diagnosis. To avoid this problem, a Fast-ESPRIT algorithm that combined the IIR band-pass filtering technique, the decimation technique and the original ESPRIT-TLS method was employed to enhance extracting accurately frequencies and their magnitudes from the wind stator current with less computation cost. The proposed algorithm has been applied to verify the wind turbine machine need in the implementation of an online, fast, and proactive condition monitoring. This type of remote and periodic maintenance provides an acceptable machine lifetime, minimize its downtimes and maximize its productivity. The developed technique has evaluated by computer simulations under many fault scenarios. Study results prove the performance of Fast- ESPRIT offering rapid and high resolution harmonics recognizing with minimum computation time and less memory cost.
Keywords: Spectral Estimation, ESPRIT-TLS, Real Time, Diagnosis, Wind Turbine Faults, Band-Pass Filtering, Decimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260692 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063691 Identification of Impact Loads and Partial System Parameters Using 1D-CNN
Authors: Xuewen Yu, Danhui Dan
Abstract:
The identification of impact loads and some hard-to-obtain system parameters is crucial for analysis, validation, and evaluation activities in the engineering field. This paper proposes a method based on 1D-CNN to identify impact loads and partial system parameters from the measured responses. To this end, forward computations are conducted to provide datasets consisting of triples (parameter θ, input u, output y). Two neural networks are then trained: one to learn the mapping from output y to input u and another to learn the mapping from input and output (u, y) to parameter θ. Subsequently, by feeding the measured output response into the trained neural networks, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameter.
Keywords: Convolutional neural network, impact load identification, system parameter identification, inverse problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106690 Spatial Correlation of Channel State Information in Real LoRa Measurement
Authors: Ahmed Abdelghany, Bernard Uguen, Christophe Moy, Dominique Lemur
Abstract:
The Internet of Things (IoT) is developed to ensure monitoring and connectivity within different applications. Thus, it is critical to study the channel propagation characteristics in Low Power Wide Area Network (LPWAN), especially LoRaWAN. In this paper, an in-depth investigation of the reciprocity between the uplink and downlink Channel State Information (CSI) is done by performing an outdoor measurement campaign in the area of Campus Beaulieu in Rennes. At each different location, the CSI reciprocity is quantified using the Pearson Correlation Coefficient (PCC) which shows a very high linear correlation between the uplink and downlink CSI. This reciprocity feature could be utilized for the physical layer security between the node and the gateway. On the other hand, most of the CSI shapes from different locations are highly uncorrelated with each other. Hence, it can be anticipated that this could achieve significant localization gain by utilizing the frequency hopping in the LoRa systems to get access to a wider band.
Keywords: IoT, LPWAN, LoRa, RSSI, effective signal power, onsite measurement, smart city, channel reciprocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505689 A Hypercube Social Feature Extraction and Multipath Routing in Delay Tolerant Networks
Authors: S. Balaji, M. Rajaram, Y. Harold Robinson, E. Golden Julie
Abstract:
Delay Tolerant Networks (DTN) which have sufficient state information include trajectory and contact information, to protect routing efficiency. However, state information is dynamic and hard to obtain without a global and/or long-term collection process. To deal with these problems, the internal social features of each node are introduced in the network to perform the routing process. This type of application is motivated from several human contact networks where people contact each other more frequently if they have more social features in common. Two unique processes were developed for this process; social feature extraction and multipath routing. The routing method then becomes a hypercube–based feature matching process. Furthermore, the effectiveness of multipath routing is evaluated and compared to that of single-path routing.
