Search results for: task based learning.
12490 Development of Fake News Model Using Machine Learning through Natural Language Processing
Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini
Abstract:
Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.
Keywords: Fake news detection, types of fake news, machine learning, natural language processing, classification techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151212489 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.
Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499012488 E-Learning Methodology Development using Modeling
Authors: Sarma Cakula, Maija Sedleniece
Abstract:
Simulation and modeling computer programs are concerned with construction of models for analyzing different perspectives and possibilities in changing conditions environment. The paper presents theoretical justification and evaluation of qualitative e-learning development model in perspective of advancing modern technologies. There have been analyzed principles of qualitative e-learning in higher education, productivity of studying process using modern technologies, different kind of methods and future perspectives of e-learning in formal education. Theoretically grounded and practically tested model of developing e-learning methods using different technologies for different type of classroom, which can be used in professor-s decision making process to choose the most effective e-learning methods has been worked out.Keywords: E-learning, modeling, E-learning methods development, personal knowledge management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199012487 Effect of Open-Ended Laboratory toward Learners Performance in Environmental Engineering Course: Case Study of Civil Engineering at Universiti Malaysia Sabah
Authors: N. Bolong, J. Makinda, I. Saad
Abstract:
Laboratory activities have produced benefits in student learning. With current drives of new technology resources and evolving era of education methods, renewal status of learning and teaching in laboratory methods are in progress, for both learners and the educators. To enhance learning outcomes in laboratory works particularly in engineering practices and testing, learning via handson by instruction may not sufficient. This paper describes and compares techniques and implementation of traditional (expository) with open-ended laboratory (problem-based) for two consecutive cohorts studying environmental laboratory course in civil engineering program. The transition of traditional to problem-based findings and effect were investigated in terms of course assessment student feedback survey, course outcome learning measurement and student performance grades. It was proved that students have demonstrated better performance in their grades and 12% increase in the course outcome (CO) in problem-based open-ended laboratory style than traditional method; although in perception, students has responded less favorable in their feedback.
Keywords: Engineering education, open-ended laboratory, environmental engineering lab.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 305712486 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source
Authors: Z. Veselý, M. Honner, J. Mach
Abstract:
The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. Complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.Keywords: Computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203812485 Unveiling the Mathematical Essence of Machine Learning: A Comprehensive Exploration
Authors: Randhir Singh Baghel
Abstract:
In this study, the fundamental ideas guiding the dynamic area of machine learning—where models thrive and algorithms change over time—are rooted in an innate mathematical link. This study explores the fundamental ideas that drive the development of intelligent systems, providing light on the mutually beneficial link between mathematics and machine learning.
Keywords: Machine Learning, deep learning, Neural Network, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16712484 Impacts of E-learning in Nursing Education: In the Light of Recent Studies
Authors: A.Ö. İlkay, C.O. Zeynep
Abstract:
Information and Communication Technologies (ICT) has changed our life and learn. ICT bares doors to new innovative methods to deliver education. E-learning is a part of ICT and has been endorsed as a tool for developing “21st century skills” in higher education. The aim of this review is to establish the impacts of e-learning in undergraduate nursing education. A systematic literature review was conducted to assess the impacts of e-learning in nursing education by using Akdeniz University electronic databases. According to results, we can decelerate that the nursing faculties cannot treat e-learning methods as a single tool. E-learning should be used with a good understanding of learners’ needs.
Keywords: E-learning, nursing education, systematic literature review.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463212483 NDENet: End-to-End Nighttime Dehazing and Enhancement
Authors: H. Baskar, A. S. Chakravarthy, P. Garg, D. Goel, A. S. Raj, K. Kumar, Lakshya, R. Parvatham, V. Sushant, B. Kumar Rout
Abstract:
In this paper, we present a computer vision task called nighttime dehaze-enhancement. This task aims to jointly perform dehazing and lightness enhancement. Our task fundamentally differs from nighttime dehazing – our goal is to jointly dehaze and enhance scenes, while nighttime dehazing aims to dehaze scenes under a nighttime setting. In order to facilitate further research on this task, we release a benchmark dataset called Reside-β Night dataset, consisting of 4122 nighttime hazed images from 2061 scenes and 2061 ground truth images. Moreover, we also propose a network called NDENet (Nighttime Dehaze-Enhancement Network), which jointly performs dehazing and low-light enhancement in an end-to-end manner. We evaluate our method on the proposed benchmark and achieve Structural Index Similarity (SSIM) of 0.8962 and Peak Signal to Noise Ratio (PSNR) of 26.25. We also compare our network with other baseline networks on our benchmark to demonstrate the effectiveness of our approach. We believe that nighttime dehaze-enhancement is an essential task particularly for autonomous navigation applications, and hope that our work will open up new frontiers in research. The code for our network is made publicly available.
