Application of Strong Optical Feedback to Enhance the Modulation Bandwidth of Semiconductor Lasers to the Millimeter-Wave Band
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33041
Application of Strong Optical Feedback to Enhance the Modulation Bandwidth of Semiconductor Lasers to the Millimeter-Wave Band

Authors: Moustafa Ahmed, Ahmed Bakry, Fumio Koyama

Abstract:

We report on the use of strong external optical feedback to enhance the modulation response of semiconductor lasers over a frequency passband around modulation frequencies higher than 60 GHz. We show that this modulation enhancement is a type of photon-photon resonance (PPR) of oscillating modes in the external cavity formed between the laser and the external reflector. The study is based on a time-delay rate equation model that takes into account both the strong feedback and multiple reflections in the external cavity. We examine the harmonic and intermodulation distortions associated with single and two-tone modulations in the mm-wave band of the resonant modulation. We show that compared with solitary lasers modulated around the carrier-photon resonance frequency, the present mm-wave modulated signal has lower distortions.

Keywords: Distortion, intensity modulation, optical feedback, semiconductor laser.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1337753

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575

References:


[1] M. Ahmed, M. Yamada, and S. Abdulrhmann, “Numerical modeling of the route-to-chaos of semiconductor lasers under optical feedback and its dependence on the external-cavity length,” Int. J. Numer. Model., vol. 22, Nov. 2009, pp. 434–445.
[2] R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5- μm distributed-feedback lasers,” J. Lightwave Technol., vol. LT-4, Jan. 1986, pp. 1655–1661.
[3] D. Lenstra, B. H. Verbeek, and A. J. den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron., vol. QE-21, June 1985, pp. 674–679.
[4] J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor laser with optical feedback: Theory and experiment,” IEEE J. Quantum Electron., vol. 28, Jan. 1992, pp. 93–108.
[5] J. McInerney, L. Reekie, and D. J. Bradley, “Observation of bistable optical effects in a twin GaAs/GaAlAs diode external cavity ring laser,” Electron. Lett., vol. 20, July 1984, pp. 586–588.
[6] P. Zorabedian, W. R. Trutna, and L. S. Cutler, “Bistability in grating— Tuned external cavity semiconductor lasers,” IEEE J. Quantum Electron., vol. QE-23, Nov. 1987, pp. 1855–1860.
[7] M. Ahmed and M. Yamada, “Field fluctuations and spectral lineshape in semiconductor lasers subjected to optical feedback,” J. Appl. Phys., vol. 95, June 2004, pp. 7573–7583.
[8] M. Ahmed, "Longitudinal-mode competition in semiconductor lasers under external optical feedback: regime of short cavity", Opt. Laser Technol., vol. 41, Feb. 2009, pages 53-63.
[9] G. P. Agrawal and C. H. Henry, “Modulation performance of a semiconductor laser coupled to an external high-Q resonator,” IEEE J. Quantum Electron., vol. 24, Feb. 1988, pp. 134–142.
[10] Y. Kitaoka, H. Sato, K. Mizuchi, K. Yamamoto, and M. Kato, “Intensity noise of laser diodes with optical feedback,” IEEE J. Quantum Electron., vol. 32, May 1996, pp. 822–827.
[11] K. I. Kallimani and M. J. O’Mahony, “Relative intensity noise for laser diodes with arbitrary amounts of optical feedback,” IEEE J. Quantum Electron., vol. 34, Aug. 1998, pp. 1438–1446.
