Search results for: Semi-Markov Decision Process
3354 An Efficient Approach for Shear Behavior Definition of Plant Stalk
Authors: M. R. Kamandar, J. Massah
Abstract:
The information of the impact cutting behavior of plants stalk plays an important role in the design and fabrication of plants cutting equipment. It is difficult to investigate a theoretical method for defining cutting properties of plants stalks because the cutting process is complex. Thus, it is necessary to set up an experimental approach to determine cutting parameters for a single stalk. To measure the shear force, shear energy and shear strength of plant stalk, a special impact cutting tester was fabricated. It was similar to an Izod impact cutting tester for metals but a cutting blade and data acquisition system were attached to the end of pendulum's arm. The apparatus was included four strain gages and a digital indicator to show the real-time cutting force of plant stalk. To measure the shear force and also testing the apparatus, two plants’ stalks, like buxus and privet, were selected. The samples (buxus and privet stalks) were cut under impact cutting process at four loading rates 1, 2, 3 and 4 m.s-1 and three internodes fifth, tenth and fifteenth by the apparatus. At buxus cutting analysis: the minimum value of cutting energy was obtained at fifth internode and loading rate 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate 1 m.s-1. At privet cutting analysis: the minimum value of shear consumption energy was obtained at fifth internode and loading rate: 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate: 1 m.s-1. The statistical analysis at both plants showed that the increase of impact cutting speed would decrease the shear consumption energy and shear strength. In two scenarios, the results showed that with increase the cutting speed, shear force would decrease.
Keywords: Buxus, privet, impact cutting, shear energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8293353 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem
Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães
Abstract:
This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.Keywords: Path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8983352 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling
Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel
Abstract:
Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.
Keywords: Green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8793351 Cumulative Learning based on Dynamic Clustering of Hierarchical Production Rules(HPRs)
Authors: Kamal K.Bharadwaj, Rekha Kandwal
Abstract:
An important structuring mechanism for knowledge bases is building clusters based on the content of their knowledge objects. The objects are clustered based on the principle of maximizing the intraclass similarity and minimizing the interclass similarity. Clustering can also facilitate taxonomy formation, that is, the organization of observations into a hierarchy of classes that group similar events together. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form Decision If < condition> Generality
Keywords: Cumulative learning, clustering, data mining, hierarchical production rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14393350 Machinability Analysis in Drilling Flax Fiber-Reinforced Polylactic Acid Bio-Composite Laminates
Authors: Amirhossein Lotfi, Huaizhong Li, Dzung Viet Dao
Abstract:
Interest in natural fiber-reinforced composites (NFRC) is progressively growing both in terms of academia research and industrial applications thanks to their abundant advantages such as low cost, biodegradability, eco-friendly nature and relatively good mechanical properties. However, their widespread use is still presumed as challenging because of the specificity of their non-homogeneous structure, limited knowledge on their machinability characteristics and parameter settings, to avoid defects associated with the machining process. The present work is aimed to investigate the effect of the cutting tool geometry and material on the drilling-induced delamination, thrust force and hole quality produced when drilling a fully biodegradable flax/poly (lactic acid) composite laminate. Three drills with different geometries and material were used at different drilling conditions to evaluate the machinability of the fabricated composites. The experimental results indicated that the choice of cutting tool, in terms of material and geometry, has a noticeable influence on the cutting thrust force and subsequently drilling-induced damages. The lower value of thrust force and better hole quality was observed using high-speed steel (HSS) drill, whereas Carbide drill (with point angle of 130o) resulted in the highest value of thrust force. Carbide drill presented higher wear resistance and stability in variation of thrust force with a number of holes drilled, while HSS drill showed the lower value of thrust force during the drilling process. Finally, within the selected cutting range, the delamination damage increased noticeably with feed rate and moderately with spindle speed.