Keywords: Dehazing, image enhancement, nighttime, computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67412482 Learning Difficulties of Children with Disabilities
Authors: Chalise Kiran
Abstract:
The learning difficulties of children with disabilities are always a matter of concern when we talk about educational needs and quality education of children with disabilities. This paper is the outcome of the review of the literature focused on the educational needs and learning difficulties of children with disabilities. For the paper, different studies written on children with disabilities and their education were collected through search engines. The literature put together were analyzed from the angle of learning difficulties faced by children with disabilities and the same were used as a precursor to arrive at the findings on the learning of the children. The analysis showed that children with disabilities face learning difficulties. The reasons for these difficulties could be attributed to factors in terms of authority, structure, school environment and behaviors of teachers and parents and the society as a whole.
Keywords: Children with disabilities, learning difficulties, education of children with disabilities, disabled children.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42312481 Flipped Classroom in Bioethics Education: A Blended and Interactive Online Learning Courseware that Enhances Active Learning and Student Engagement
Authors: Molly P. M. Wong
Abstract:
In this study, a blended and interactive e-learning Courseware that our team developed will be introduced, and our team’s experiences on how the e-learning Courseware and the flipped classroom benefit student learning in bioethics in the medical program will be shared. This study is a continuation of the previously established study, which provides a summary of the well-developed e-learning Courseware in a blended learning approach and an update on its efficiency and efficacy. First, a collection of animated videos capturing selected topics of bioethics and related ethical issues and dilemma will be introduced. Next, a selection of problem-based learning videos (“simulated doctor-patient role play”) with pop-up questions and discussions will be further discussed. Our findings demonstrated that these activities launched by the Courseware strongly engaged students in bioethics education and enhanced students’ critical thinking and creativity. Moreover, the educational benefits of the online art exhibition, art jamming and competition will be discussed, through which students could express bioethics through arts and enrich their learning in medical research in an interactive, fun and entertaining way, strengthening their interests in bioethics. Furthermore, online survey questionnaires and focus group interviews were conducted. Our results indicated that implementing the e-learning Courseware with a flipped classroom in bioethics education enhanced both active learning and student engagement. In conclusion, our Courseware not only reinforces education in art, bioethics and medicine, but also benefits students in understanding and critical thinking in socio-ethical issues, and serves as a valuable learning tool in bioethics teaching and learning.
Keywords: Bioethics, courseware, e-learning, flipped classroom.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50012480 Understanding the Programming Techniques Using a Complex Case Study to Teach Advanced Object-Oriented Programming
Authors: M. Al-Jepoori, D. Bennett
Abstract:
Teaching Object-Oriented Programming (OOP) as part of a Computing-related university degree is a very difficult task; the road to ensuring that students are actually learning object oriented concepts is unclear, as students often find it difficult to understand the concept of objects and their behavior. This problem is especially obvious in advanced programming modules where Design Pattern and advanced programming features such as Multi-threading and animated GUI are introduced. Looking at the students’ performance at their final year on a university course, it was obvious that the level of students’ understanding of OOP varies to a high degree from one student to another. Students who aim at the production of Games do very well in the advanced programming module. However, the students’ assessment results of the last few years were relatively low; for example, in 2016-2017, the first quartile of marks were as low as 24.5 and the third quartile was 63.5. It is obvious that many students were not confident or competent enough in their programming skills. In this paper, the reasons behind poor performance in Advanced OOP modules are investigated, and a suggested practice for teaching OOP based on a complex case study is described and evaluated.