[12] S. Abdulrhmann, M. Ahmed, T. Okamoto and M. Yamada, “An improved analysis of semiconductor laser dynamics under strong optical feedback,” IEEE J. Sel. Top. Quantum Electron., vol. 9, Sept. 2002, pp. 1265–1274.
[13] S. Abdulrhmann, M. Ahmed and M. Yamada, “New model of analysis of semiconductor laser dynamics under strong optical feedback in fiber communication systems”, SPIE, vol. 4986, July 2003, pp. 490-501.
[14] I. Montrosset and P. Bardella, “Laser dynamics providing enhanced modulation bandwidth,” Proc. SPIE, vol. 9134, Semi. Laser & Laser Dynam. VI, May 2014, 91340H (15pp).
[15] H. Dalir and F. Koyamad, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Exp., vol. 8, July 2011, 1075-1081.
[16] H. Dalir, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “High Frequency Modulation of Transverse-Coupled- Cavity VCSELs for Radio Over Fiber Applications,” IEEE Photonic Technol. Lett., vol. 26, Dec. 2014, pp. 281-283.
[17] T. Kuri, K. Kitayama, A. Stöhr and Y. Ogawa, “Fiber-optic millimeter downlink system using 60-GHz band external modulation,” IEEE J. Lightwave Technol., vol. 17, May 1999, pp. 799-806.
[18] J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett., vol. 8, Jan. 1996, pp. 34–36.
[19] R. Nagarajan, S. Levy and J. E. Bowers, “Millimeter wave narrowband optical fiber links using external cavity semiconductor lasers,” IEEE J. Lightwave Technol., vol.12, Jan. 1994, pp. 127-136.
[20] M. Ahmed, A. Bakry, R. Altuwirqi, M. Alghamdi and F. Koyama, “Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in mm-wave radio over fiber links,” Jpn. J. Phys., vol. 52, Dec. 2014, 124103 (6pp).
[21] M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl and W. Rehbein, "Improving the modulation bandwidth in semiconductor lasers by passive feedback," IEEE J. Sel. Topics Quantum Electron., vol. 13, Jan. 2007, pp. 136-142.
[22] H. Dalir, M. Ahmed, A. Bakry, and F. Koyama, “Compact electroabsorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation,” Appl. Phys. Lett., vol. 105, Aug. 2014, 081113 (3pp).
[23] M. Ahmed, A. Bakry, R. Altuwirqi, M. Alghamdi and F. Koyama, “Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in mm-wave radio over fiber links,” J. Eur. Opt. Soc. Rap. Public.. J. Phys., vol. 8, Dec. 2014, 13064 (6pp).
[24] R. V. Dalal, R. J. Ram, R. Helkey, H. Roussell, and K. D. Choquette, "Low distortion analogue signal transmission using vertical cavity lasers," Electron. Lett., vol. 34, Aug. 1998, pp. 1590-159.
[25] M Ahmed, “Spectral lineshape and noise of semiconductor lasers under analog intensity modulation,” J. Phys. D., vol. 41, Aug. 2008, pp. 175104 (10pp).
[26] K. Sato, S. Kuwahar, Y. Miyamoto, “Chirp Characteristics of 40-Gb/s Directly Modulated Distributed-Feedback Laser Diodes,” J. Lightwave Technol., vol. 23, Nov. 2005, pp. 3790–3797.
[27] M. Ahmed, “Numerical approach to field fluctuations and spectral lineshape in InGaAsP laser diodes,” Intl. J. Num. Model., vol. 17, March 2004, pp. 147-163
[28] U. Troppenz, J. Kreissl, W. Rehbein, C. Bornholdt, B. Sartorius and M. Schell, “40Gbit/s directly modulated passive feedback laser,” Proc. 20th Int. Conf. Ind. Phosph. and Rel. Mater. Versailles, 2008, p. 1.
[29] G. Keiser, Optical Fiber Communications, 2nd ed., McGraw-Hill Inc., 1991.
[30] E. I. Ackerman and C. H. Cox, “RF Fiber Optic Link Performance,” IEEE Microwave Mag., vol. 2, Dec. 2001, pp. 50-58.
[31] W. Way, “Large signal nonlinear distortion prediction for a single mode laser diode under microwave intensity modulation,” J. Lightwave Technol., vol. LT-5, Mar. 1987, pp. 305–315.