Search results for: fast prediction model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8511

Search results for: fast prediction model

5391 Mathematical Modeling of Wind Energy System for Designing Fault Tolerant Control

Authors: Patil Ashwini, Archana Thosar

Abstract:

This paper addresses the mathematical model of wind energy system useful for designing fault tolerant control. To serve the demand of power, large capacity wind energy systems are vital. These systems are installed offshore where non planned service is very costly. Whenever there is a fault in between two planned services, the system may stop working abruptly. This might even lead to the complete failure of the system. To enhance the reliability, the availability and reduce the cost of maintenance of wind turbines, the fault tolerant control systems are very essential. For designing any control system, an appropriate mathematical model is always needed. In this paper, the two-mass model is modified by considering the frequent mechanical faults like misalignments in the drive train, gears and bearings faults. These faults are subject to a wear process and cause frictional losses. This paper addresses these faults in the mathematics of the wind energy system. Further, the work is extended to study the variations of the parameters namely generator inertia constant, spring constant, viscous friction coefficient and gear ratio; on the pole-zero plot which is related with the physical design of the wind turbine. Behavior of the wind turbine during drive train faults are simulated and briefly discussed.

Keywords: Mathematical model of wind energy system, stability analysis, shaft stiffness, viscous friction coefficient, gear ratio, generator inertia, fault tolerant control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
5390 A Semi-Fragile Watermarking Scheme for Color Image Authentication

Authors: M. Hamad Hassan, S.A.M. Gilani

Abstract:

In this paper, a semi-fragile watermarking scheme is proposed for color image authentication. In this particular scheme, the color image is first transformed from RGB to YST color space, suitable for watermarking the color media. Each channel is divided into 4×4 non-overlapping blocks and its each 2×2 sub-block is selected. The embedding space is created by setting the two LSBs of selected sub-block to zero, which will hold the authentication and recovery information. For verification of work authentication and parity bits denoted by 'a' & 'p' are computed for each 2×2 subblock. For recovery, intensity mean of each 2×2 sub-block is computed and encoded upto six to eight bits depending upon the channel selection. The size of sub-block is important for correct localization and fast computation. For watermark distribution 2DTorus Automorphism is implemented using a private key to have a secure mapping of blocks. The perceptibility of watermarked image is quite reasonable both subjectively and objectively. Our scheme is oblivious, correctly localizes the tampering and able to recovery the original work with probability of near one.

Keywords: Image Authentication, YST Color Space, Intensity Mean, LSBs, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
5389 Wetting Front Propagation during Quenching of Aluminum Plate by Water Spray

Authors: M. M. Seraj, M. S. Gadala

Abstract:

This study presents a systematic analysis of wetted region due to cooling of aluminum plate by water spray impingement with respect to different water flow rates, spray nozzle heights, and subcooling. Unlike jet impingement, the wetting is not commenced upon spray impingement and there is a delay in wetness of hot test surface. After initiation, the wetting (black zone) progresses gradually to cover all test plate and provides efficient cooling in nucleate boiling regime. Generally, spray cooling is found function of spray flow rate, spray-to-surface distance and water subcooling. Wetting delay is decreasing by increasing of spray flow rate until spray impact area is not become bigger that test surface. Otherwise, higher spray flow rate is not practically accelerated start of wetting. Very fast wetting due to spray cooling can be obtained by dense spray (high floe rate) discharged from adjacent nozzle to the test surface. Highly subcooling water spray also triggers earlier wetting of hot aluminum plate.

Keywords: Water spray, wetting, aluminum plate, flow rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
5388 Improving the Performances of the nMPRA Architecture by Implementing Specific Functions in Hardware

Authors: Ionel Zagan, Vasile Gheorghita Gaitan

Abstract:

Minimizing the response time to asynchronous events in a real-time system is an important factor in increasing the speed of response and an interesting concept in designing equipment fast enough for the most demanding applications. The present article will present the results regarding the validation of the nMPRA (Multi Pipeline Register Architecture) architecture using the FPGA Virtex-7 circuit. The nMPRA concept is a hardware processor with the scheduler implemented at the processor level; this is done without affecting a possible bus communication, as is the case with the other CPU solutions. The implementation of static or dynamic scheduling operations in hardware and the improvement of handling interrupts and events by the real-time executive described in the present article represent a key solution for eliminating the overhead of the operating system functions. The nMPRA processor is capable of executing a preemptive scheduling, using various algorithms without a software scheduler. Therefore, we have also presented various scheduling methods and algorithms used in scheduling the real-time tasks.

