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Abstract—Choosing the operational channel for a WLAN access
point (AP) in WLAN networks has been a static channel assignment
process initiated by the user during the deployment process of
the AP, which fails to cope with the dynamic conditions of
the assigned channel at the station side afterwards. However, the
dramatically growing number of Wi-Fi APs and stations operating
in the unlicensed band has led to dynamic, distributed and often
severe interference. This highlights the urgent need for the AP to
dynamically select the best overall channel of operation for the basic
service set (BSS) by considering the distributed and changing channel
conditions at all stations. Consequently, dynamic channel selection
algorithms which consider feedback from the station side have
been developed. Despite the significant performance improvement,
existing channel selection algorithms suffer from very high feedback
overhead. Feedback latency from the STAs, due the high overhead,
can cause the eventually selected channel to no longer be optimal for
operation due to the dynamic sharing nature of the unlicensed band.
This has inspired us to develop our own dynamic channel selection
algorithm with reduced overhead through the proposed low-overhead,
cluster-based station reporting mechanism. The main idea behind the
cluster-based station reporting is the observation that STAs which are
very close to each other tend to have very similar channel conditions.
Instead of requesting each STA to report on every candidate channel
while causing high overhead, the AP divides STAs into clusters then
assigns each STA in each cluster one channel to report feedback
on. With proper design of the cluster based reporting, the AP does
not lose any information about the channel conditions at the station
side while reducing feedback overhead. The simulation results show
equal performance and at times better performance with a fraction
of the overhead. We believe that this algorithm has great potential
in designing future dynamic channel selection algorithms with low
overhead.

Keywords—Channel assignment, Wi-Fi networks, clustering,
DBSCAN, overhead.

I. INTRODUCTION

DURING the last decades, wireless networks have

consistently played a critical role in driving the evolution

of many technologies. In addition to cellular networks, one

of the most significant wireless technologies is Wi-Fi, which

operates in unlicensed bands. Nowadays, Wi-Fi, defined by

a family of 802.11 standards, is the most popular wireless

technology used for data transmission, carrying more than

half of user traffic today. With the different standards over

the years, the data rates supported by Wi-Fi has increased

from 2 Mbps in IEEE 802.11-1997 to almost 10 Gbps in the

latest 802.11ax [1]. This significant performance improvement

could be traced back to faster modulation, wider channels,
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and the implementation of Multiple Input Multiple Output

technologies (MIMO).

One of the dominant impairments in WLAN networks

is interference, because all WLAN devices share the same

unlicensed band as well as with other technologies such

as Bluetooth, ZigBee, and LTE-U. Furthermore, due to the

increase in the number of WLAN networks, co-channel

interference has become a huge challenge in Wi-Fi systems.

Mitigating such interference could be extremely difficult due

to spatially distributed interference, time-varying transmission

activities and uncooperative nature among co-existing APs and

STAs.

One of the main factors which can dramatically impact

the performance of a Wi-Fi network is the channel of

operation assigned to the AP, which is then used by the

AP to communicate with STAs. The assignment process of

the channel of operation is very important since assigning a

channel with high interference to an AP will directly reduce

the performance and achievable data rate for each STA. In

existing channel assignment procedures, the channel is usually

assigned to the AP by the user during the initialization process.

In addition to lack of user friendliness, this procedure is

fundamentally a static channel assignment, which does not

consider the dynamic interference and distributed channel

conditions of WLAN networks. In other words, this initial

channel assignment remains the same unless the user chooses

to change it. With dynamic channel use by neighbouring APs

and STAs, this means that the initial channel assignment could

be no longer optimal due to the time-varying and spatial

distributed nature of co-channel interference in the unlicensed

band.

In addition, the AP does not request channel conditions

feedback from STAs before channel assignment. Without

collecting feedback from the STAs in the current BSS, the

APs also can not take into account the channel conditions at

all STAs. This means that the AP is highly likely to be assigned

to operate in a channel where the STAs are experiencing severe

co-channel interference while the AP is completely unaware

of the poor service the user is experiencing. As a result,

measurement experiments conducted by Akella et al. [2] show

that most of the deployed APs transmit on the same channel

in the ISM band (channel 6) and only about 14 % of APs

use the remaining two non-overlapping channels. This means

that a lot of APs with overlapping coverage are not configured

properly to operate on different channels to avoid interference,

which will result in a poor user experience. This is a significant
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issue since the main goal of the AP is to provide the best user

experience possible.

The suboptimal performance of current channel assignment

and utilization practice have inspired studies for dynamic

channel selection algorithms which give the AP the ability

to reconfigure itself overtime depending on the channel

conditions. However, the APs involved in these studies

usually make channel selection directly based the observed

channel conditions by the APs themselves without considering

the STAs’ feedback. Very few of these algorithms give

the AP the ability to request feedback from STAs to

address the distributed channel condition and improve the

overall performance of the Wi-Fi network. Authors in [3]

demonstrated performance improvement using an algorithm

called CB-AIIM (named after the initials of the authors)

when STAs’ feedback on channel conditions was taken into

account by the AP when selecting a channel for operation. The

improvement in performance was expected since the feedback

from STAs allows the AP to have more accurate understanding

of real-time channel conditions of all STAs. Despite its great

performance in [3], one main issue with the algorithm is the

high overhead associated with the feedback mechanism. Due

to the very dynamic nature of STA channel conditions, the

channel selection at AP has to be time-responsive with low

latency to ensure the appropriateness of chosen channel. When

the AP takes a long time to collect feedback from STAs,

the channel conditions collected could already have become

completely outdated. In addition, CB-AIIM lacks an adaptive

post-channel sustainability procedure to keep the AP updated

about possible changes in the select channel’s conditions due

to the dynamic nature of the wireless environment. These

challenges have inspired us to develop a dynamic channel

selection algorithm with reduced overhead through a new

cluster-based station reporting mechanism (we will refer to

it as CB-DCS from now on) where:

1) AP implements a clustering algorithm among STAs,

utilizing the spatial-temporal nature of interference to

group close-by STAs with similar channel environment

conditions together. (Goal 1)

2) AP divides the workload of reporting on all candidate

channels among STAs in each cluster. This way, the AP

can reduce the feedback overhead while preserving the

quality of feedback received, due to the fact that STAs

in the same cluster have very similar environments and

interference conditions. (Goal 2)

3) The AP has the ability to adapt to the dynamic channel

conditions and change channel of operation if necessary.

(Goal 3)

The paper will be divided into the following sections:

Section II provides a brief literature review; Section III

discusses the novelty and technical challenges; Section

IV discusses the system model; Section V showcases

our proposed algorithm design; Section VI analyzes the

algorithm, its strengths and weaknesses; Section VII shows

simulation results and comparisons between CB-DCS and

CB-AIIM; Section VIII is our conclusion and summarizes

the contribution of our work. We believe that our algorithm

achieves similar performance to CB-AIIM while reducing the

overhead and STA workload compared to CB-AIIM.

II. LITERATURE REVIEW

Due to its importance for overall network performance,

channel selection in Wi-Fi has been studied extensively

by the research community but most of them ignore the

channel conditions at the STAs and only consider the

channel conditions observed by the APs. The authors in

[3] provided a literature survey on the articles published on

heuristic techniques for channel selection algorithms in 802.11

networks.

In [4], the authors propose an iterative procedure to

assign channels to APs (in an un-coordinated, multiple

AP environment) ordering them depending on the number

of APs that can interfere with each other. In [5],

researchers summarized the problem of channel assignment

as minimization of the interferences, which is a highly

complex problem. Due to the high complexity of the problem,

authors proposed MICA (minimum interferences for channel

allocation) as an approximated, heuristic algorithm.

In [6], the authors proposed a Network-controlled channel

allocation scheme called AIIM (named after the initials of

the authors) to improve the performance of the AP that

has the lowest performance without compromising the global

performance and iterating the procedure. Authors in [1] took

the AIIM as the approach to be the basis of their algorithm the

CB-AIIM (Cluster Based AIIM), which introduced clustering

into the algorithm where an AP and all its associated STAs

are considered as a cluster and the AP selects the minimum

out of all SIR values reported back by each station to be

the SIR of the channel being considered. This process is

repeated over each channel and then the channel with the

highest SIR/Utility (normalized SIR) is selected. After this

entire process is repeated for one AP, the process continues

for the rest of the APs and the utility of this entire channel

assignment is computed called S. Afterwards, APs with utility

lower than 1 are selected to try to assign them other channels

which would yield better utility but would not degrade S.

This process is repeated R times. This algorithm, however,

is suitable for Wi-Fi networks with a central coordinator.

In [7] a heuristic channel assignment algorithm for

uncoordinated WLANs, CACAO, was proposed which

considers the STA side. In the that algorithm, the AP

auto-configures their channels depending on their local traffic

information; such feedback was obtained using the 802.11k

standard for radio resource management, which defines a series

of measurement requests and statistical reports between an

AP and its clients. The AP would periodically query each

associated client to collect reports on traffic statistics for each

channel. This allows the AP to dynamically reconfigure itself

and choose the best channel for operation. As we can see,

most of these algorithms are assuming that the sources of

interference are other Wi-Fi devices. In addition, the overhead

in some of these algorithms which consider STA side like

[6] and [1] involves high STA workload and large overhead

which increases with size of associated STAs. In addition,
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these algorithms do not consider the dynamic temporal nature

of the Wi-Fi environment. In other words, the algorithms do

not consider that the STAs are mobile and thus do not clearly

discuss how often the channel assignment process needs to

be re-done in order to make sure the AP receives up-to-date

feedback from the STAs.
As we can see in Fig. 2, CB-AIIM outperforms the KCKC

algorithm in [8], an algorithm which chooses channel with

least interference based on Wi-Fi control frames, HZNA, an

algorithm which attempts to minimize using the same channel

in neighbouring APs while trying to avoid total number of

channels used, in [9] and AIIM in [6]. Consequently, we will

be comparing our algorithm to CB-AIIM.

III. NOVELTY AND CHALLENGES

In this section we highlight the novelty and technical

challenges that we faced during the creation of the proposed

algorithm. The novelty of the proposed channel selection

algorithm can be summarized as:

1) The proposed channel selection algorithm gives the AP

the ability to dynamically choose a channel for Wi-Fi

network operation based on its changing operational

environment over time.

2) In addition to the above channel selection process, a

low overhead, cluster-based STA feedback mechanism is

implemented in order to reduce the feedback overhead

without sacrificing the quality of information received

at the AP by utilizing the spatial-dependence of the

interference.

3) Lastly, we propose a cluster-based, low-overhead

channel sustainability procedure to ensure that the AP is

aware when channel conditions change in order to adapt

efficiently.

