Search results for: Feedback Linearization controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1204

Search results for: Feedback Linearization controller

904 Efficient Realization of an ADFE with a New Adaptive Algorithm

Authors: N. Praveen Kumar, Abhijit Mitra, C. Ardil

Abstract:

Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.

Keywords: Decision feedback equalizer, Adaptive algorithm, Block based computation, Set membership filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
903 Feedback Stabilization Based on Observer and Guaranteed Cost Control for Lipschitz Nonlinear Systems

Authors: A. Thabet, G. B. H. Frej, M. Boutayeb

Abstract:

This paper presents a design of dynamic feedback control based on observer for a class of large scale Lipschitz nonlinear systems. The use of Differential Mean Value Theorem (DMVT) is to introduce a general condition on the nonlinear functions. To ensure asymptotic stability, sufficient conditions are expressed in terms of linear matrix inequalities (LMIs). High performances are shown through real time implementation with ARDUINO Duemilanove board to the one-link flexible joint robot.

Keywords: Feedback stabilization, DMVT, Lipschitz nonlinear systems, nonlinear observer, real time implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338
902 Magnetic Field Based Near Surface Haptic and Pointing Interface

Authors: Kasun Karunanayaka, Sanath Siriwardana, Chamari Edirisinghe, Ryohei Nakatsu, PonnampalamGopalakrishnakone

Abstract:

In this paper, we are presenting a new type of pointing interface for computers which provides mouse functionalities with near surface haptic feedback. Further, it can be configured as a haptic display where users may feel the basic geometrical shapes in the GUI by moving the finger on top of the device surface. These functionalities are achieved by tracking three dimensional positions of the neodymium magnet using Hall Effect sensors grid and generating like polarity haptic feedback using an electromagnet array. This interface brings the haptic sensations to the 3D space where previously it is felt only on top of the buttons of the haptic mouse implementations.

Keywords: Pointing interface, near surface haptic feedback, tactile display, tangible user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
901 A Novel EMG Feedback Control Method in Functional Electrical Stimulation Cycling System for Stroke Patients

Authors: Chien-Chih Chen, Ya-Hsin Hsueh, Zong-Cian He

Abstract:

With getting older in the whole population, the prevalence of stroke and its residual disability is getting higher and higher recently in Taiwan. The functional electrical stimulation cycling system (FESCS) is useful for hemiplegic patients. Because that the muscle of stroke patients is under hybrid activation. The raw electromyography (EMG) represents the residual muscle force of stroke subject whereas the peak-to-peak of stimulus EMG indicates the force enhancement benefiting from ES. It seems that EMG signals could be used for a parameter of feedback control mechanism. So, we design the feedback control protocol of FESCS, it includes physiological signal recorder, FPGA biomedical module, DAC and electrical stimulation circuit. Using the intensity of real-time EMG signal obtained from patients, as a feedback control method for the output voltage of FES-cycling system.

Keywords: Functional Electrical Stimulation cycling system EMG, control protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
900 On the Symbol Based Decision Feedback Equalizer

Authors: Mohammed Nafie

Abstract:

Decision Feedback equalizers (DFEs) usually outperform linear equalizers for channels with intersymbol interference. However, the DFE performance is highly dependent on the availability of reliable past decisions. Hence, in coded systems, where reliable decisions are only available after decoding the full block, the performance of the DFE will be affected. A symbol based DFE is a DFE that only uses the decision after the block is decoded. In this paper we derive the optimal settings of both the feedforward and feedback taps of the symbol based equalizer. We present a novel symbol based DFE filterbank, and derive its taps optimal settings. We also show that it outperforms the classic DFE in terms of complexity and/or performance.

Keywords: Coding, DFE, Equalization, Exponential Channelmodels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
899 Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm

Authors: S.C.Swain, A.K.Balirsingh, S. Mahapatra, S. Panda

Abstract:

This paper presents a systematic approach for designing Static Synchronous Series Compensator (SSSC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.