Keywords: Delay tolerant networks, entropy, human contact networks, hyper cubes, multipath Routing, social features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306688 A Four-Year Study of Thyroid Carcinoma in Hail Region: Increased Incidence
Authors: Laila Seada, Hanan Oreiby, Fawaz Al Rashid, Ashraf Negm
Abstract:
Background and Objective: In most areas of the world, the incidence of thyroid cancer has been increasing over the last decade, mostly due to a combination of early detection of the neoplasm resulting from sensitive procedures and increased population exposure to radiation and unrecognized carcinogens. Methods: Cases of thyroid cancer have been retrieved from the cancer registry at King Khalid Hospital during the period from August 2012 to April 2016. Age, gender and histopathologic types have been recorded. Results: Thyroid carcinoma ranked as the second most common malignancy in females (25%) after breast cancer (31%). It constituted 20.8% of all newly diagnosed cancer cases. As for males, it ranked the 4th type of malignancy after gastrointestinal cancer, lymphomas and soft tissue sarcomas. Mean age for females and males was 38.7 +/- 13.2 and 60.25 +/- 11.5 years, respectively, and the difference between the two groups was statistically significant (p value = 0.0001). Fifty-five (82%) were papillary carcinomas including 10 follicular variant of papillary (FVPC), and eight papillary micro carcinomas (PMC) and two tall cell/oncocytic variants. Follicular carcinomas constituted two (3.1%), while two (3.1%) were anaplastic, and two (3.1%) were medullary. Conclusion: Thyroid cancer incidence in Hail is ranking as the 2nd most common female malignancy similar to other regions in the Kingdom. However, this high incidence contrasts with much lower rates worldwide.
Keywords: Thyroid, Hail, papillary, micro carcinoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182687 A Computer Model of Language Acquisition – Syllable Learning – Based on Hebbian Cell Assemblies and Reinforcement Learning
Authors: Sepideh Fazeli, Fariba Bahrami
Abstract:
Investigating language acquisition is one of the most challenging problems in the area of studying language. Syllable learning as a level of language acquisition has a considerable significance since it plays an important role in language acquisition. Because of impossibility of studying language acquisition directly with children, especially in its developmental phases, computer models will be useful in examining language acquisition. In this paper a computer model of early language learning for syllable learning is proposed. It is guided by a conceptual model of syllable learning which is named Directions Into Velocities of Articulators model (DIVA). The computer model uses simple associational and reinforcement learning rules within neural network architecture which are inspired by neuroscience. Our simulation results verify the ability of the proposed computer model in producing phonemes during babbling and early speech. Also, it provides a framework for examining the neural basis of language learning and communication disorders.Keywords: Brain modeling, computer models, language acquisition, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591686 Synthesis and Analysis of Swelling and Controlled Release Behaviour of Anionic sIPN Acrylamide based Hydrogels
Authors: Atefeh Hekmat, Abolfazl Barati, Ebrahim Vasheghani Frahani, Ali Afraz
Abstract:
In modern agriculture, polymeric hydrogels are known as a component able to hold an amount of water due to their 3-dimensional network structure and their tendency to absorb water in humid environments. In addition, these hydrogels are able to controllably release the fertilisers and pesticides loaded in them. Therefore, they deliver these materials to the plants' roots and help them with growing. These hydrogels also reduce the pollution of underground water sources by preventing the active components from leaching. In this study, sIPN acrylamide based hydrogels are synthesised by using acrylamide free radical, potassium acrylate, and linear polyvinyl alcohol. Ammonium nitrate is loaded in the hydrogel as the fertiliser. The effect of various amounts of monomers and linear polymer, measured in molar ratio, on the swelling rate, equilibrium swelling, and release of ammonium nitrate is studied.Keywords: Hydrogel, controlled release, ammonium nitrate fertiliser, sIPN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163685 High Speed Bitwise Search for Digital Forensic System
Authors: Hyungkeun Jee, Jooyoung Lee, Dowon Hong
Abstract:
The most common forensic activity is searching a hard disk for string of data. Nowadays, investigators and analysts are increasingly experiencing large, even terabyte sized data sets when conducting digital investigations. Therefore consecutive searching can take weeks to complete successfully. There are two primary search methods: index-based search and bitwise search. Index-based searching is very fast after the initial indexing but initial indexing takes a long time. In this paper, we discuss a high speed bitwise search model for large-scale digital forensic investigations. We used pattern matching board, which is generally used for network security, to search for string and complex regular expressions. Our results indicate that in many cases, the use of pattern matching board can substantially increase the performance of digital forensic search tools.Keywords: Digital forensics, search, regular expression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807684 Analysis of Dropped Call Rate for Long Term Evolution Networks in Bayelsa State, Nigeria