Keywords: Natural fiber-reinforced composites, machinability, thrust force, delamination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8123349 A Multi-Agent Smart E-Market Design at Work for Shariah Compliant Islamic Banking
Authors: Wafa Ghonaim
Abstract:
Though quite fast on growth, Islamic financing at large, and its diverse instruments, is a controversial matter among scholars. This is evident from the ongoing debates on its Shariah compliance. Arguments, however, are inciting doubts and concerns among clients about its credibility, which is harming this lucrative sector. The work here investigates, particularly, some issues related to the Tawarruq instrument. The work examines the issues of linking Murabaha and Wakala contracts, the reselling of commodities to same traders, and the transfer of ownerships. The work affirms that a multi-agent smart electronic market design would facilitate Shariah compliance. The smart market exploits the rational decision-making capabilities of autonomous proxy agents that enable the clients, traders, brokers, and the bank buy and sell commodities, and manage transactions and cash flow. The smart electronic market design delivers desirable qualities that terminate the need for Wakala contracts and the reselling of commodities to the same traders. It also resolves the ownership transfer issues by allowing stakeholders to trade independently. The bank administers the smart electronic market and assures reliability of trades, transactions and cash flow. A multi-agent simulation is presented to validate the concept and processes. We anticipate that the multi-agent smart electronic market design would deliver Shariah compliance of personal financing to the aspiration of scholars, banks, traders and potential clients.Keywords: Islamic finance, Shariah compliance, smart electronic markets design, multi-agent systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9993348 ARCS for Critical Information Retrieval Development
Authors: Suttipong Boonphadung
Abstract:
The research on ARCS for critical information retrieval development aimed to (1) investigate conditions of critical information retrieval skill of the Mathematics pre-service teachers before applying ARCS model in learning activities, (2) study and analyze the development of critical information retrieval skill of the Mathematics pre-service teachers after utilizing ARCS model in learning activities, and (3) evaluate the Mathematics pre-service teachers’ satisfaction on using ARCS model in learning activities as a tool to development critical information retrieval skill. Forty-one of 4th year Mathematics pre-service teachers who have enrolled in the subject of Research for Learning Development of semester 2 in 2012 were purposively selected as the research cohort. The research tools were self-report and interview questionnaire that was approved as content validity and reliability (IOC=.66-1.00, α =.834). The research found that critical information retrieval skill of the research samples before using ARCS model in learning activities was in the normal high level. According to the in-depth interview and focus group, the result however showed that the pre-service teachers still lack inadequate and effective knowledge in information retrieval. Additionally, critical information retrieval skill of the research cohort after applying ARCS model in learning activities appeared to be high level. The result revealed that the pre-service teachers are able to explain the method of searching, extraction, and selecting information as well as evaluating quality of information, and effectively making decision in accepting information. Moreover, the research discovered that the pre-service teachers showed normal high to highest level of satisfaction on using ARCS model in learning activities as a tool to development their critical information retrieval skill.
Keywords: Critical information retrieval skill, ARCS model, Satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15233347 International Comparative Study of International Financial Reporting Standards Adoption and Earnings Quality: Effects of Differences in Accounting Standards, Industry Category, and Country Characteristics
Authors: Ichiro Mukai
Abstract:
The purpose of this study is to investigate whether firms applying International Financial Reporting Standards (IFRS), provide high-quality and comparable earnings information that is useful for decision making of information users relative to firms applying local Generally Accepted Accounting Principles (GAAP). Focus is placed on the earnings quality of listed firms in several developed countries: Australia, Canada, France, Germany, Japan, the United Kingdom (UK), and the United States (US). Except for Japan and the US, the adoption of IFRS is mandatory for listed firms in these countries. In Japan, the application of IFRS is allowed for specific listed firms. In the US, the foreign firms listed on the US securities market are permitted to apply IFRS but the listed domestic firms are prohibited from doing so. In this paper, the differences in earnings quality are compared between firms applying local GAAP and those applying IFRS in each country and industry category, and the reasons of differences in earnings quality are analyzed using various factors. The results show that, although the earnings quality of firms applying IFRS is higher than that of firms applying local GAAP, this varies with country and industry category. Thus, even if a single set of global accounting standards is used for all listed firms worldwide, it is difficult to establish comparability of financial information among global firms. These findings imply that various circumstances surrounding firms, industries, and countries etc. influence business operations and affect the differences in earnings quality.
Keywords: Accruals, earnings quality, IFRS, information comparability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7663346 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater
Authors: Farooq A. Al-Sheikh, Carol Moralejo, Mark Pritzker, William A. Anderson, Ali Elkamel
Abstract:
Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.
Keywords: AZLB-Na zeolite, continuous adsorption, LEWATIT resin, models, regeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12363345 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling. The research proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling. The paper concludes the challenges and improvement directions for Deep Reinforcement Learning-based resource scheduling algorithms.