Keywords: nMPRA architecture, pipeline processor, preemptive scheduling, real-time system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
5387 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143
5386 Mathematical Simulation of Bubble Column Slurry Reactor for Direct Dimethyl Ether Synthesis Process from Syngas

Authors: Zhen Chen, Haitao Zhang, Weiyong Ying, Dingye Fang

Abstract:

Based on a global kinetics of direct dimethyl ether (DME) synthesis process from syngas, a steady-state one-dimensional mathematical model for the bubble column slurry reactor (BCSR) has been established. It was built on the assumption of plug flow of gas phase, sedimentation-dispersion model of catalyst grains and isothermal chamber regardless of reaction heats and rates for the design of an industrial scale bubble column slurry reactor. The simulation results indicate that higher pressure and lower temperature were favorable to the increase of CO conversion, DME selectivity, products yield and the height of slurry bed, which has a coincidence with the characteristic of DME synthesis reaction system, and that the height of slurry bed is lessen with the increasing of operation temperature in the range of 220-260℃. CO conversion, the optimal operation conditions in BCSR were proposed. 

Keywords: Alcohol/ether fuel, bubble column slurry reactor, global kinetics, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625
5385 Propagation of Nonlinear Surface Waves in Relativistically Degenerate Quantum Plasma Half-Space

Authors: Swarniv Chandra, Parthasona Maji, Basudev Ghosh

Abstract:

The nonlinear self-interaction of an electrostatic surface wave on a semibounded quantum plasma with relativistic degeneracy is investigated by using quantum hydrodynamic (QHD) model and the Poisson’s equation with appropriate boundary conditions. It is shown that a part of the second harmonic generated through self-interaction does not have a true surface wave character but propagates obliquely away from the plasma-vacuum interface into the bulk of plasma.

Keywords: Harmonic Generation, Quantum Plasma, Quantum Hydrodynamic Model, Relativistic Degeneracy, Surface waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
5384 A TISM Model for Structuring the Productivity Elements of Flexible Manufacturing System

Authors: Sandhya Dixit, Tilak Raj

Abstract:

Flexible Manufacturing System (FMS) is seen as an option for industries which want to boost productivity as well as respond quickly to an increasingly changing marketplace. FMS produces in mid variety, mid volume range and can meet the changing market demands very quickly. But still the impact of adoption of FMS on the productivity of any industry is not very clear. In this paper an attempt has been made to model the various factors affecting the productivity of FMS installation using Total Interpretive Structural Modelling (TISM) Technique.

Keywords: Flexible manufacturing system, productivity, total interpretive structural modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1144
5383 Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network

Authors: Shih-Bin Wang, Ping Yuan, Syu-Fang Liu, Ming-Jun Kuo

Abstract:

By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.

Keywords: a SOFC stack, BPNN, inverse predicting model of operating parameters, optimization of the average current density

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
5382 Management of Local Towns (Tambon) According to Philosophy of Sufficiency Economy

Authors: Wichian Sriprachan, Chutikarn Sriviboon

Abstract:

The objectives of this research were to study the management of local towns and to develop a better model of town management according to the Philosophy of Sufficiency Economy. This study utilized qualitative research, field research, as well as documentary research at the same time. A total of 10 local towns or Tambons of Supanburi province, Thailand were selected for an in-depth interview. The findings revealed that the model of local town management according to Philosophy of Sufficient Economy was in a level of “good” and the model of management has the five basic guidelines: 1) ability to manage budget information and keep it up-to-date, 2) ability to decision making according to democracy rules, 3) ability to use check and balance system, 4) ability to control, follow, and evaluation, and 5) ability to allow the general public to participate. In addition, the findings also revealed that the human resource management according to Philosophy of Sufficient Economy includes obeying laws, using proper knowledge, and having integrity in five areas: plan, recruit, select, train, and maintain human resources.  