Authors: Chibuzo Emeruwa, Nnamdi N. Omehe
Abstract:
This work attempts to effectively compare Dropped Call Rate (DCR) against industry benchmarks and competitor networks to identify areas for improvement and sets performance targets. Four mobile telecommunication networks operational in Bayelsa State Nigeria were considered. Results obtained shows that MTN and Airtel performed well within the regulator’s benchmark of ≤ 1% in all cases, while Globacom and 9moblie had instances where their performance fell outside the benchmark. The maximum values obtained within the period in view was 18.52% and it was in March 2016 for Globacom while the least value recorded is 0.00% and it was in September 2018 for 9mobile. In the seven years period under review, MTN and Airtel performed within the Nigerian Communication Commission’s (NCC) benchmark all through. This affirms that it is possible for the networks to perform optimally if adequate measures are put in place for improved Quality of Service (QoS).
Keywords: Attempted calls, data, dropped call rate, handover failure rate, key performance indicator, mobile network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 123683 Oral Examination: An Important Adjunct to the Diagnosis of Dermatological Disorders
Authors: Sanjay Saraf
Abstract:
The oral cavity can be the site for early manifestations of mucocutaneous disorders (MD) or the only site for occurrence of these disorders. It can also exhibit oral lesions with simultaneous associated skin lesions. The MD involving the oral mucosa commonly presents with signs such as ulcers, vesicles and bullae. The unique environment of the oral cavity may modify these signs of the disease, thereby making the clinical diagnosis an arduous task. In addition to the unique environment of oral cavity, the overlapping of the signs of various mucocutaneous disorders, also makes the clinical diagnosis more intricate. The aim of this review is to present the oral signs of dermatological disorders having common oral involvement and emphasize their importance in early detection of the systemic disorders. The aim is also to highlight the necessity of oral examination by a dermatologist while examining the skin lesions. Prior to the oral examination, it must be imperative for the dermatologists and the dental clinicians to have the knowledge of oral anatomy. It is also important to know the impact of various diseases on oral mucosa, and the characteristic features of various oral mucocutaneous lesions. An initial clinical oral examination is may help in the early diagnosis of the MD. Failure to identify the oral manifestations may reduce the likelihood of early treatment and lead to more serious problems. This paper reviews the oral manifestations of immune mediated dermatological disorders with common oral manifestations.
Keywords: Vesiculobullous lesions, Desquamative gingivitis, Nikolsky’s sign, Erythema.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623682 Modeling of Normal and Atherosclerotic Blood Vessels using Finite Element Methods and Artificial Neural Networks
Authors: K. Kamalanand, S. Srinivasan
Abstract:
Analysis of blood vessel mechanics in normal and diseased conditions is essential for disease research, medical device design and treatment planning. In this work, 3D finite element models of normal vessel and atherosclerotic vessel with 50% plaque deposition were developed. The developed models were meshed using finite number of tetrahedral elements. The developed models were simulated using actual blood pressure signals. Based on the transient analysis performed on the developed models, the parameters such as total displacement, strain energy density and entropy per unit volume were obtained. Further, the obtained parameters were used to develop artificial neural network models for analyzing normal and atherosclerotic blood vessels. In this paper, the objectives of the study, methodology and significant observations are presented.Keywords: Blood vessel, atherosclerosis, finite element model, artificial neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309681 Microstrip Slot Antenna for Triple Band Application in Wireless Communication
Authors: Biplab Bag
Abstract:
In this paper, the design of a coaxial feed single layer rectangular microstrip patch antenna for three different wireless communication band applications is presented. The proposed antenna is designed by using substrate Roger RT/duroid 5880 having permittivity of about 2.2 and tangent loss of 0.0009. The characteristics of the substrate are designed and to evaluate the performance of modeled antenna using HFSS v.11 EM simulator, from Ansoft. The proposed antenna has small in size and operates at 2.25GHz, 3.76GHz and 5.23GHz suitable for mobile satellite service (MSS) network, WiMAX and WLAN applications. The dimension of the patch and slots are optimized to obtain these desired functional frequency ranges. The simulation results with frequency response, radiation pattern and return loss, VSWR, Input Impedance are presented with appropriate table and graph.