Keywords: Resource scheduling, deep reinforcement learning, distributed system, artificial intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4963344 Characterization of Candlenut Shells and Its Application to Remove Oil and Fine Solids of Produced Water in Nutshell Filters of Water Cleaning Plant
Authors: Annur Suhadi, Haris B. Harahap, Zaim Arrosyidi, Epan, Darmapala
Abstract:
Oilfields under waterflood often face the problem of plugging injectors either by internal filtration or external filter cake built up inside pore throats. The content of suspended solids shall be reduced to required level of filtration since corrective action of plugging is costly expensive. The performance of nutshell filters, where filtration takes place, is good using pecan and walnut shells. Candlenut shells were used instead of pecan and walnut shells since they were abundant in Indonesia, Malaysia, and East Africa. Physical and chemical properties of walnut, pecan, and candlenut shells were tested and the results were compared. Testing, using full-scale nutshell filters, was conducted to determine the oil content, turbidity, and suspended solid removal, which was based on designed flux rate. The performance of candlenut shells, which were deeply bedded in nutshell filters for filtration process, was monitored. Cleaned water outgoing nutshell filters had total suspended solids of 17 ppm, while oil content could be reduced to 15.1 ppm. Turbidity, using candlenut shells, was below the specification for injection water, which was less than 10 Nephelometric Turbidity Unit (NTU). Turbidity of water, outgoing nutshell filter, was ranged from 1.7-5.0 NTU at various dates of operation. Walnut, pecan, and candlenut shells had moisture content of 8.98 wt%, 10.95 wt%, and 9.95 wt%, respectively. The porosity of walnut, pecan, and candlenut shells was significantly affected by moisture content. Candlenut shells had property of toluene solubility of 7.68 wt%, which was much higher than walnut shells, reflecting more crude oil adsorption. The hardness of candlenut shells was 2.5-3 Mohs, which was close to walnut shells’ hardness. It was advantage to guarantee the cleaning filter cake by fluidization process during backwashing.
Keywords: Candlenut shells, walnut shells, pecan shells, nutshell filter, filtration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4563343 Variation of Uncertainty in Steady And Non-Steady Processes Of Queuing Theory
Authors: Om Parkash, C.P.Gandhi
Abstract:
Probabilistic measures of uncertainty have been obtained as functions of time and birth and death rates in a queuing process. The variation of different entropy measures has been studied in steady and non-steady processes of queuing theory.Keywords: Uncertainty, steady state, non-steady state, trafficintensity, monotonocity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11843342 Sustainability Assessment of a Deconstructed Residential House
Authors: Atiq U. Zaman, Juliet Arnott
Abstract:
This paper analyses the various benefits and barriers of residential deconstruction in the context of environmental performance and circular economy based on a case study project in Christchurch, New Zealand. The case study project “Whole House Deconstruction” which aimed, firstly, to harvest materials from a residential house, secondly, to produce new products using the recovered materials, and thirdly, to organize an exhibition for the local public to promote awareness on resource conservation and sustainable deconstruction practices. Through a systematic deconstruction process, the project recovered around 12 tonnes of various construction materials, most of which would otherwise be disposed of to landfill in the traditional demolition approach. It is estimated that the deconstruction of a similar residential house could potentially prevent around 27,029 kg of carbon emission to the atmosphere by recovering and reusing the building materials. In addition, the project involved local designers to produce 400 artefacts using the recovered materials and to exhibit them to accelerate public awareness. The findings from this study suggest that the deconstruction project has significant environmental benefits, as well as social benefits by involving the local community and unemployed youth as a part of their professional skills development opportunities. However, the project faced a number of economic and institutional challenges. The study concludes that with proper economic models and appropriate institutional support a significant amount of construction and demolition waste can be reduced through a systematic deconstruction process. Traditionally, the greatest benefits from such projects are often ignored and remain unreported to wider audiences as most of the external and environmental costs have not been considered in the traditional linear economy.