Keywords: Low frequency Oscillations, Phase CompensationTechnique, Real Coded Genetic Algorithm, Single-machine InfiniteBus Power System, Static Synchronous Series Compensator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
898 Designing a Robust Controller for a 6 Linkage Robot

Authors: G. Khamooshian

Abstract:

One of the main points of application of the mechanisms of the series and parallel is the subject of managing them. The control of this mechanism and similar mechanisms is one that has always been the intention of the scholars. On the other hand, modeling the behavior of the system is difficult due to the large number of its parameters, and it leads to complex equations that are difficult to solve and eventually difficult to control. In this paper, a six-linkage robot has been presented that could be used in different areas such as medical robots. Using these robots needs a robust control. In this paper, the system equations are first found, and then the system conversion function is written. A new controller has been designed for this robot which could be used in other parallel robots and could be very useful. Parallel robots are so important in robotics because of their stability, so methods for control of them are important and the robust controller, especially in parallel robots, makes a sense.

Keywords: 3-RRS, 6 linkage, parallel robot, control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646
897 Genetic Algorithm Based Optimal Control for a 6-DOF Non Redundant Stewart Manipulator

Authors: A. Omran, G. El-Bayiumi, M. Bayoumi, A. Kassem

Abstract:

Applicability of tuning the controller gains for Stewart manipulator using genetic algorithm as an efficient search technique is investigated. Kinematics and dynamics models were introduced in detail for simulation purpose. A PD task space control scheme was used. For demonstrating technique feasibility, a Stewart manipulator numerical-model was built. A genetic algorithm was then employed to search for optimal controller gains. The controller was tested onsite a generic circular mission. The simulation results show that the technique is highly convergent with superior performance operating for different payloads.

Keywords: Stewart kinematics, Stewart dynamics, task space control, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
896 Task Planning for Service Robots with Limited Feedback

Authors: Chung-Woon Park, Jungwoo Lee, Jong-Tae Lim

Abstract:

In this paper, we propose a novel limited feedback scheme for task planning with service robots. Instead of sending the full service robot state information for the task planning, the proposed scheme send the best-M indices of service robots with a indicator. With the indicator, the proposed scheme significantly reduces the communication overhead for task planning as well as mitigates the system performance degradation in terms of the utility. In addition, we analyze the system performance of the proposed scheme and compare the proposed scheme with the other schemes.

Keywords: Task Planning, Service Robots, Limited Feedback, Scheduling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
895 PSS with Multiple FACTS Controllers Coordinated Design and Real-Time Implementation Using Advanced Adaptive PSO

Authors: Rajendraprasad Narne, P. C. Panda

Abstract:

In this article, coordinated tuning of power system stabilizer (PSS) with static var compensator (SVC) and thyristor controlled series capacitor (TCSC) in multi-machine power system is proposed. The design of proposed coordinated damping controller is formulated as an optimization problem and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization (AAPSO). The objective function is framed with the inter-area speed deviations of the generators and it is minimized using AAPSO to improve the dynamic stability of power system under severe disturbance. The proposed coordinated controller performance is evaluated under a wide range of system operating conditions with three-phase fault disturbance. Using time domain simulations the damping characteristics of proposed controller is compared with individually tuned PSS, SVC and TCSC controllers. Finally, the real-time simulations are carried out in Opal-RT hardware simulator to synchronize the proposed controller performance in the real world.

Keywords: Advanced adaptive particle swarm optimization, Coordinated design, Power system stabilizer, Real-time implementation, static var compensator, Thyristor controlled series capacitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2565
894 Design and Simulation of Air-Fuel Ratio Control System for Distributorless CNG Engine

Authors: Ei Ei Moe, Zaw Min Aung, Kyawt Khin

Abstract:

This paper puts forward one kind of air-fuel ratio control method with PI controller. With the help of MATLAB/SIMULINK software, the mathematical model of air-fuel ratio control system for distributorless CNG engine is constructed. The objective is to maintain cylinder-to-cylinder air-fuel ratio at a prescribed set point, determined primarily by the state of the Three- Way-Catalyst (TWC), so that the pollutants in the exhaust are removed with the highest efficiency. The concurrent control of airfuel under transient conditions could be implemented by Proportional and Integral (PI) controller. The simulation result indicates that the control methods can easily eliminate the air/fuel maldistribution and maintain the air/fuel ratio at the stochiometry within minimum engine events.

Keywords: Distributorless CNG Engine, Mathematical Modelof Air-fuel control, MATLAB/SIMULINK, PI controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4462
893 Comparison of Particle Swarm Optimization and Genetic Algorithm for TCSC-based Controller Design

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of PSO and GA optimization techniques, for Thyristor Controlled Series Compensator (TCSC)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques in terms of computational time and convergence rate is compared. Further, the optimized controllers are tested on a weakly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a TCSC-based controller, to enhance power system stability.