The use of the proposed clustering algorithm will be

explained in more details further in the paper. With the overall

goal in mind, we faced some technical challenges summarized

as:

1) Choosing a suitable clustering algorithm to support the

fast, low-overhead channel selection without losing the

channel information

2) Fine-tuning the parameters of the clustering algorithm

such that STAs belonging to the same clusters are

guaranteed to have very similar channel conditions

3) Ensuring that the AP requests feedback from the STAs

such that the AP has all the information that it needs to

select a channel while keeping overhead at a minimum

4) Establishing a mechanism by which the STAs can report

channel estimation information back to the AP which

would be backwards compatible with previous versions

of 802.11

5) Designing a low overhead post-channel selection

feedback procedure in order to keep the AP updated on

the dynamic channel conditions and to adapt if necessary

IV. SYSTEM MODEL

A. Architecture
The Wi-Fi operating mode we are considering in this report

is the infrastructure mode, which involves two different types

TABLE I
POSITIONS OF NODE IN (X,Y)

Node Label Node Position
AP (0,0)
1 (1,0)
2 (1,0.5)
3 (0.5,0.5)
4 (-1,0)
5 (-1,0.4)
6 (-0.75, 0.25)

of Wi-Fi devices i.e., an APs and multiple STAs in one BSS.

In addition, the infrastructure mode allows communication

between all the STAs and their associated AP. However,

communication among STAs is forbidden.

In this paper, we focus on the 2.4 GHz unlicensed band.

The AP can choose any of these channels in supporting its

operation. Among all available channels in this band, only

three channels, i.e. 1, 6, and 11, are non-overlapping. We

are only considering the channel selection among these three

non-overlapping channels, as that approach is widely accepted.

As a result, if two neighboring Wi-Fi networks are operating

in different channels, they would not interfere with each other.

B. Channel Model

The Wi-Fi channel was modelled using the “networkx”

Python library. “networkX” is a powerful Python package

for the creation, manipulation, and study of the structure,

dynamics, and functions of complex networks. Each node has

four main features: Label, Position, Edge and Weights. Each

node in this graph is given as:

1) A label either as an “AP” or a number if that node is a

STA

2) A position in the (x,y) space (we assumed all nodes are

the same height)

3) An edge which represents connection between nodes

4) The weight of the edges nodes which represent the

received signal strength (RSS) at the nodes

When two nodes, A (an interferer) and B (a STA device),

are operating over the same channel, an edge with a weight

representing the interference power at node B caused by node

A will be present. We can see in Fig. 1 an example where the

nodes have the labels and positions in Table I.

As we can see in Fig. 1, the weight labeled on each edge

represents the RSS at each STA from the associated AP. The

edge-weights between the AP and any of its associated nodes

is represented as:

IAP−> node = Pt +Gt +Gr − L − PLoss (1)

where Pt is the transmission power, Gr and Gt are the receiver

and transmitter antenna gains, L is the propagation losses due

to obstacles and, assuming that all the antennas are placed

1.5 m above the floor, PLoss represents the signal loss due to

distance which has been formulated in [10] for the 2.4 GHz

band and is formulated as:

PLoss = 40 + 20log (d) (2)
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Fig. 1 Networkx Graph of Network

Fig. 2 Performance analysis of channel selection algorithms

where d is the distance between the two nodes in meters. On

the other hand, the weight of the edges between an interfering

node “m” and any other STA node “n” is defined as:

Im−> n = I ∗ (P t +Gt +Gr − L − PLoss) (3)

where I is zero if m and n do not operate on the same

channel. Keep in mind that STAs which belong to the

same AP do not interfere with each other as the AP

coordinates the transmissions. In unlicensed communications,

the dominant impairment is the co-channel interference

while the background and thermal noise can be neglected.

Consequently, communication performance at Wi-Fi AP and

STAs is determined by the ratio between the desired signal and

the combined co-channel interference from neighboring nodes.

To determine the severity of the co-channel interference, the

signal to interference ratio (SIR) for station “n” could be

expressed using (4):

SIRn =
SAP −> n∑
k Im −> n

(4)

where SAP−>n is the desired signal received from the AP at

node ”n”.

V. PROPOSED ALGORITHM DESIGN - CB-DCS

A. CB-DCS Algorithm Assumptions

Now we can finally present our cluster-based channel

selection algorithm for uncoordinated networks which we will

refer to as CB-DCS. Before we do so, we must list some

assumptions:

1) The AP is operating in the 2.4 GHz band and is only

considering channels 1, 6, and 11 for operation

2) APs are capable of operating on multiple channels

simultaneously and supports UL MU-MIMO

3) The AP can locate STAs in space

4) The number of channels that the AP will be considering

for operation is: x

5) The AP and STAs are all in the same z plane (they have

the same height from the ground)

B. Clustering Algorithm

Firstly, we present the clustering algorithm which will

be essential to our low overhead STA reporting algorithm.

Considering the spatial nature of interference, a very important

observation to note is that STAs in close proximity of each

other tend to have very similar channel conditions; therefore,

the main goal of the clustering algorithm is to make sure

that STAs in the same cluster have very similar channel

conditions. Grouping STAs with similar channel conditions

will help reduce feedback overhead dramatically. For example,

let’s consider three STAs which are very close to each other

and, therefore, have very similar channel conditions. If the

AP wants to know the conditions of channels 1, 6, and 11 in

the approximate location of the three STAs, each STA would

have to scan all three channels and report back to the AP. On

other hand, if the AP groups these three STAs into a single

cluster, each STA could just report on one of the channels as

the conditions will be very similar to the those of the other

two STAs in the same cluster. This way the AP knows the

channel conditions at all the STAs in the cluster while only

requiring each STA to report on one channel.

