Search results for: robust estimator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 799

Search results for: robust estimator

529 Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Differential Evolution Technique

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper presents a differential evolution algorithm to design a robust PI and PID controllers for Load Frequency Control (LFC) of nonlinear interconnected power systems considering the boiler dynamics, Governor Dead Band (GDB), Generation Rate Constraint (GRC). Differential evolution algorithm is employed to search for the optimal controller parameters. The proposed method easily copes of with nonlinear constraints. Further the proposed controller is simple, effective and can ensure the desirable overall system performance. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic controller for the same power systems. The comparison is done using various performance measures like overshoot, settling time and standard error criteria of frequency and tie-line power deviation following a 1% step load perturbation in hydro area. It is noticed that, the dynamic performance of proposed controller is better than fuzzy logic controller. Furthermore, it is also seen that the proposed system is robust and is not affected by change in the system parameters.

Keywords: Automatic Generation control (AGC), Generation Rate Constraint (GRC), Governor Dead Band (GDB), Differential Evolution (DE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3371
528 Face Localization and Recognition in Varied Expressions and Illumination

Authors: Hui-Yu Huang, Shih-Hang Hsu

Abstract:

In this paper, we propose a robust scheme to work face alignment and recognition under various influences. For face representation, illumination influence and variable expressions are the important factors, especially the accuracy of facial localization and face recognition. In order to solve those of factors, we propose a robust approach to overcome these problems. This approach consists of two phases. One phase is preprocessed for face images by means of the proposed illumination normalization method. The location of facial features can fit more efficient and fast based on the proposed image blending. On the other hand, based on template matching, we further improve the active shape models (called as IASM) to locate the face shape more precise which can gain the recognized rate in the next phase. The other phase is to process feature extraction by using principal component analysis and face recognition by using support vector machine classifiers. The results show that this proposed method can obtain good facial localization and face recognition with varied illumination and local distortion.

Keywords: Gabor filter, improved active shape model (IASM), principal component analysis (PCA), face alignment, face recognition, support vector machine (SVM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
527 The Effect of Gender and Resources on Entrepreneurial Activity

Authors: Frederick Wedzerai Nyakudya

Abstract:

In this paper, we examine the relationship between human capital, personal wealth and social capital to explain the differences in start-up rates between female and male entrepreneurs. Since our dependent variable is dichotomous, we examine the determinants of these using a maximum likelihood logit estimator. We used the Global Entrepreneurship Monitor database covering the period 2006 to 2009 with 421 usable cases drawn from the Lower Layer Super Output Areas in East Midlands in the United Kingdom. We found evidence indicating that a female positively moderates the positive relationships between indicators of human capital and personal wealth with start-up activity. The findings have implications for programs, policies, and practices to encourage more females to engage in start-up activity.

Keywords: Entrepreneurship, Global Entrepreneurship Monitor, gender gap, women's entrepreneurship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 457
526 Matching-Based Cercospora Leaf Spot Detection in Sugar Beet

Authors: Rong Zhou, Shun’ich Kaneko, Fumio Tanaka, Miyuki Kayamori, Motoshige Shimizu

Abstract:

In this paper, we propose a robust disease detection method, called adaptive orientation code matching (Adaptive OCM), which is developed from a robust image registration algorithm: orientation code matching (OCM), to achieve continuous and site-specific detection of changes in plant disease. We use two-stage framework for realizing our research purpose; in the first stage, adaptive OCM was employed which could not only realize the continuous and site-specific observation of disease development, but also shows its excellent robustness for non-rigid plant object searching in scene illumination, translation, small rotation and occlusion changes and then in the second stage, a machine learning method of support vector machine (SVM) based on a feature of two dimensional (2D) xy-color histogram is further utilized for pixel-wise disease classification and quantification. The indoor experiment results demonstrate the feasibility and potential of our proposed algorithm, which could be implemented in real field situation for better observation of plant disease development.

Keywords: Cercospora Leaf Spot (CLS), Disease detection, Image processing, Orientation Code Matching (OCM), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
525 Robust Digital Cinema Watermarking

Authors: Sadi Vural, Hiromi Tomii, Hironori Yamauchi

Abstract:

With the advent of digital cinema and digital broadcasting, copyright protection of video data has been one of the most important issues. We present a novel method of watermarking for video image data based on the hardware and digital wavelet transform techniques and name it as “traceable watermarking" because the watermarked data is constructed before the transmission process and traced after it has been received by an authorized user. In our method, we embed the watermark to the lowest part of each image frame in decoded video by using a hardware LSI. Digital Cinema is an important application for traceable watermarking since digital cinema system makes use of watermarking technology during content encoding, encryption, transmission, decoding and all the intermediate process to be done in digital cinema systems. The watermark is embedded into the randomly selected movie frames using hash functions. Embedded watermark information can be extracted from the decoded video data. For that, there is no need to access original movie data. Our experimental results show that proposed traceable watermarking method for digital cinema system is much better than the convenient watermarking techniques in terms of robustness, image quality, speed, simplicity and robust structure.