Keywords: Management, Local Town (Tambon), Principles of Sufficiency Economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
5381 Feature Extraction of Dorsal Hand Vein Pattern Using a Fast Modified PCA Algorithm Based On Cholesky Decomposition and Lanczos Technique

Authors: Maleika Heenaye- Mamode Khan , Naushad Mamode Khan, Raja K.Subramanian

Abstract:

Dorsal hand vein pattern is an emerging biometric which is attracting the attention of researchers, of late. Research is being carried out on existing techniques in the hope of improving them or finding more efficient ones. In this work, Principle Component Analysis (PCA) , which is a successful method, originally applied on face biometric is being modified using Cholesky decomposition and Lanczos algorithm to extract the dorsal hand vein features. This modified technique decreases the number of computation and hence decreases the processing time. The eigenveins were successfully computed and projected onto the vein space. The system was tested on a database of 200 images and using a threshold value of 0.9 to obtain the False Acceptance Rate (FAR) and False Rejection Rate (FRR). This modified algorithm is desirable when developing biometric security system since it significantly decreases the matching time.

Keywords: Dorsal hand vein pattern, PCA, Cholesky decomposition, Lanczos algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
5380 The Capabilities Approach as a Future Alternative to Neoliberal Higher Education in the MENA Region

Authors: Ranya Elkhayat

Abstract:

This paper aims at offering a futures study for higher education in the Middle East. Paying special attention to the negative impacts of neoliberalism, the paper will demonstrate how higher education is now commodified, corporatized and how arts and humanities are eschewed in favor of science and technology. This conceptual paper argues against the neoliberal agenda and aims at providing an alternative exemplified in the Capabilities Approach with special reference to Martha Nussbaum’s theory. The paper is divided into four main parts: the current state of higher education under neoliberal values, a prediction of the conditions of higher education in the near future, the future of higher education using the theoretical framework of the Capabilities Approach, and finally, some areas of concern regarding the approach. The implications of the study demonstrate that Nussbaum’s Capabilities Approach will ensure that the values of education are preserved while avoiding the pitfalls of neoliberalism.

Keywords: Capabilities approach, education future, higher education, MENA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
5379 Comparison of Domain and Hydrophobicity Features for the Prediction of Protein-Protein Interactions using Support Vector Machines

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

The protein domain structure has been widely used as the most informative sequence feature to computationally predict protein-protein interactions. However, in a recent study, a research group has reported a very high accuracy of 94% using hydrophobicity feature. Therefore, in this study we compare and verify the usefulness of protein domain structure and hydrophobicity properties as the sequence features. Using the Support Vector Machines (SVM) as the learning system, our results indicate that both features achieved accuracy of nearly 80%. Furthermore, domains structure had receiver operating characteristic (ROC) score of 0.8480 with running time of 34 seconds, while hydrophobicity had ROC score of 0.8159 with running time of 20,571 seconds (5.7 hours). These results indicate that protein-protein interaction can be predicted from domain structure with reliable accuracy and acceptable running time.

Keywords: Bioinformatics, protein-protein interactions, support vector machines, protein features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
5378 Masonry CSEB Building Models under Shaketable Testing-An Experimental Study

Authors: Lakshmi Keshav, V. G. Srisanthi

Abstract:

In this experimental investigation shake table tests were conducted on two reduced models that represent normal single room building constructed by Compressed Stabilized Earth Block (CSEB) from locally available soil. One model was constructed with earthquake resisting features (EQRF) having sill band, lintel band and vertical bands to control the building vibration and another one was without Earthquake Resisting Features. To examine the seismic capacity of the models particularly when it is subjected to long-period ground motion by large amplitude by many cycles of repeated loading, the test specimen was shaken repeatedly until the failure. The test results from Hi-end Data Acquisition system show that model with EQRF behave better than without EQRF. This modified masonry model with new material combined with new bands is used to improve the behavior of masonry building.

Keywords: Earth Quake Resisting Features, Compressed Stabilized Earth Blocks, Masonry structures, Shake table testing, Horizontal and vertical bands.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736
5377 Analysis of Combined Use of NN and MFCC for Speech Recognition

Authors: Safdar Tanweer, Abdul Mobin, Afshar Alam

Abstract:

The performance and analysis of speech recognition system is illustrated in this paper. An approach to recognize the English word corresponding to digit (0-9) spoken by 2 different speakers is captured in noise free environment. For feature extraction, speech Mel frequency cepstral coefficients (MFCC) has been used which gives a set of feature vectors from recorded speech samples. Neural network model is used to enhance the recognition performance. Feed forward neural network with back propagation algorithm model is used. However other speech recognition techniques such as HMM, DTW exist. All experiments are carried out on Matlab.