One of the most popular density based clustering algorithm

is DBSCAN [11], which is available in the python library

‘sklearn’. The algorithm takes in two parameters: ε (the radius)

and ”min samples” (the minimum number of points needed to

define a core point). We selected this clustering algorithm as it

has the ability to form clusters with arbitrary shapes, without

a limitation on the cluster sizes and can handle outliers/noise

in a satisfactory manner. The steps of the algorithm are as

follows:

The steps of the algorithm are as follows:

1) A random point is chosen

2) A circle of radius ε is drawn around the chosen point as

the center

3) If the number of sample points in the circle is at least

equal to ‘min samples’, the point is a core point

4) If there are no other points in the circle, the point is an

outlier

5) This process is repeated across all points in the dataspace

6) Clusters are then formed based on the core, border, and

outliers

A Python simulation using the DBSCAN algorithm was

carried out and the results are shown below. The value of

epsilon was set to 2 and ‘min samples’ to 2. Fig. 4 shows

the dataset plotted in space and the result of the DBSCAN
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Fig. 3 DBSCAN algorithm overview

Fig. 4 STAs after being divided into clusters; each color/index corresponds
to a different cluster

algorithm, where nodes with the same label belong to the same

cluster and nodes with a label ’-1’ are outliers which do not

belong to any cluster.

Now that we have outlined the clustering algorithm of

choice, DBSCAN algorithm, we have to specify which

parameters will be considered in the clustering process.

The first parameter being considered is the location of STAs

in space. This will ensure that STAs in close proximity of each

other are grouped into one cluster as they will have similar

channel conditions (SIR value) due to the spatial-temporal

nature of interference. We can see the result of running the

DBSCAN algorithm (shown in Fig. 4) on the nodes (shown

in Fig. 1). We can see that each cluster index is represented

by a color and ‘-1’ indicates a node that does not belong to a

cluster.

The second parameter we considered in the clustering

process is the SIR for a specific channel at the STAs. The AP

requests the SIR measurement across the same channel/RU

from all STAs. The AP then applies the DBSCAN algorithm

on the SIR values reported back from all STAs. This can be

seen in Fig. 5.

Fig. 5 SIR clustering

TABLE II
SIMULATION PARAMETERS

Parameter Value
Extended Range False

Channel Bandwidth 20 MHz
APEP Length 1000 bytes

MCS 0
Number of Spatial Streams 1

Number of Transmit Antennas 1
Sampling Frequency 20 MHz

Carrier Frequency 2.4 GHz
Large Scale Fading Effect Pathloss and Shadowing

Number of Receive Antennas 1
Number of Penetrated Walls Variable
Number of Penetrated Floors Vairable

Distance between Transmitter and Receiver Variable

Fig. 6 rx2 (blue): NumPenWalls = 1, NumPenFloors = 1, TxRx2 distance =
2 m

The purpose behind including a second parameter is that

sometimes, despite two STAs being close to each other, they

can have different channel conditions. This could be due to a

barrier between these STAs like a wall or a piece of furniture,

which the AP has no way to identify. Simulations were run on

MATLAB in order to investigate the nature of an indoors Wi-Fi

channel. The WLAN toolbox was used. A HE-SU packet

was filtered through a 802.11ax multipath fading channel. The

simulation parameters are summarized in Table II.

As shown in Fig. 7, despite both receivers being only 1
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Fig. 7 rx2(blue): NumPenWalls = 1, NumPenFloors = 0, TxRx2 distance =
1 m

meter apart, the wall and floor in between caused a reduction

of up to 30 dB at rx2, compared to the case in Fig. 6. This

could work the other way around as well. For example, rx2

could be experiencing interference from an interferer but rx1

would not detect this interference due to the attenuation caused

by the wall and floor. Now if the clustering is done only based

on the spatial location, then the AP would group rx1 and rx2

in the same cluster because the AP has no way to tell if there

is a wall between these two receivers. The fact that the AP

would cluster rx1 and rx2 together means that the AP would

assume that they both have similar conditions, which is not

the case. For this reason, we add another parameter in the

clustering algorithm: SIR. The AP will start by assigning all

channels in the same spatial cluster to report back the SIR of a

common channel. Now the AP runs the DB-SCAN algorithm

again on the reported back SIR values resulting in a set of

SIR-based clusters. As a result, STAs A and B belong to the

same cluster if and only if:

1) STA A and STA B belong to the same spatial cluster

2) STA A and STA B belong to the same SIR-based cluster

After the AP clusters the STAs based on their spatial

location and their channel conditions, the STAs in the same

clusters will have very similar channel conditions. This lays

the foundation for our algorithm’s ability to achieve ’Goal 1’:

Reducing feedback overhead.

C. STA Feedback Mechanism

One of the main aspects in need of discussion is the

mechanism by which the STAs report the SIR to the AP.

Since the main aspect of the CB-DCS is the STA reporting

back to the AP, we need to very clearly specify how this

process will be carried out. In 802.11ax, MU-MIMO was

introduced to the standard and is a key technology responsible

for increasing the capacity of the network. This procedure,

however, requires the AP to know the channel conditions at the

STA. Therefore, a channel sounding procedure was developed.

Since the channel conditions change frequently, the AP needs

to update its knowledge about the STAs channel conditions

periodically. The sounding procedure starts by the AP sending

a reference signal to the STAs and then getting explicit channel

feedback from the STAs. The procedure starts as follows [12]:

1) AP sends out a null data packet announcement (NDPA)

to notify STAs about the following reference signal

Fig. 8 Explicit Channel Sounding

2) After a short inter-frame space, AP sends a NDP frame,

which is used by the STAs to assess the channel.