Keywords: Thyristor Controlled Series Compensator, geneticalgorithm; particle swarm optimization; Phillips-Heffron model;power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3137
892 Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.

Keywords: Smart structure, Timoshenko theory, Euler-Bernoulli theory, Periodic output feedback control, Finite Element Method, State space model, Vibration control, Multivariable system, Linear Matrix Inequality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
891 Application of Strong Optical Feedback to Enhance the Modulation Bandwidth of Semiconductor Lasers to the Millimeter-Wave Band

Authors: Moustafa Ahmed, Ahmed Bakry, Fumio Koyama

Abstract:

We report on the use of strong external optical feedback to enhance the modulation response of semiconductor lasers over a frequency passband around modulation frequencies higher than 60 GHz. We show that this modulation enhancement is a type of photon-photon resonance (PPR) of oscillating modes in the external cavity formed between the laser and the external reflector. The study is based on a time-delay rate equation model that takes into account both the strong feedback and multiple reflections in the external cavity. We examine the harmonic and intermodulation distortions associated with single and two-tone modulations in the mm-wave band of the resonant modulation. We show that compared with solitary lasers modulated around the carrier-photon resonance frequency, the present mm-wave modulated signal has lower distortions.

Keywords: Distortion, intensity modulation, optical feedback, semiconductor laser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
890 A Spiral Dynamic Optimised Hybrid Fuzzy Logic Controller for a Unicycle Mobile Robot on Irregular Terrains

Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Talal H. Alzanki

Abstract:

This paper presents a hybrid fuzzy logic control strategy for a unicycle trajectory following robot on irregular terrains. In literature, researchers have presented the design of path tracking controllers of mobile robots on non-frictional surface. In this work, the robot is simulated to drive on irregular terrains with contrasting frictional profiles of peat and rough gravel. A hybrid fuzzy logic controller is utilised to stabilise and drive the robot precisely with the predefined trajectory and overcome the frictional impact. The controller gains and scaling factors were optimised using spiral dynamics optimisation algorithm to minimise the mean square error of the linear and angular velocities of the unicycle robot. The robot was simulated on various frictional surfaces and terrains and the controller was able to stabilise the robot with a superior performance that is shown via simulation results.

Keywords: Fuzzy logic control, mobile robot, trajectory tracking, spiral dynamic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
889 Fractional Order Controller Design for Vibration Attenuation in an Airplane Wing

Authors: Birs Isabela, Muresan Cristina, Folea Silviu, Prodan Ovidiu

Abstract:

The wing is one of the most important parts of an airplane because it ensures stability, sustenance and maneuverability of the airplane. Because of its shape, the airplane wing can be simplified to a smart beam. Active vibration suppression is realized using piezoelectric actuators that are mounted on the surface of the beam. This work presents a tuning procedure of fractional order controllers based on a graphical approach of the frequency domain representation. The efficacy of the method is proven by practically testing the controller on a laboratory scale experimental stand.

Keywords: Fractional order controller, piezoelectric actuators, smart beam, vibration suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
888 Design of Orientation-Free Handler and Fuzzy Controller for Wire-Driven Heavy Object Lifting System

Authors: Bo-Wei Song, Yun-Jung Lee

Abstract:

This paper presents an intention interface and controller for a wire-driven heavy object lifting system that assists the operator with moving a heavy object. The handler is designed to allow a comfortable working posture for the operator. Plus, as a human assistive system, the operator is involved in the control loop, where a fuzzy control system is used to consider the human control characteristics. The effectiveness and performance of the proposed system are proved by experiments.

Keywords: Fuzzy controller, Handler design, Heavy object lifting system, Human-assistive device, Human-in-the-loop system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
887 Passenger Seat Vibration Control of Quarter Car System with MR Shock Absorber

Authors: Devdutt, M. L. Aggarwal

Abstract:

Semi-active Fuzzy control of quarter car system having three degrees of freedom and assembled with magneto-rheological (MR) shock absorber is studied in present paper. First, experimental work was performed on an MR shock absorber under different excitation conditions to obtain force-displacement and force-velocity curves. Then, for the application of experimental data in semi-active quarter car system, a polynomial model was selected. Finally, Fuzzy logic controller was designed having the combination of Forward fuzzy controller and Inverse fuzzy controller for integration in secondary suspension system of concerned model. The proposed controlled quarter car model was compared with uncontrolled system using simulation work under bump type of road excitation. Results obtained by simulation work shows the effectiveness of fuzzy controlled suspension system in improving the ride comfort and safety of travelling passengers compared to uncontrolled suspension system.