Keywords: Speech Recognition, MFCC, Neural Network, classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3268
5376 Nonlinear Solitary Structures of Electron Plasma Waves in a Finite Temperature Quantum Plasma

Authors: Swarniv Chandra, Basudev Ghosh

Abstract:

Nonlinear solitary structures of electron plasma waves have been investigated by using nonlinear quantum fluid equations for electrons with an arbitrary temperature. It is shown that the electron degeneracy parameter has significant effects on the linear and nonlinear properties of electron plasma waves. Depending on its value both compressive and rarefactive solitons can be excited in the model plasma under consideration.

Keywords: Electron Plasma Waves, Finite Temperature Model, Modulational Instability, Quantum Plasma, Solitary structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
5375 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: Computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid, SDOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
5374 Efficient System for Speech Recognition using General Regression Neural Network

Authors: Abderrahmane Amrouche, Jean Michel Rouvaen

Abstract:

In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.

Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
5373 Fault Localization and Alarm Correlation in Optical WDM Networks

Authors: G. Ramesh, S. Sundara Vadivelu

Abstract:

For several high speed networks, providing resilience against failures is an essential requirement. The main feature for designing next generation optical networks is protecting and restoring high capacity WDM networks from the failures. Quick detection, identification and restoration make networks more strong and consistent even though the failures cannot be avoided. Hence, it is necessary to develop fast, efficient and dependable fault localization or detection mechanisms. In this paper we propose a new fault localization algorithm for WDM networks which can identify the location of a failure on a failed lightpath. Our algorithm detects the failed connection and then attempts to reroute data stream through an alternate path. In addition to this, we develop an algorithm to analyze the information of the alarms generated by the components of an optical network, in the presence of a fault. It uses the alarm correlation in order to reduce the list of suspected components shown to the network operators. By our simulation results, we show that our proposed algorithms achieve less blocking probability and delay while getting higher throughput.

Keywords: Alarm correlation, blocking probability, delay, fault localization, WDM networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
5372 Computational Fluid Dynamics Simulation of Gas-Liquid Phase Stirred Tank

Authors: Thiyam Tamphasana Devi, Bimlesh Kumar

Abstract:

A Computational Fluid Dynamics (CFD) technique has been applied to simulate the gas-liquid phase in double stirred tank of Rushton impeller. Eulerian-Eulerian model was adopted to simulate the multiphase with standard correlation of Schiller and Naumann for drag co-efficient. The turbulence was modeled by using standard k-ε turbulence model. The present CFD model predicts flow pattern, local gas hold-up, and local specific area. It also predicts local kLa (mass transfer rate) for single impeller. The predicted results were compared with experimental and CFD results of published literature. The predicted results are slightly over predicted with the experimental results; however, it is in reasonable agreement with other simulated results of published literature.

Keywords: Eulerian-Eulerian, gas-hold up, gas-liquid phase, local mass transfer rate, local specific area, Rushton Impeller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195
5371 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investigation

Authors: M. Elassaly

Abstract:

Damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story RC building.

Keywords: Damage, frequency content, ground motion, PGA, RC building, seismic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
5370 Early Melt Season Variability of Fast Ice Degradation Due to Small Arctic Riverine Heat Fluxes

Authors: Grace E. Santella, Shawn G. Gallaher, Joseph P. Smith

Abstract:

In order to determine the importance of small-system riverine heat flux on regional landfast sea ice breakup, our study explores the annual spring freshet of the Sagavanirktok River from 2014-2019. Seasonal heat cycling ultimately serves as the driving mechanism behind the freshet; however, as an emerging area of study, the extent to which inland thermodynamics influence coastal tundra geomorphology and connected landfast sea ice has not been extensively investigated in relation to small-scale Arctic river systems. The Sagavanirktok River is a small-to-midsized river system that flows south-to-north on the Alaskan North Slope from the Brooks mountain range to the Beaufort Sea at Prudhoe Bay. Seasonal warming in the spring rapidly melts snow and ice in a northwards progression from the Brooks Range and transitional tundra highlands towards the coast and when coupled with seasonal precipitation, results in a pulsed freshet that propagates through the Sagavanirktok River. The concentrated presence of newly exposed vegetation in the transitional tundra region due to spring melting results in higher absorption of solar radiation due to a lower albedo relative to snow-covered tundra and/or landfast sea ice. This results in spring flood runoff that advances over impermeable early-season permafrost soils with elevated temperatures relative to landfast sea ice and sub-ice flow. We examine the extent to which interannual temporal variability influences the onset and magnitude of river discharge by analyzing field measurements from the United States Geological Survey (USGS) river and meteorological observation sites. Rapid influx of heat to the Arctic Ocean via riverine systems results in a noticeable decay of landfast sea ice independent of ice breakup seaward of the shear zone. Utilizing MODIS imagery from NASA’s Terra satellite, interannual variability of river discharge is visualized, allowing for optical validation that the discharge flow is interacting with landfast sea ice. Thermal erosion experienced by sediment fast ice at the arrival of warm overflow preconditions the ice regime for rapid thawing. We investigate the extent to which interannual heat flux from the Sagavanirktok River’s freshet significantly influences the onset of local landfast sea ice breakup. The early-season warming of atmospheric temperatures is evidenced by the presence of storms which introduce liquid, rather than frozen, precipitation into the system. The resultant decreased albedo of the transitional tundra supports the positive relationship between early-season precipitation events, inland thermodynamic cycling, and degradation of landfast sea ice. Early removal of landfast sea ice increases coastal erosion in these regions and has implications for coastline geomorphology which stress industrial, ecological, and humanitarian infrastructure.

Keywords: Albedo, freshet, landfast sea ice, riverine heat flux, seasonal heat cycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 457
5369 Investigation of the Aerodynamic Characters of Ducted Fan System

Authors: Wang Bo , Guo Zheng , Wang Peng , Shan Shangqiu , Hou Zhongxi

Abstract:

This paper investigates the aerodynamic characters of a model ducted fan system, analyses the basic principle of the effect of thrust promotion and torque reduction, discovers the relationship between the revolutions per minute(RPM) of the fan and the characters of thrust, as well as system torque. Firstly a model ducted fan has been designed and manufactured according to the specific structure of flow field, then CFD simulation has been carried out to analyze such aerodynamics, finally bench tests have been used to validate the simulation results and system configuration.

Keywords: ducted fan, free vortex flow, stator blade, screw torque, thrust increase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4408
5368 The Relationship between Iranian EFL Learners' Multiple Intelligences and Their Performance on Grammar Tests

Authors: Rose Shayeghi, Pejman Hosseinioun

Abstract:

The Multiple Intelligences theory characterizes human intelligence as a multifaceted entity that exists in all human beings with varying degrees. The most important contribution of this theory to the field of English Language Teaching (ELT) is its role in identifying individual differences and designing more learnercentered programs. The present study aims at investigating the relationship between different elements of multiple intelligence and grammar scores. To this end, 63 female Iranian EFL learner selected from among intermediate students participated in the study. The instruments employed were a Nelson English language test, Michigan Grammar Test, and Teele Inventory for Multiple Intelligences (TIMI). The results of Pearson Product-Moment Correlation revealed a significant positive correlation between grammatical accuracy and linguistic as well as interpersonal intelligence. The results of Stepwise Multiple Regression indicated that linguistic intelligence contributed to the prediction of grammatical accuracy.

Keywords: Multiple intelligence, grammar, ELT, EFL, TIMI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
5367 Solver for a Magnetic Equivalent Circuit and Modeling the Inrush Current of a 3-Phase Transformer

Authors: Markus G. Ortner, Christian Magele, Klaus Krischan

Abstract:

Knowledge about the magnetic quantities in a magnetic circuit is always of great interest. On the one hand, this information is needed for the simulation of a transformer. On the other hand, parameter studies are more reliable, if the magnetic quantities are derived from a well established model. One possibility to model the 3-phase transformer is by using a magnetic equivalent circuit (MEC). Though this is a well known system, it is often not an easy task to set up such a model for a large number of lumped elements which additionally includes the nonlinear characteristic of the magnetic material. Here we show the setup of a solver for a MEC and the results of the calculation in comparison to measurements taken. The equations of the MEC are based on a rearranged system of the nodal analysis. Thus it is possible to achieve a minimum number of equations, and a clear and simple structure. Hence, it is uncomplicated in its handling and it supports the iteration process. Additional helpful tasks are implemented within the solver to enhance the performance. The electric circuit is described by an electric equivalent circuit (EEC). Our results for the 3-phase transformer demonstrate the computational efficiency of the solver, and show the benefit of the application of a MEC.