3) AP sends a beamforming report trigger to the STAs to

let the them know that they need to transmit back a

beamforming report to the AP

4) STAs report back to the AP the beamforming reports

(BFRs) either sequentially or in parallel using OFDMA

The BFR/CSI report contains the average SNR per spatial

stream. The MU-MIMO in 802.11ax allows AP to serve a

maximum of 4 STA per RU [13]. The frame format of the

BRP can be seen in Fig. 9, where the ‘RU Allocation’ in

the ‘User Info’ field is the RU which the AP is requesting

feedback on. The whole sounding process is shown in Fig. 8.

Due to the fact that this procedure is already implemented in

802.11ax, we decided that this is the mechanism that the AP

will use to request and receive feedback from STAs.

D. STA Channel Assignment

In order for the AP to take advantage of the clustering

algorithm, the AP must have the capability to intelligently

assign STAs channels to scan such that the overall feedback

received by the AP is comprehensive and does not lack

important information of the AP to know before selecting

a channel for operation, while keeping the overhead to a

minimum. Considering one cluster at a time, the AP divides

the work among the STAs in such a way that provides the

AP with feedback on all the candidate channels. The AP

assigns the STAs the channels to report on. The number of

channels assigned to each STA depends on the cluster size. If

the cluster size is less than the number of the channels the AP

is considering, then the AP would have to assign some STAs

more than one channel to scan in order to have a complete

understanding of channels conditions. In this case, the priority

of assigning multiple channels to scan is for STAs with the

highest capabilities. This information is known to the AP

due to the association frames sent by STAs when joining the

network. This ensures that devices with limited resources, such

as IoT devices, are not burdened with additional workload. In

the case where all the STAs have the same capabilities, then

the AP would assign the extra channels to STAs randomly.

For example, if the cluster consists of just two STAs of equal

capabilities, then the AP would randomly assign one of the

STAs two channels to scan while the other STA would just be

assigned the remaining channel to scan. On the other hand,

when the cluster size is bigger than or equal to the number

of channels the AP is considering, the AP assigns each STA

a single channel to scan. If the cluster size is equal to the

number of channels, then the AP assigns each STA a channel

to report on. On the other hand, the AP would assign multiple
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Fig. 9 BRP Frame Format

STAs the same channel to scan then calculate the mean of the

results in further calculation in (5). For example, if the cluster

is of size three, then AP would assign STA 1 to report on

channel 1, STA 2 to report on channel 6 and STA 3 to report

on channel 11. If the cluster size is bigger than three then

STA 4 would be assigned to scan channel 1, STA 5 would be

assigned to scan channel 6, etc...

E. Data Processing and Channel Selection

After the AP receives feedback from all clusters, the AP

would have a SIR value corresponding to each channel from

each cluster. The way the AP processes this data is crucial.

A weakness in algorithms proposed in recent literature is

sensitivity to outliers; therefore, we aim to make our algorithm

less sensitive to outliers. As a result, for each channel, the final

SIR value is a weighted average of the SIR values reported

back by different clusters where the weights correspond to

the size of clusters. The weighted average gives more weight

to denser clusters and less weight to less dense clusters, as

can be seen in (5). This makes the algorithm less sensitive to

outliers, unlike the CB-AIIM algorithm. Now the AP selects

the channel with the highest average SIR.

SIRx =

∑
N NumSTAn • SIRn

Total Number of STAs in Network
(5)

where NumSTAn is the total number of STAs in cluster n,

SIRn is the SIR for channel x in cluster n (reported back by

the STA assigned to channel x) and SIRx is the total SIR for

channel x.

F. Post Channel Selection Sustainability

After the AP selects the channel of operation, it is very

crucial for the AP to be able to adapt to the dynamic nature

of the wireless environment and to update any outdated

information the AP has about the channel conditions. In

the sounding procedure implemented in MU-MIMO in the

802.11ax standard, the AP repeats the procedure periodically

every 50-200 ms depending on the channel conditions.

Despite the fact that the AP stays updated on the latest

channel conditions, this process could be extremely inefficient

in low-mobility networks. This inspired us to design our

very own procedure to keep the AP aware of the dyamic

channel conditions and, therefore, give it the ability to

adapt consequently. In each cluster, the AP assigns the STA

with the highest capability to be the cluster head. This

cluster head monitors the channel conditions and triggers the

AP to re-select a channel of operation if and only if the

channel conditions changes over a period of time. This way

unnecessary reporting when the channel conditions have not

changed is avoided, reducing overall overhead and workload.

In addition to the dynamic nature of the wireless

environment, the AP also has to account for the possible

mobile nature of the STAs. The AP periodically estimates the

location of the STAs and runs the DBSCAN algorithm on their

locations and as soon as they detect that there is a new cluster

forming or the presence of changes to the current clusters,

the AP must perform the channel selection algorithm all over

again. The periodicity at which the AP estimates the location

of the STAs depends on the nature of the network. Networks

with low mobility would not need very frequent estimations

by the AP; therefore, the period will not be specified and is a

parameter that can be adjusted.