Keywords: Complex programming case study, design pattern, learning advanced programming, object oriented programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78312479 Comparative Analysis of Machine Learning Tools: A Review
Authors: S. Sarumathi, M. Vaishnavi, S. Geetha, P. Ranjetha
Abstract:
Machine learning is a new and exciting area of artificial intelligence nowadays. Machine learning is the most valuable, time, supervised, and cost-effective approach. It is not a narrow learning approach; it also includes a wide range of methods and techniques that can be applied to a wide range of complex realworld problems and time domains. Biological image classification, adaptive testing, computer vision, natural language processing, object detection, cancer detection, face recognition, handwriting recognition, speech recognition, and many other applications of machine learning are widely used in research, industry, and government. Every day, more data are generated, and conventional machine learning techniques are becoming obsolete as users move to distributed and real-time operations. By providing fundamental knowledge of machine learning tools and research opportunities in the field, the aim of this article is to serve as both a comprehensive overview and a guide. A diverse set of machine learning resources is demonstrated and contrasted with the key features in this survey.Keywords: Artificial intelligence, machine learning, deep learning, machine learning algorithms, machine learning tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184812478 Kinematic Modelling and Maneuvering of A 5-Axes Articulated Robot Arm
Authors: T.C. Manjunath
Abstract:
This paper features the kinematic modelling of a 5-axis stationary articulated robot arm which is used for doing successful robotic manipulation task in its workspace. To start with, a 5-axes articulated robot was designed entirely from scratch and from indigenous components and a brief kinematic modelling was performed and using this kinematic model, the pick and place task was performed successfully in the work space of the robot. A user friendly GUI was developed in C++ language which was used to perform the successful robotic manipulation task using the developed mathematical kinematic model. This developed kinematic model also incorporates the obstacle avoiding algorithms also during the pick and place operation.
Keywords: Robot, Sensors, Kinematics, Computer, Control, PNP, LCD, Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446512477 Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
The widespread popularity of mobile devices and the development of artificial intelligence (AI) have led to the widespread adoption of deep learning (DL) in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace, a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Additionally, we propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. Using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We conduct an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace outperformed FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.
Keywords: Mobile computing, deep learning apps, sensitive information, static analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59712476 A Study and Implementation of On-line Learning Diagnosis and Inquiry System
Authors: YuLung Wu
Abstract:
In Knowledge Structure Graph, each course unit represents a phase of learning activities. Both learning portfolios and Knowledge Structure Graphs contain learning information of students and let teachers know which content are difficulties and fails. The study purposes "Dual Mode On-line Learning Diagnosis System" that integrates two search methods: learning portfolio and knowledge structure. Teachers can operate the proposed system and obtain the information of specific students without any computer science background. The teachers can find out failed students in advance and provide remedial learning resources.Keywords: Knowledge Structure Graph, On-line LearningDiagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146512475 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model
Authors: Yolina A. Petrova, Georgi I. Petkov
Abstract:
The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.
Keywords: Categorization, category learning, role-governed category, analogy-making, cognitive modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66112474 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications
Authors: S. Sowmyayani
Abstract:
The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.
Keywords: Supervised learning, unsupervised learning, regression, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34612473 Technology Enhanced Learning: Fostering Cooperative Learning Through the Integration of Online Communication as Part of Teaching and Learning Experience
Authors: R.Ramli
Abstract:
This paper discusses ways to foster cooperative learning through the integration of online communication technology. While the education experts believe constructivism produces a more positive learning experience, the educators are still facing problems in getting students to participate due to numerous reasons such as shy personality, language and cultural barriers. This paper will look into the factors that lead to lack of participations among students and how technology can be implemented to overcome these issues.
Keywords: cooperative learning, encouraging class participation, education, online discussion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152312472 iSEA: A Mobile Based Learning Application for History and Culture Knowledge Enhancement for the ASEAN Region
Authors: Maria Visitacion N. Gumabay, Byron Joseph A. Hallar, Annjeannette Alain D. Galang
Abstract:
This study was intended to provide a more efficient and convenient way for mobile users to enhance their knowledge about ASEAN countries. The researchers evaluated the utility of the developed crossword puzzle application and assessed the general usability of its user interface for its intended purpose and audience of users. The descriptive qualitative research method for the research design and the Mobile-D methodology was employed for the development of the software application output. With a generally favorable reception from its users, the researchers concluded that the iSEA Mobile Based Learning Application can be considered ready for general deployment and use. It was also concluded that additional studies can also be done to make a more complete assessment of the knowledge gained by its users before and after using the application.