Keywords: MR shock absorber, three degrees of freedom, quarter car model, fuzzy controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3274
886 Design of EDFA Gain Controller based on Disturbance Observer Technique

Authors: Seong-Ho Song, Ki-Seob Kim, Seon-Woo Lee, Seop-Hyeong Park

Abstract:

Based on a theoretical erbium-doped fiber amplifier (EDFA) model, we have proposed an application of disturbance observer(DOB) with proportional/integral/differential(PID) controller to EDFA for minimizing gain-transient time of wavelength -division-multiplexing (WDM) multi channels in optical amplifier in channel add/drop networks. We have dramatically reduced the gain-transient time to less than 30μsec by applying DOB with PID controller to the control of amplifier gain. The proposed DOB-based gain control algorithm for EDFA was implemented as a digital control system using TI's DSP(TMS320C28346) chip and experimental results of the system verify the excellent performance of the proposed gain control methodology.

Keywords: EDFA, Disturbance observer, gain control, WDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
885 Predictive Fuzzy Logic Controller for Agile Micro-Satellite

Authors: A. Bellar, M.K. Fellah, A.M. Si Mohammed, M. Bensaada, L. Boukhris

Abstract:

This paper presents the use of the predictive fuzzy logic controller (PFLC) applied to attitude control system for agile micro-satellite. In order to reduce the effect of unpredictable time delays and large uncertainties, the algorithm employs predictive control to predict the attitude of the satellite. Comparison of the PFLC and conventional fuzzy logic controller (FLC) is presented to evaluate the performance of the control system during attitude maneuver. The two proposed models have been analyzed with the same level of noise and external disturbances. Simulation results demonstrated the feasibility and advantages of the PFLC on the attitude determination and control system (ADCS) of agile satellite.

Keywords: Agile micro-satellite, Attitude control, fuzzy logic, predictive control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
884 Adaptive Neural Network Control of Autonomous Underwater Vehicles

Authors: Ahmad Forouzantabar, Babak Gholami, Mohammad Azadi

Abstract:

An adaptive neural network controller for autonomous underwater vehicles (AUVs) is presented in this paper. The AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. In this regards, a nonlinear neural network is used to approximate the nonlinear uncertainties of AUV dynamics, thus overcoming some limitations of conventional controllers and ensure good performance. The uniform ultimate boundedness of AUV tracking errors and the stability of the proposed control system are guaranteed based on Lyapunov theory. Numerical simulation studies for motion control of an AUV are performed to demonstrate the effectiveness of the proposed controller.

Keywords: Autonomous Underwater Vehicle (AUV), Neural Network Controller, Composite Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504
883 Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger

Authors: Hanan Rizk

Abstract:

Heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques, and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed the proportional–integral–derivative (PID) controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.

Keywords: heat exchanger, multi-input multi-output system, MATLAB simulation, partial differential equations, PID controller, robust control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 657
882 Mobile Robot Control by Von Neumann Computer

Authors: E. V. Larkin, T. A. Akimenko, A. V. Bogomolov, A. N. Privalov

Abstract:

The digital control system of mobile robots (MR) control is considered. It is shown that sequential interpretation of control algorithm operators, unfolding in physical time, suggests the occurrence of time delays between inputting data from sensors and outputting data to actuators. Another destabilizing control factor is presence of backlash in the joints of an actuator with an executive unit. Complex model of control system, which takes into account the dynamics of the MR, the dynamics of the digital controller and backlash in actuators, is worked out. The digital controller model is divided into two parts: the first part describes the control law embedded in the controller in the form of a control program that realizes a polling procedure when organizing transactions to sensors and actuators. The second part of the model describes the time delays that occur in the Von Neumann-type controller when processing data. To estimate time intervals, the algorithm is represented in the form of an ergodic semi-Markov process. For an ergodic semi-Markov process of common form, a method is proposed for estimation a wandering time from one arbitrary state to another arbitrary state. Example shows how the backlash and time delays affect the quality characteristics of the MR control system functioning.