One important aspect to consider, however, is the fact

the SIR values estimated by cluster heads or the estimated

locations of the associated STAs might be affected by noise

due to environmental factors. In order to eliminate the effect

of noise, we use the Hampel filter for denoising to get more

accurate data samples [12], [13]. The basic idea of the Hampel

filter is a moving, weighted average. The Hampel filter was

mainly developed in order to remove outliers and singular data

points from datasets and it does so effectively. The filter judges

a point as either singular or correct. When the point is judged

as singular, the data point is replaced by the median. The

judgement equations of the filter are as follows:{
|x−m| >t*std singular

|x−m|≤ t*std correct

After the Hampel filter is applied and the singular points
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are eliminated, the data set becomes more reliable. Once a

cluster-head notices an upward or downward trend in the data,

then the AP assumes that channel conditions have changed and

that the channel of operation might not be the optimal selection

anymore and triggers the AP to re-select a channel; therefore,

the AP runs the algorithms again. On the other hand, if there

is no trend in the SIR values, then no triggering action is taken

by the cluster-head.

Algorithm 1 CB-DCS Pseudocode

1: AP sends frames to STA to estimate common channel

2: AP divides STAs into n cluster based on Spatial location

and SIR reported back in step 1

3: for <each cluster n> do
4: AP assigns clusterhead to STA with highest capabilites

or randomly if not applicable

5: if size(n) ≥ x then
6: for (each STA m in Cluster n) do
7: if m >x and mod(m,x) = 0: then
8: m ← xthchannel
9: else if m >x and mod(m,x) �= 0: then

10: STAm ← mod(m,x)thchannel
11: else if m <x: then
12: STA m ← mthchannel
13: end if
14: end for
15: else if size(n)<x then
16: for <each STA m in Cluster n> do
17: if STA m is a high capability STA then
18: assign the STA the mth channel

19: assign the STA the excess channels to scan

20: else if STA m is not a high capability STA then
21: assign the STA the mth channel

22: end if
23: end for
24: if Still some channels are unassigned then
25: randomly assign STAs the excess channels

26: end if
27: end if
28: end for
29: AP requests feedback from clusterheads and estimates

position of all STAs

30: while feedback and positions do not change do
31: Nothing

32: end while
33: if feedback or positions change then
34: Go back to Step 1

VI. EVALUATION

Now we will evaluate how the CB-DCS algorithm meets the

goals we set in Section I and its strengths and weaknesses.

A. Algorithm Analysis

The first goal is AP implements a clustering algorithm

among STAs, utilizing the spatial-temporal nature of

Algorithm 2 post-channel selection sustainability Algorithm

1: Cluster-head periodically measures SIR of the selected

channel by the AP

2: AP periodically measure positions of STAs

3: Hampel filter is applied on measured data points

4: while channel conditions and positions do not change do
5: Nothing

6: end while
7: if channel conditions change then
8: cluster-head triggers AP to re-select channel

9: else if STA position changes then
10: AP re-selects channel

Fig. 10 Feedback without clustering

Fig. 11 Feedback with clustering

interference to group STAs with similar channel environment

conditions together. Let’s refer to steps 1-4 of ’Algorithm

1’: CB-CDS Pseudocode’. The AP begins by dividing the

STAs into clusters based on the chosen parameters: spatial

coordinates and SIR at the STA for a specific channel. The

result of these steps is clusters where STAs in each cluster

have almost identical channel conditions, which is essential

for STA feedback overhead reduction. Afterwards, the AP

takes advantage of this in steps 3-28 in order to reduce the

feedback overhead. The AP just assigns each STA in the

cluster channel/s to scan and collects the feedback from all

the STAs in the cluster to have complete knowledge about

the channel conditions across all the candidate channels in the

vicinity of the cluster. This process can be seen in Figs. 10 and

11, where STAs 1, 2, and 3 belong to the same cluster. We can

see the dramatic decrease in overhead in Fig. 11 compared to

Fig. 1 after applying clustering and more importantly, the AP

does not sacrifice any information.

The second goal we set is AP divides the workload of
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reporting on all candidate channels among STAs in each

cluster. This way, the AP can reduce the workload per

STA and feedback overhead dramatically while preserving

the quality of feedback received, due to the fact that STAs

in the same cluster have very similar environments and

interference conditions. This way, the AP can reduce the

feedback overhead dramatically while preserving the quality of

feedback received, due to the fact that STAs in the same cluster

have very similar environments and interference conditions.

The algorithm makes sure that the AP receives feedback from

clusters on the set of all candidate channels being considered.

This can be seen in Fig. 11. The AP assigns each STA

in the cluster one channel to report on. This way, the AP

will have information about all three channels despite each

STA reporting back on just one channel. This is due to the

intelligent division of workload on the STAs. Steps 3-28 in

’Algorithm 1’ show the details of how the workload is divided

among STAs in a cluster.

Lastly, the third goal we set is: The AP has the ability to

adapt the dynamic channel conditions and change channel of

operation if necessary. This goal is important to meet due to

the mobile, dynamic nature of WLAN environments. Keeping

the AP updated on channel conditions across all STAs while

keeping overhead low is a challenge which was overcome by:

’Algorithm 2’, which selects a cluster-head in each cluster to

trigger the AP to re-select a channel of operation if and only

if the current channel of choice is not suitable anymore. In

addition to channel conditions, the position of the STAs can

change overtime due to the mobile nature of STAs. As a result

the AP periodically estimates the positions of the STAs in the

network and is triggered to re-select the channel of operation

if the positoins of the STAs change enough to form new

cluster or change current clusters. An issue which could arise

is noisy data points which would trigger the AP to take action

when in reality it is not necessary, so in order to eliminate

the noise from the data measured by the cluster-heads or the

AP, a Hampler filter is applied which can effectively eliminate

singular data points. As a result, the resulting dataset is more

reliable and can be utilized by the cluster-heads and AP to

make decision on whether the current channel is still a suitable

selection or if it needs to alert the AP.