Keywords: Mobile learning, e-learning, crossword, ASEAN, iSEA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152112471 Mining Educational Data to Analyze the Student Motivation Behavior
Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri
Abstract:
The purpose of this research aims to discover the knowledge for analysis student motivation behavior on e-Learning based on Data Mining Techniques, in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The data mining techniques was applied in this research including association rules, classification techniques. The results showed that using data mining technique can indicate the important variables that influence the student motivation behavior on e-Learning.Keywords: association rule mining, classification techniques, e- Learning, Moodle log Motivation Behavior
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 309312470 Augmented Reality Sandbox and Constructivist Approach for Geoscience Teaching and Learning
Authors: Muhammad Nawaz, Sandeep N. Kundu, Farha Sattar
Abstract:
Augmented reality sandbox adds new dimensions to education and learning process. It can be a core component of geoscience teaching and learning to understand the geographic contexts and landform processes. Augmented reality sandbox is a useful tool not only to create an interactive learning environment through spatial visualization but also it can provide an active learning experience to students and enhances the cognition process of learning. Augmented reality sandbox can be used as an interactive learning tool to teach geomorphic and landform processes. This article explains the augmented reality sandbox and the constructivism approach for geoscience teaching and learning, and endeavours to explore the ways to teach the geographic processes using the three-dimensional digital environment for the deep learning of the geoscience concepts interactively.
Keywords: Augmented Reality Sandbox, constructivism, deep learning, geoscience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152312469 Online Collaborative Learning System Using Speech Technology
Authors: Sid-Ahmed. Selouani, Tang-Ho Lê, Chadia Moghrabi, Benoit Lanteigne, Jean Roy
Abstract:
A Web-based learning tool, the Learn IN Context (LINC) system, designed and being used in some institution-s courses in mixed-mode learning, is presented in this paper. This mode combines face-to-face and distance approaches to education. LINC can achieve both collaborative and competitive learning. In order to provide both learners and tutors with a more natural way to interact with e-learning applications, a conversational interface has been included in LINC. Hence, the components and essential features of LINC+, the voice enhanced version of LINC, are described. We report evaluation experiments of LINC/LINC+ in a real use context of a computer programming course taught at the Université de Moncton (Canada). The findings show that when the learning material is delivered in the form of a collaborative and voice-enabled presentation, the majority of learners seem to be satisfied with this new media, and confirm that it does not negatively affect their cognitive load.Keywords: E-leaning, Knowledge Network, Speech recognition, Speech synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171312468 Measuring E-Learning Effectiveness Using a Three-Way Comparison
Authors: Matthew Montebello
Abstract:
The way e-learning effectiveness has been notoriously measured within an academic setting is by comparing the e-learning medium to the traditional face-to-face teaching methodology. In this paper, a simple yet innovative comparison methodology is introduced, whereby the effectiveness of next generation e-learning systems are assessed in contrast not only to the face-to-face mode, but also to the classical e-learning modality. Ethical and logistical issues are also discussed, as this three-way approach to compare teaching methodologies was applied and documented in a real empirical study within a higher education institution.Keywords: E-learning effectiveness, higher education, teaching modality comparison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139412467 Information Sharing to Transformation: Antecedents of Collaborative Networked Learning in Manufacturing
Authors: Wee Hock Quik, Nevan Wright
Abstract:
Collaborative networked learning (hereafter CNL) was first proposed by Charles Findley in his work “Collaborative networked learning: online facilitation and software support" as part of instructional learning for the future of the knowledge worker. His premise was that through electronic dialogue learners and experts could interactively communicate within a contextual framework to resolve problems, and/or to improve product or process knowledge. Collaborative learning has always been the forefront of educational technology and pedagogical research, but not in the mainstream of operations management. As a result, there is a large disparity in the study of CNL, and little is known about the antecedents of network collaboration and sharing of information among diverse employees in the manufacturing environment. This paper presents a model to bridge the gap between theory and practice. The objective is that manufacturing organizations will be able to accelerate organizational learning and sharing of information through various collaborativeKeywords: Collaborative networked learning, Collaborative technologies, Organizational learning, Synchronous and asynchronous networked learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170012466 Understanding Cultural Influences: Principles for Personalized E-learning Systems
Authors: R. Boondao, A. J. Hurst, J. I. Sheard
Abstract:
In the globalized e-learning environment, students coming from different cultures and countries have different characteristics and require different support designed for their approaches to study and learning styles. This paper explores the ways in which cultural background influences students- approaches to study and learning styles. Participants in the study consisted of 131 eastern students and 54 western students from an Australian university. The students were tested using the Study Process Questionnaire (SPQ) for assessing their approaches to study and the Index of Learning Styles Questionnaire (ILS) for assessing their learning styles. The results of the study led to a set of principles being proposed to guide personalization of e-learning system design on the basis of cultural differences.