Keywords: Circular economy, construction and demolition waste, resource recovery, systematic deconstruction, sustainable waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11133341 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10983340 A Review on Cloud Computing and Internet of Things
Authors: Sahar S. Tabrizi, Dogan Ibrahim
Abstract:
Cloud Computing is a convenient model for on-demand networks that uses shared pools of virtual configurable computing resources, such as servers, networks, storage devices, applications, etc. The cloud serves as an environment for companies and organizations to use infrastructure resources without making any purchases and they can access such resources wherever and whenever they need. Cloud computing is useful to overcome a number of problems in various Information Technology (IT) domains such as Geographical Information Systems (GIS), Scientific Research, e-Governance Systems, Decision Support Systems, ERP, Web Application Development, Mobile Technology, etc. Companies can use Cloud Computing services to store large amounts of data that can be accessed from anywhere on Earth and also at any time. Such services are rented by the client companies where the actual rent depends upon the amount of data stored on the cloud and also the amount of processing power used in a given time period. The resources offered by the cloud service companies are flexible in the sense that the user companies can increase or decrease their storage requirements or the processing power requirements at any time, thus minimizing the overall rental cost of the service they receive. In addition, the Cloud Computing service providers offer fast processors and applications software that can be shared by their clients. This is especially important for small companies with limited budgets which cannot afford to purchase their own expensive hardware and software. This paper is an overview of the Cloud Computing, giving its types, principles, advantages, and disadvantages. In addition, the paper gives some example engineering applications of Cloud Computing and makes suggestions for possible future applications in the field of engineering.
Keywords: Cloud computing, cloud services, IaaS, PaaS, SaaS, IoT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13903339 Design and Implementation of a 10-bit SAR ADC with A Programmable Reference
Authors: Hasmayadi Abdul Majid, Yuzman Yusoff, Noor Shelida Salleh
Abstract:
This paper presents the development of a single-ended 38.5 kS/s 10-bit programmable reference SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and a SAR digital logic to create 10 effective bits ADC. A programmable reference circuitry allows the ADC to operate with different input range from 0.6 V to 2.1 V. The ADC consumed less than 7.5 mW power with a 3 V supply.
Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Resistive DAC, Programmable Reference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21173338 Using Seismic Base Isolation Systems in High-Rise Hospital Buildings and a Hybrid Proposal
Authors: E. Bakkaloğlu, N. Torunbalcı
Abstract:
Earthquakes are inevitable natural disasters in Turkey. Therefore, buildings must be prepared for this natural hazard. Especially in hospital buildings, earthquake resistance is an essential point because hospitals are one of the first places where people come after earthquake. Although hospital buildings are more suitable for horizontal architecture, it is necessary to construct and expand multi-story hospital buildings due to difficulties in finding suitable places as a result of excessive urbanization, difficulties in obtaining appropriate size land and decrease in suitable places and increase in land values. In Turkey, using seismic isolators in public hospitals, which are placed in first degree earthquake zone and have more than 100 beds, is made obligatory by general instruction. As a result of this decision, it may sometimes be necessary to construct seismic isolated multi-story hospital buildings in cities where those problems are experienced. Although there is widespread use of seismic isolators in Japan, there are few multi-story buildings in which seismic isolators are used in Turkey. As it is known, base isolation systems are the most effective methods of earthquake resistance, as the number of floors increases, the center of gravity moves away from the base in multi-story buildings, increasing the overturning effect and limiting use of these systems. In this context, it is aimed to investigate structural systems of multi-story buildings which are built using seismic isolation methods in the world. In addition to this, a working principle is suggested for the disseminating seismic isolator used in multi-story hospital buildings. The results to be obtained from the study will guide architects who design multi-story hospital buildings in their architectural designs, and engineers in terms of structural system design.
Keywords: Earthquake, energy absorbing systems, hospital, seismic isolation systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 293337 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values
Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi
Abstract:
A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.
Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9583336 Case Study of the Roma Tomato Distribution Chain: A Dynamic Interface for an Agricultural Enterprise in Mexico
Authors: Ernesto A. Lagarda-Leyva, Manuel A. Valenzuela L., José G. Oshima C., Arnulfo A. Naranjo-Flores
Abstract:
From August to December of 2016, a diagnostic and strategic planning study was carried out on the supply chain of the company Agropecuaria GABO S.A. de C.V. The final product of the study was the development of the strategic plan and a project portfolio to meet the demands of the three links in the supply chain of the Roma tomato exported annually to the United States of America. In this project, the strategic objective of ensuring the proper handling of the product was selected and one of the goals associated with this was the employment of quantitative methods to support decision making. Considering the antecedents, the objective of this case study was to develop a model to analyze the behavioral dynamics in the distribution chain, from the logistics of storage and shipment of Roma tomato in 81-case pallets (11.5 kg per case), to the two pre-cooling rooms and eventual loading onto transports, seeking to reduce the bottleneck and the associated costs by means of a dynamic interface. The methodology used was that of system dynamics, considering four phases that were adapted to the purpose of the study: 1) the conceptualization phase; 2) the formulation phase; 3) the evaluation phase; and 4) the communication phase. The main practical conclusions lead to the possibility of reducing both the bottlenecks in the cooling rooms and the costs by simulating scenarios and modifying certain policies. Furthermore, the creation of the dynamic interface between the model and the stakeholders was achieved by generating interaction with buttons and simple instructions that allow making modifications and observing diverse behaviors.
Keywords: Agrilogistics, distribution, scenarios, system dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8293335 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures
Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher
Abstract:
Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.
Keywords: CO2 capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8833334 The Study of the Desulfurization Process of Oil and Oil Products of “Zhanazhol” Oil Field Using the Approaches of Green Chemistry
Authors: Zhaksyntay K. Kairbekov, Zhannur K. Myltykbaeva, Nazym T. Smagulova, Dariya K. Kanseitova
Abstract:
In this paper we studied sono catalytic oxidative desulfurization of oil and diesel fraction from “Zhanazhol” oil deposits. We have established that the combined effect of the ultrasonic field and oxidant (ozone-air mixture) in the presence of the catalyst on the oil is potentially very effective method of desulfurization of oil and oil products. This method allows increasing the degree of desulfurization of oil by 62%.
Keywords: Desulfurization, diesel, oil, oil products, sonication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19513333 Compressive Stresses near Crack Tip Induced by Thermo-Electric Field
Authors: Thomas Jin-Chee Liu
Abstract:
In this paper, the thermo-electro-structural coupledfield in a cracked metal plate is studied using the finite element analysis. From the computational results, the compressive stresses reveal near the crack tip. This conclusion agrees with the past reference. Furthermore, the compressive condition can retard and stop the crack growth during the Joule heating process.
Keywords: Compressive stress, crack tip, Joule heating, finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20163332 Using Artificial Neural Network and Leudeking-Piret Model in the Kinetic Modeling of Microbial Production of Poly-β- Hydroxybutyrate
Authors: A.Qaderi, A. Heydarinasab, M. Ardjmand
Abstract:
Poly-β-hydroxybutyrate (PHB) is one of the most famous biopolymers that has various applications in production of biodegradable carriers. The most important strategy for enhancing efficiency in production process and reducing the price of PHB, is the accurate expression of kinetic model of products formation and parameters that are effective on it, such as Dry Cell Weight (DCW) and substrate consumption. Considering the high capabilities of artificial neural networks in modeling and simulation of non-linear systems such as biological and chemical industries that mainly are multivariable systems, kinetic modeling of microbial production of PHB that is a complex and non-linear biological process, the three layers perceptron neural network model was used in this study. Artificial neural network educates itself and finds the hidden laws behind the data with mapping based on experimental data, of dry cell weight, substrate concentration as input and PHB concentration as output. For training the network, a series of experimental data for PHB production from Hydrogenophaga Pseudoflava by glucose carbon source was used. After training the network, two other experimental data sets that have not intervened in the network education, including dry cell concentration and substrate concentration were applied as inputs to the network, and PHB concentration was predicted by the network. Comparison of predicted data by network and experimental data, indicated a high precision predicted for both fructose and whey carbon sources. Also in present study for better understanding of the ability of neural network in modeling of biological processes, microbial production kinetic of PHB by Leudeking-Piret experimental equation was modeled. The Observed result indicated an accurate prediction of PHB concentration by artificial neural network higher than Leudeking- Piret model.Keywords: Kinetic Modeling, Poly-β-Hydroxybutyrate (PHB), Hydrogenophaga Pseudoflava, Artificial Neural Network, Leudeking-Piret
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48113331 Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks
Authors: Zeyad Abdelmageid, Xianbin Wang
Abstract:
Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterwards. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and at times better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead.
Keywords: Channel assignment, Wi-Fi networks, clustering, DBSCAN, overhead.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3853330 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review
Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough
Abstract:
The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.
Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483329 Recycling of Tungsten Alloy Swarf
Authors: A. A. Alhazza
Abstract:
The recycling process of Tungsten alloy (Swarf) by oxidation reduction technique have been investigated. The reduced powder was pressed under a pressure 20Kg/cm2 and sintered at 1150°C in dry hydrogen atmosphere. The particle size of the recycled alloy powder was 1-3 μm and the shape was regular at a reduction temperature 800°C. The chemical composition of the recycled alloy is the same as the primary Swarf.Keywords: Recycling, Swarf, Oxidation, Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19233328 Factors Related to Working Behavior
Authors: Charawee Butbumrung
Abstract:
This paper aimed to study the factors that relate to working behavior of employees at Pakkred Municipality, Nonthaburi Province. A questionnaire was utilized as the tool in collecting information. Descriptive statistics included frequency, percentage, mean and standard deviation. Independent- sample t- test, analysis of variance and Pearson Correlation were also used. The findings of this research revealed that the majority of the respondents were female, between 25- 35 years old, married, with a Bachelor degree. The average monthly salary of respondents was between 8,001- 12,000 Baht, and having about 4-7 years of working experience. Regarding the overall working motivation factors, the findings showed that interrelationship, respect, and acceptance were ranked as highly important factors, whereas motivation, remunerations & welfare, career growth, and working conditions were ranked as moderately important factors. Also, overall working behavior was ranked as high. The hypotheses testing revealed that different genders had a different working behavior and had a different way of working as a team, which was significant at the 0.05 confidence level, Moreover, there was a difference among employees with different monthly salary in working behavior, problem- solving and decision making, which all were significant at the 0.05 confidence level. Employees with different years of working experience were found to have work working behavior both individual and as a team at the statistical significance level of 0.01 and 0.05. The result of testing the relationship between motivation in overall working revealed that interrelationship, respect and acceptance from others, career growth, and working conditions related to working behavior at a moderate level, while motivation in performing duties and remunerations and welfares related to working behavior towards the same direction at a low level, with a statistical significance of 0.01.
Keywords: Employees of Pakkred Municipality, Factors, Nonthaburi Province, Working Behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15833327 Development of Personal and Social Identity in Immigrant Deaf Adolescents
Authors: Marialuisa Gennari, Giancarlo Tamanza, Ilaria Montanari
Abstract:
Identity development in adolescence is characterized by many risks and challenges, and becomes even more complex by the situation of migration and deafness. In particular, the condition of the second generation of migrant adolescents involves the comparison between the family context in which everybody speaks a language and deals with a specific culture (usually parents’ and relatives’ original culture), the social context (school, peer groups, sports groups), where a foreign language is spoken and a new culture is faced, and finally in the context of the “deaf” world. It is a dialectic involving unsolved differences that have to be treated in a discontinuous process, which will give complex outcomes and chances depending on the process of elaboration of the themes of growth and development, culture and deafness. This paper aims to underline the problems and opportunities for each issue which immigrant deaf adolescents must deal with. In particular, it will highlight the importance of a multifactorial approach for the analysis of personal resources (both intra-psychic and relational); the level of integration of the family of origin in the migration context; the elaboration of the migration event, and finally, the tractability of the condition of deafness. Some psycho-educational support objectives will be also highlighted for the identity development of deaf immigrant adolescents, with particular emphasis on the construction of the adolescents’ useful abilities to decode complex emotions, to develop self-esteem and to get critical thoughts about the inevitable attempts to build their identity. Remarkably, and of importance, the construction of flexible settings which support adolescents in a supple, “decentralized” way in order to avoid the regressive defenses that do not allow for the development of an authentic self.
Keywords: Immigrant deaf adolescents, identity development, personal and social challenges, psycho-educational support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15403326 Discovery of Quantified Hierarchical Production Rules from Large Set of Discovered Rules
Authors: Tamanna Siddiqui, M. Afshar Alam
Abstract:
Automated discovery of Rule is, due to its applicability, one of the most fundamental and important method in KDD. It has been an active research area in the recent past. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form: Decision If < condition> Generality
Keywords: Knowledge discovery in database, quantification, dempster shafer theory, genetic programming, hierarchy, subsumption matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15273325 Analysis of Surface Hardness, Surface Roughness, and Near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.
Abstract:
In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the surface hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor hobson talysurf tester, micro vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.
Keywords: Surface hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805