B. Algorithm Strengths and Weaknesses

Lastly, let’s consider which scenarios are the most suitable

for the CB-DCS algorithm. The CB-DCS algorithm excels

when the STAs in the network are dense and can form clusters

of size at least greater than the number of channels the

AP is considering. For example, if the AP is considering

selecting one of three channels to operate in, the smallest

cluster would have to be at least of size 3. This way, the

AP would receive at least one feedback on each channel

from that cluster. Otherwise, the AP would need to assign

a STA more than one channel in order to have complete

understanding of the channel conditions. This will eventually

increase the feedback overhead but there would still be an

overhead reduction compared to a cluster-free algorithm. In

the worst case scenario where all STAs are single clusters

TABLE III
STAS LOCATIONS IN (X,Y)

STA ID Coordinates
1 (1,0)
2 (1,0.5)
3 (1.5,0)
4 (-2,0)
5 (-2,0.75)
6 (-2.5, 0.5)
7 (-3, -3)
8 (-3.5,-3)
9 (-4,-3.5)

TABLE IV
INTERFERERS INFO

Interferer ID Coordinates Operational Channel
1 (2,-7) 1
2 (6,-3) 6

(clusters are all of size one), the feedback overhead would be

equal to a cluster-free case.

One more thing to consider is scalability issues which

might arise when applying this algorithm in the 5 and 6 GHz

bands. In these bands, the number of non-overlapping channels

is significantly higher than the 2.4 GHz band; therefore, if

the AP considers every single channel and requests feedback

on all these channels, the overhead feedback would increase

dramatically. Even though this scalability issue is a concern,

it is not an alarming issue as the co-channel interference in

the 5 and 6 GHz bands is not as severe as it is in the 2.4

GHz band. As a result, less channels in the 5 and 6 GHz

band will suffer from co-channel interference compared to

channels in 2.4 GHz. Thus, if the AP operate in the 5 and 6

GHz bands, it does not have to consider all channels available

for operation and it can instead consider a random subset of

the set of all available channels. This will reduce the scaling

issue with our algorithm while not compromising performance.

On the other hand, one of the algorithm’s strengths is its

insensitivity to outliers. This can be seen clearly in (5), where

the total SIR of a channel is calculated as a weighted average

where the weights are proportional to the size of the cluster.

This way, denser clusters will have a greater influence on the

AP’s channel selection more than a less dense cluster. This

guarantees that the algorithm will select the channel which

will improve the overall performance of the network the most.

VII. SIMULATIONS

We assume that in the network, the AP is only considering

channels 1, 6 and 11. The STAs and AP have the coordinates

in Table III.

Before we compare show simulation results, we will

introduce three equations which calculate values related to

overhead reduction, which is denoted by ζ.

ζm =
1

x
(x− cm)× 100% (6)

ζ =

∑
m

1
x (x− cm)× 100%

M
(7)
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TABLE V
FEEDBACK AT AP WITHOUT CLUSTERING (CB-AIIM)

STA ID Channel 1 Channel 6 Channel 11
1 36.99 35.31 50.00
2 36.61 34.74 49.03
3 33.40 31.14 46.47
4 32.10 32.61 43.97
5 32.21 32.22 43.41
6 30.71 31.14 41.87
7 23.58 26.53 37.45
8 23.38 26.28 36.73
9 22.32 25.50 35.49

Average SIR per Channel 30.14 30.62 42.71

TABLE VI
FEEDBACK AT AP WITH CCLUSTERING

Cluster ID Channel 1 Channel 6 Channel 11
1 36.99 34.74 46.48
2 32.10 32.33 41.87
3 23.58 26.28 35.49

Average SIR Per Channel 30.89 31.12 41.28

ζmin ≤ ζm ≤ ζmax (8)

where m is STA index, cm is the number of channels assigned

for STA m to report on, M is the total number of STAs

in the network and x is the number of channels the AP is

considering for operation: Firstly, (6) which calculates the

overhead reduction of STA m; secondly, (7) which calculates

the average overhead reduction across all STAs; lastly, (8)

which calculates the range of overhead reduction in the

network ζmin and ζmax can be calculated using (6) where STA

m is replaced by STAs assigned the minimum and maximum

number of channels respectively.

Now we will compare our algorithm to a cluster free

algorithm like the steps outlined in Section IV subsection

’CB-AIIM’. In this algorithm each STA scans and reports all

three channels. We added two sources of interference which

can be seen in Table IV. We ran both algorithms to see which

channel would they choose to operate in, how they would rank

the channels and then compare the results. Firstly, we must

specify that the channel with the best conditions is channel 11

since the interferers are not operating on that channel.

When running the algorithm without clustering (CB-AIIM),

the AP gets the feedback information seen in Table V. The AP

has the SIR value in dB for each STA across every channel.

Looking at the data in Table V, we can see that channel 11

has the highest average SIR, followed by channel 6 then lastly

channel 1. On the other hand, when we ran our algorithm, we

can see the feedback in Table VI. The table shows the SIR

values in dB reported back by each cluster for each channel.

The channel with the highest SIR factor is channel 11 then

TABLE VII
ACCURACY TEST

Channel Percentage Error
1 2.48%
6 1.60%

11 3.34%

Fig. 12 Hampel Filter

channel 6 then channel 1, which is the same exact result as

the first algorithm but with 66.67 % reduction in the overhead.

Lastly, we tested the accuracy of the SIR values reported back

by our low-overhead algorithm by comparing them to the SIR

values reported back when every STA in the BSS reports back

to the AP (these SIRs are denoted by ’actual’ in (9)). We can

see the equation for the percentage error in (9). The results

are summarized in Table VII. The highest error recorded is

less than 4%.