Keywords: Approaches to study, Cultural influences, Learningstyles, Personalization, e-learning system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178312465 Integrating E-learning Environments with Computational Intelligence Assessment Agents
Authors: Christos E. Alexakos, Konstantinos C. Giotopoulos, Eleni J. Thermogianni, Grigorios N. Beligiannis, Spiridon D. Likothanassis
Abstract:
In this contribution an innovative platform is being presented that integrates intelligent agents in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting various assessment agents for e-learning environments. The agents are implemented in order to provide intelligent assessment services to computational intelligent techniques such as Bayesian Networks and Genetic Algorithms. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.Keywords: Bayesian Networks, Computational Intelligence techniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193212464 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model
Authors: Youngjae Jin, Daeshik Kim
Abstract:
This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in VerilogHDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.
Keywords: Auto-encoder, Behavior model simulation, Digital hardware design, Pre-route simulation, Unsupervised feature learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 269012463 Multi Task Scheme to Monitor Multivariate Environments Using Artificial Neural Network
Authors: K. Atashgar
Abstract:
When an assignable cause(s) manifests itself to a multivariate process and the process shifts to an out-of-control condition, a root-cause analysis should be initiated by quality engineers to identify and eliminate the assignable cause(s) affected the process. A root-cause analysis in a multivariate process is more complex compared to a univariate process. In the case of a process involved several correlated variables an effective root-cause analysis can be only experienced when it is possible to identify the required knowledge including the out-of-control condition, the change point, and the variable(s) responsible to the out-of-control condition, all simultaneously. Although literature addresses different schemes to monitor multivariate processes, one can find few scientific reports focused on all the required knowledge. To the best of the author’s knowledge this is the first time that a multi task model based on artificial neural network (ANN) is reported to monitor all the required knowledge at the same time for a multivariate process with more than two correlated quality characteristics. The performance of the proposed scheme is evaluated numerically when different step shifts affect the mean vector. Average run length is used to investigate the performance of the proposed multi task model. The simulated results indicate the multi task scheme performs all the required knowledge effectively.
Keywords: Artificial neural network, Multivariate process, Statistical process control, Change point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168112462 Technology Integrated Education – Shaping the Personality and Social Development of the Young
Abstract:
There has been a strong link between computermediated education and constructivism learning and teaching theory.. Acknowledging how well the constructivism doctrine would work online, it has been established that constructivist views of learning would agreeably correlate with the philosophy of open and distance learning. Asynchronous and synchronous communications have placed online learning on the right track of a constructive learning path. This paper is written based on the social constructivist framework, where knowledge is constructed from social communication and interaction. The study explores the possibility of practicing this theory through incorporating online discussion in the syllabus and the ways it can be implemented to contribute to young people-s personality and social development by addressing some aspects that may contribute to the social problem such as prejudice, ignorance and intolerance.
Keywords: Educational Technology, Internet, Personal Development, Student Exchange
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180512461 Regularization of the Trajectories of Dynamical Systems by Adjusting Parameters
Authors: Helle Hein, Ülo Lepik
Abstract:
A gradient learning method to regulate the trajectories of some nonlinear chaotic systems is proposed. The method is motivated by the gradient descent learning algorithms for neural networks. It is based on two systems: dynamic optimization system and system for finding sensitivities. Numerical results of several examples are presented, which convincingly illustrate the efficiency of the method.Keywords: Chaos, Dynamical Systems, Learning, Neural Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366