Keywords: Mobile robot, backlash, control algorithm, Von Neumann controller, semi-Markov process, time delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 312
881 A Hybrid Fuzzy AGC in a Competitive Electricity Environment

Authors: H. Shayeghi, A. Jalili

Abstract:

This paper presents a new Hybrid Fuzzy (HF) PID type controller based on Genetic Algorithms (GA-s) for solution of the Automatic generation Control (AGC) problem in a deregulated electricity environment. In order for a fuzzy rule based control system to perform well, the fuzzy sets must be carefully designed. A major problem plaguing the effective use of this method is the difficulty of accurately constructing the membership functions, because it is a computationally expensive combinatorial optimization problem. On the other hand, GAs is a technique that emulates biological evolutionary theories to solve complex optimization problems by using directed random searches to derive a set of optimal solutions. For this reason, the membership functions are tuned automatically using a modified GA-s based on the hill climbing method. The motivation for using the modified GA-s is to reduce fuzzy system effort and take large parametric uncertainties into account. The global optimum value is guaranteed using the proposed method and the speed of the algorithm-s convergence is extremely improved, too. This newly developed control strategy combines the advantage of GA-s and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed GA based HF (GAHF) controller is tested on a threearea deregulated power system under different operating conditions and contract variations. The results of the proposed GAHF controller are compared with those of Multi Stage Fuzzy (MSF) controller, robust mixed H2/H∞ and classical PID controllers through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes.

Keywords: AGC, Hybrid Fuzzy Controller, Deregulated Power System, Power System Control, GAs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
880 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Tomoaki Hashimoto

Abstract:

Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.

Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints, random dither quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1128
879 Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture

Authors: Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira

Abstract:

This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.

Keywords: Model driven architecture, model-view-controller, bnf syntax, model, transformation, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
878 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network

Authors: A. Morsli, A.Tlemçani, N. Ould Cherchali, M. S. Boucherit

Abstract:

This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to a shunt Active Power Filter (sAPF) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.

Keywords: Fuzzy logic controller, P-Q method, Pulse Width Modulation (PWM), shunt Active Power Filter (sAPF), Total Harmonic Distortion (THD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
877 Nonlinear Controller Design for Active Front Steering System

Authors: Iman Mousavinejad, Reza Kazemi, , Mohsen Bayani Khaknejad

Abstract:

Active Front Steering system (AFS) provides an electronically controlled superposition of an angle to the steering wheel angle. This additional degree of freedom enables a continuous and driving-situation dependent on adaptation of the steering characteristics. In an active steering system, there needs be no fixed relationship between the steering wheel and the angle of the road wheels. Not only can the effective steering ratio be varied with speed, for example, but also the road wheel angles can be controlled by a combination of driver and computer inputs. Features like steering comfort, effort and steering dynamics are optimized and stabilizing steering interventions can be performed. In contrast to the conventional stability control, the yaw rate was fed back to AFS controller and the stability performance was optimized with Sliding Mode control (SMC) method. In addition, tire uncertainties have been taken into account in SM controller to provide the control robustness. In this paper, 3-DOF nonlinear model is used to design the AFS controller and 8-DOF nonlinear model is used to model the controlled vehicle.

Keywords: Active Front Steering (AFS), Sliding Mode Control method (SMC), Yaw rate, Vehicle Stability, Robustness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3306
876 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: State estimation, fluid systems, observer systems, unscented Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721
875 Optimal Trajectory Finding of IDP Ventilation Control with Outdoor Air Information and Indoor Health Risk Index

Authors: Minjeong Kim, Seungchul Lee, Iman Janghorban Esfahani, Jeong Tai Kim, Chang Kyoo Yoo

Abstract:

This study was carried out for an underground subway station at Seoul Metro, Korea. The optimal set-points of the ventilation control system are determined every 3 hours, then, the ventilation controller adjusts the ventilation fan speed according to the optimal set-point changes. Compared to manual ventilation system which is operated irrespective of the OAQ, the IDP-based ventilation control system saves 3.7% of the energy consumption. Compared to the fixed set-point controller which is operated irrespective of the IAQ diurnal variation, the IDP-based controller shows better performance with a 2% decrease in energy consumption, maintaining the comfortable IAQ range inside the station.

Keywords: Indoor air quality, iterative dynamic algorithm, outdoor air information, ventilation control system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695