Keywords: Microstrip, Tangent Loss, MSS, WiMAX, WLAN, Radiation Pattern, Return Loss, VSWR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3119680 Bandwidth Optimization through Dynamic Routing in ATM Networks: Genetic Algorithm and Tabu Search Approach
Authors: Susmi Routray, A. M. Sherry, B. V. R. Reddy
Abstract:
Asynchronous Transfer Mode (ATM) is widely used in telecommunications systems to send data, video and voice at a very high speed. In ATM network optimizing the bandwidth through dynamic routing is an important consideration. Previous research work shows that traditional optimization heuristics result in suboptimal solution. In this paper we have explored non-traditional optimization technique. We propose comparison of two such algorithms - Genetic Algorithm (GA) and Tabu search (TS), based on non-traditional Optimization approach, for solving the dynamic routing problem in ATM networks which in return will optimize the bandwidth. The optimized bandwidth could mean that some attractive business applications would become feasible such as high speed LAN interconnection, teleconferencing etc. We have also performed a comparative study of the selection mechanisms in GA and listed the best selection mechanism and a new initialization technique which improves the efficiency of the GA.Keywords: Asynchronous Transfer Mode(ATM), GeneticAlgorithm(GA), Tabu Search(TS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771679 A GA-Based Role Assignment Approach for Web-based Cooperative Learning Environments
Authors: Yi-Chun Chang, Jian-Wei Li
Abstract:
Web-based cooperative learning focuses on (1) the interaction and the collaboration of community members, and (2) the sharing and the distribution of knowledge and expertise by network technology to enhance learning performance. Numerous research literatures related to web-based cooperative learning have demonstrated that cooperative scripts have a positive impact to specify, sequence, and assign cooperative learning activities. Besides, literatures have indicated that role-play in web-based cooperative learning environments enhances two or more students to work together toward the completion of a common goal. Since students generally do not know each other and they lack the face-to-face contact that is necessary for the negotiation of assigning group roles in web-based cooperative learning environments, this paper intends to further extend the application of genetic algorithm (GA) and propose a GA-based algorithm to tackle the problem of role assignment in web-based cooperative learning environments, which not only saves communication costs but also reduces conflict between group members in negotiating role assignments.
Keywords: genetic algorithm (GA), role assignment, role-play; web-based cooperative learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461678 Post ERP Feral System and use of ‘Feral System as Coping Mechanism
Authors: Tajul Urus, S., Molla, A., Teoh, S.Y.
Abstract:
A number of studies highlighted problems related to ERP systems, yet, most of these studies focus on the problems during the project and implementation stages but not during the postimplementation use process. Problems encountered in the process of using ERP would hinder the effective exploitation and the extended and continued use of ERP systems and their value to organisations. This paper investigates the different types of problems users (operational, supervisory and managerial) faced in using ERP and how 'feral system' is used as the coping mechanism. The paper adopts a qualitative method and uses data collected from two cases and 26 interviews, to inductively develop a casual network model of ERP usage problem and its coping mechanism. This model classified post ERP usage problems as data quality, system quality, interface and infrastructure. The model is also categorised the different coping mechanism through use of 'feral system' inclusive of feral information system, feral data and feral use of technology.Keywords: Case Studies, Coping Mechanism, Post Implementation ERP system, Usage Problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511677 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS
Authors: S. A. Naeini, A. Khalili
Abstract:
Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.