Keywords: Inrush current, magnetic equivalent circuit, nonlinear behavior, transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466
5366 Numerical and Experimental Investigation of Airflow inside a Car Cabin

Authors: Mokhtar Djeddou, Amine Mehel, Georges Fokoua, Anne Tanière, Patrick Chevrier

Abstract:

Commuters’ exposure to air pollution, particularly to particle matter inside vehicles, is a significant health issue. Assessing particle concentrations and characterizing their distribution is an important first step in understanding and proposing solutions to improve car cabin air quality. It is known that particle dynamics is intimately driven by particle-turbulence interactions. In order to analyze and model pollutants distribution inside car cabins, it is crucial to examine first the single-phase flow topology and its associated turbulence characteristics. Within this context, Computational Fluid Dynamics (CFD) simulations were conducted to model airflow inside a full-scale car cabin using Reynolds Averaged Navier-Stokes (RANS) approach combined with the first order Realizable k-ε model to close the RANS equations. To assess the numerical model, a campaign of velocity field measurements at different locations in the front and back of the car cabin has been carried out using hot-wire anemometry technique. Comparison between numerical and experimental results shows a good agreement of velocity profiles. Additionally, visualization of streamlines shows the formation of jet flow developing out of the dashboard air vents and the formation of large vortex structures, particularly between the front and back-seat compartments. These vortical structures could play a key role in the accumulation and clustering of particles in a turbulent flow.

Keywords: Car cabin, CFD, hot-wire anemometry, vortical flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 468
5365 A Study on Barreling Behavior during Upsetting Process using Artificial Neural Networks with Levenberg Algorithm

Authors: H.Mohammadi Majd, M.Jalali Azizpour

Abstract:

In this paper back-propagation artificial neural network (BPANN )with Levenberg–Marquardt algorithm is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

Keywords: Back-propagation artificial neural network(BPANN), prediction, upsetting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
5364 Semi Empirical Equations for Peak Shear Strength of Rectangular Reinforced Concrete Walls

Authors: Ali Kezmane, Said Boukais, Mohand Hamizi

Abstract:

This paper presents an analytical study on the behavior of reinforced concrete walls with rectangular cross section. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal shear wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood and Barda equations. Subsequently, nominal shear wall strengths from the formulas were compared with the ultimate shear wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate shear strength. Two new semi empirical equations are developed using data from tests of 57 walls for transitions walls and 27 for slender walls with the objective of improving the prediction of peak strength of walls with the most possible accurate.

Keywords: Shear strength, reinforced concrete walls, rectangular walls, shear walls, models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
5363 Application of Artificial Neural Network in Assessing Fill Slope Stability

Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung

Abstract:

This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.

Keywords: Landslide, limit analysis, ANN, soil properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
5362 Determining the Best Fitting Distributions for Minimum Flows of Streams in Gediz Basin

Authors: Naci Büyükkaracığan

Abstract:

Today, the need for water sources is swiftly increasing due to population growth. At the same time, it is known that some regions will face with shortage of water and drought because of the global warming and climate change. In this context, evaluation and analysis of hydrological data such as the observed trends, drought and flood prediction of short term flow has great deal of importance. The most accurate selection probability distribution is important to describe the low flow statistics for the studies related to drought analysis. As in many basins In Turkey, Gediz River basin will be affected enough by the drought and will decrease the amount of used water. The aim of this study is to derive appropriate probability distributions for frequency analysis of annual minimum flows at 6 gauging stations of the Gediz Basin. After applying 10 different probability distributions, six different parameter estimation methods and 3 fitness test, the Pearson 3 distribution and general extreme values distributions were found to give optimal results.

Keywords: Gediz Basin, goodness-of-fit tests, Minimum flows, probability distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506