Error =
|SIRactual − SIRcluster−based|

SIRactual
∗ 100 (9)

In addition, we simulated our algorithm over two different

network scenarios: Scenario I and Scenario II, where scenario I

is a low STA-density network and scenario II is a high-density

network. The purpose of this simulation is to show that our

algorithm performs better in denser networks, which is evident

in table VIII. The biggest error reported in scenario I is 2.59%

while the biggest error in scenario II is 1.56%. In addition, the

average error for scenario I is 1.63% while the average error

for scenario II is 0.87% which is half of the error in scenario

I. These results show the great performance of our algorithm

with a ζ of 66.7% while maintaining very accurate results.

In addition, we simulated the Hampel filter on a data

points which resemble the SIR values reported back by

a cluster-head, which included some noise. The filter was

successful in eliminating all the singular data points. This can

be seen clearly in Fig. 12.

VIII. CONCLUSION

To conclude, the problem of channel selection in Wi-Fi

networks is a complex problem which has never been more

relevant due to the increasing density of Wi-Fi technology

and the growth of the applications of the technology as a

TABLE VIII
DENSITY TEST

Density Error on Ch1 Error on Ch6 Error on Ch 11 Avg Error
Scenario 1 0.17% 2.59% 2.15% 1.63%
Scenario II 0.66% 0.41% 1.56% 0.87%
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whole. In this paper, we propose CB-DCS: a low overhead,

dynamic channel selection algorithm which is suitable for

Wi-Fi networks without a central coordinator. In addition, it

is suitable for Wi-Fi networks experiencing interference from

non-WiFi devices. The algorithm implements a cluster-based

STA reporting mechanism to utilize the observation that

STAs in close proximity to each other tend to experience

similar channel conditions. As a result, instead of each STA

reporting on all candidate channels, the AP can divide this

workload among STAs within the same cluster, which keeps

the overhead to a minimum. Finally, we ran simulation results

in order to compare our algorithm to already existing channel

assignment algorithms and the results showed an overhead

reduction of up to 67% with minimum sacrifice of accuracy.

Despite the promising results, we believe there is still room

for improvement. The future direction of our work revolves

around dynamically tuning the parameters of the DB-scan

clustering algorithm.
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(2020). A Cluster-Based Channel Assignment Technique in IEEE 802.11
Networks. Telecom. 1. 228-241. 10.3390/telecom1030016.

[4] Mahonen, P.; Riihijarvi, J.; Petrova, M. Automatic channel allocation
for small wireless local area networks using graph colouring algorithm
approach. In Proceedings of the 2004 IEEE 15th International Symposium
on Personal, Indoor and Mobile Radio Communications (IEEE Cat.
No. 04TH8754), Barcelona, Spain,5–8 September 2004; Volume 1, pp.
536–539.17]

[5] Cui, Y.; Li, W.; Cheng, X. Partially overlapping channel assignment based
on “node orthogonality” for 802.11 wireless networks. In Proceedings of
the 2011 Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April
2011; pp. 361–365. [18]

[6] Abeysekera, B.H.S.; Ishihara, K.; Inoue, Y.; Mizoguchi, M.
Network-controlled channel allocation scheme for IEEE 802.11
wireless LANs: Experimental and simulation study. In Proceedings of
the 2014 IEEE 79th Vehicular Technology Conference (VTC Spring),
Seoul, Korea, 18–21 May 2014; pp. 1–5.

[7] Yue, X.; Wong, C.F.; Chan, S.H.G. CACAO: Distributed client-assisted
channel assignment optimization for

[8] Kwon, Y.M.; Choi, K.; Kim, M.; Chung, M.Y. Distributed channel
selection scheme based on the number of interfering stations in WLAN.
Ad Hoc Netw. 2016, 39, 45–55.

[9] Handrizal, M.Z.; Noraziah, A.; Abdalla, A. An improved of channel
allocation for wlan using vertex merge algorithm. In Proceedings of
the International Conference on Computational Science and Information
Management (ICoCSIM), Toba Lake, Indonesia, 3–5 December 2012;
Volume 1, pp. 205–213.

[10] Green, D.B.; Obaidat, A. An accurate line of sight propagation
performance model for ad-hoc 802.11 wireless LAN (WLAN)
devices. In Proceedings of the 2002 IEEE International Conference
on Communications, Conference Proceedings (ICC 2002 Cat. No.
02CH37333), New York, NY, USA, 28 April–2 May 2002; Volume 5,
pp. 3424–3428.

[11] sWeb.Stanford.Edu, 2021, https://web.stanford.edu/class/cs345a/slides/12-
clustering.pdf.

[12] Ji-Xian Zhang, Qiu-Hai Zhong, Ya-Ping Dai and Zheng Liu, ”A new
de-noising method based on wavelet transform and transforming Hampel
filter,” SICE 2003 Annual Conference (IEEE Cat. No.03TH8734), 2003,
pp. 2147-2151 Vol.2.

[13] R. K. Pearson, Y. Neuvo, J. Astola and M. Gabbouj, ”The
class of generalized hampel filters,” 2015 23rd European Signal
Processing Conference (EUSIPCO), 2015, pp. 2501-2505, doi:
10.1109/EUSIPCO.2015.7362835.

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:17, No:1, 2023 

52International Scholarly and Scientific Research & Innovation 17(1) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 I
nf

or
m

at
io

n 
an

d 
C

om
m

un
ic

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
1,

 2
02

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
91

5.
pd

f