Keywords: Settlement, subway line, FLAC3D, ANFIS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098676 Reliability Analysis of Underground Pipelines Using Subset Simulation
Authors: Kong Fah Tee, Lutfor Rahman Khan, Hongshuang Li
Abstract:
An advanced Monte Carlo simulation method, called Subset Simulation (SS) for the time-dependent reliability prediction for underground pipelines has been presented in this paper. The SS can provide better resolution for low failure probability level with efficient investigating of rare failure events which are commonly encountered in pipeline engineering applications. In SS method, random samples leading to progressive failure are generated efficiently and used for computing probabilistic performance by statistical variables. SS gains its efficiency as small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment. It is hoped that the development work can promote the use of SS tools for uncertainty propagation in the decision-making process of underground pipelines network reliability prediction.
Keywords: Underground pipelines, Probability of failure, Reliability and Subset Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3556675 Arabic Light Stemmer for Better Search Accuracy
Authors: Sahar Khedr, Dina Sayed, Ayman Hanafy
Abstract:
Arabic is one of the most ancient and critical languages in the world. It has over than 250 million Arabic native speakers and more than twenty countries having Arabic as one of its official languages. In the past decade, we have witnessed a rapid evolution in smart devices, social network and technology sector which led to the need to provide tools and libraries that properly tackle the Arabic language in different domains. Stemming is one of the most crucial linguistic fundamentals. It is used in many applications especially in information extraction and text mining fields. The motivation behind this work is to enhance the Arabic light stemmer to serve the data mining industry and leverage it in an open source community. The presented implementation works on enhancing the Arabic light stemmer by utilizing and enhancing an algorithm that provides an extension for a new set of rules and patterns accompanied by adjusted procedure. This study has proven a significant enhancement for better search accuracy with an average 10% improvement in comparison with previous works.Keywords: Arabic data mining, Arabic Information extraction, Arabic Light stemmer, Arabic stemmer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504674 Disturbances of the Normal Operation of Kosovo Power System Regarding Atmospheric Discharges
Authors: B. Prebreza, I. Krasniqi, G. Kabashi, G. Pula, N. Avdiu
Abstract:
This paper discusses aspects of outages in the electric transmission network in the Kosovo Power System caused by the atmospheric discharges.
Frequency and location of the atmospheric discharges in Kosovo territory will be provided by a lightning location system ALARM (Automated Lightning Alert and Risk Management) and from the data from the Meteorological Department in Prishtina International Airport. These data will be used to make comparisons with the actual outages registered in the Kosovo Power System from the Kosovo Transmission, systems and market operator (KOSTT) during a specific time period.
The lines with the worst performance determined, regarding the atmospheric discharges, will be choose for further discussions in terms of over voltages caused by the direct or indirect lightning strokes.
Recommendations for protection in terms of insulator coordination and surge arresters will be given at the end and in this stage dynamic simulation will take part.
Keywords: Atmospheric discharges, dynamic simulations, Kosovo Power System, surge arresters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839673 Paradigm of Digital Twin Application in Project Management in Architecture, Engineering and Construction
Authors: Kwok Tak Kit
Abstract:
With the growing trend of adoption of advanced technologies like, building information modeling, artificial intelligence, wireless network, the collaboration and integration of these technologies into digital twin become more prominent in architecture, engineering and construction (AEC) industry in view of the nature and scale of AEC industry which efficiently adopted the digital twin. Digital twin is provided to be effective for AEC professions for design and project management. The digital concept is continuously developing and it is vital for AEC professionals and other stakeholders to understand the digital twin concept and the adoption of various advanced building technologies related to the AEC industry. This paper is to review the application of digital twins application in project management in AEC industry and highlight the challenge of AEC partitioners faced by the revolution of technologies including digital twins and building information modelling (BIM) for further research and future study.
Keywords: Digital Twin, AEC, building information modeling, project management, internet of things.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932672 Gas Detection via Machine Learning
Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso
Abstract:
We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539