Keywords: Decoder, Digital content, JPEG2000 Frame, System-On-Chip, traceable watermark, Hash Function, CRC-32.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
524 Robust & Energy Efficient Universal Gates for High Performance Computer Networks at 22nm Process Technology

Authors: M. Geetha Priya, K. Baskaran, S. Srinivasan

Abstract:

Digital systems are said to be constructed using basic logic gates. These gates are the NOR, NAND, AND, OR, EXOR & EXNOR gates. This paper presents a robust three transistors (3T) based NAND and NOR gates with precise output logic levels, yet maintaining equivalent performance than the existing logic structures. This new set of 3T logic gates are based on CMOS inverter and Pass Transistor Logic (PTL). The new universal logic gates are characterized by better speed and lower power dissipation which can be straightforwardly fabricated as memory ICs for high performance computer networks. The simulation tests were performed using standard BPTM 22nm process technology using SYNOPSYS HSPICE. The 3T NAND gate is evaluated using C17 benchmark circuit and 3T NOR is gate evaluated using a D-Latch. According to HSPICE simulation in 22 nm CMOS BPTM process technology under given conditions and at room temperature, the proposed 3T gates shows an improvement of 88% less power consumption on an average over conventional CMOS logic gates. The devices designed with 3T gates will make longer battery life by ensuring extremely low power consumption.

Keywords: Low power, CMOS, pass-transistor, flash memory, logic gates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2436
523 A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS

Authors: Jian Shi, Baoguo Yu, Haonan Jia, Meng Liu, Ping Huang

Abstract:

Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation.

Keywords: Air alignment, fine alignment, inertial navigation system, integrated navigation system, UKF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541
522 Non-Parametric, Unconditional Quantile Estimation of Efficiency in Microfinance Institutions

Authors: Komlan Sedzro

Abstract:

We apply the non-parametric, unconditional, hyperbolic order-α quantile estimator to appraise the relative efficiency of Microfinance Institutions in Africa in terms of outreach. Our purpose is to verify if these institutions, which must constantly try to strike a compromise between their social role and financial sustainability are operationally efficient. Using data on African MFIs extracted from the Microfinance Information eXchange (MIX) database and covering the 2004 to 2006 periods, we find that more efficient MFIs are also the most profitable. This result is in line with the view that social performance is not in contradiction with the pursuit of excellent financial performance. Our results also show that large MFIs in terms of asset and those charging the highest fees are not necessarily the most efficient.

Keywords: Data envelopment analysis, microfinance institutions, quantile estimation of efficiency, social and financial performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
521 Evaluating Spectral Relationships between Signals by Removing the Contribution of a Common, Periodic Source A Partial Coherence-based Approach

Authors: Antonio Mauricio F. L. Miranda de Sá

Abstract:

Partial coherence between two signals removing the contribution of a periodic, deterministic signal is proposed for evaluating the interrelationship in multivariate systems. The estimator expression was derived and shown to be independent of such periodic signal. Simulations were used for obtaining its critical value, which were found to be the same as those for Gaussian signals, as well as for evaluating the technique. An Illustration with eletroencephalografic (EEG) signals during photic stimulation is also provided. The application of the proposed technique in both simulation and real EEG data indicate that it seems to be very specific in removing the contribution of periodic sources. The estimate independence of the periodic signal may widen partial coherence application to signal analysis, since it could be used together with simple coherence to test for contamination in signals by a common, periodic noise source.

Keywords: Partial coherence, periodic input, spectral analysis, statistical signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
520 A Low Complexity Frequency Offset Estimation for MB-OFDM based UWB Systems

Authors: Wang Xue, Liu Dan, Liu Ying, Wang Molin, Qian Zhihong

Abstract:

A low-complexity, high-accurate frequency offset estimation for multi-band orthogonal frequency division multiplexing (MB-OFDM) based ultra-wide band systems is presented regarding different carrier frequency offsets, different channel frequency responses, different preamble patterns in different bands. Utilizing a half-cycle Constant Amplitude Zero Auto Correlation (CAZAC) sequence as the preamble sequence, the estimator with a semi-cross contrast scheme between two successive OFDM symbols is proposed. The CRLB and complexity of the proposed algorithm are derived. Compared to the reference estimators, the proposed method achieves significantly less complexity (about 50%) for all preamble patterns of the MB-OFDM systems. The CRLBs turn out to be of well performance.

Keywords: CAZAC, Frequency Offset, Semi-cross Contrast, MB-OFDM, UWB

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
519 Fuzzy Relatives of the CLARANS Algorithm With Application to Text Clustering

Authors: Mohamed A. Mahfouz, M. A. Ismail

Abstract:

This paper introduces new algorithms (Fuzzy relative of the CLARANS algorithm FCLARANS and Fuzzy c Medoids based on randomized search FCMRANS) for fuzzy clustering of relational data. Unlike existing fuzzy c-medoids algorithm (FCMdd) in which the within cluster dissimilarity of each cluster is minimized in each iteration by recomputing new medoids given current memberships, FCLARANS minimizes the same objective function minimized by FCMdd by changing current medoids in such away that that the sum of the within cluster dissimilarities is minimized. Computing new medoids may be effected by noise because outliers may join the computation of medoids while the choice of medoids in FCLARANS is dictated by the location of a predominant fraction of points inside a cluster and, therefore, it is less sensitive to the presence of outliers. In FCMRANS the step of computing new medoids in FCMdd is modified to be based on randomized search. Furthermore, a new initialization procedure is developed that add randomness to the initialization procedure used with FCMdd. Both FCLARANS and FCMRANS are compared with the robust and linearized version of fuzzy c-medoids (RFCMdd). Experimental results with different samples of the Reuter-21578, Newsgroups (20NG) and generated datasets with noise show that FCLARANS is more robust than both RFCMdd and FCMRANS. Finally, both FCMRANS and FCLARANS are more efficient and their outputs are almost the same as that of RFCMdd in terms of classification rate.

Keywords: Data Mining, Fuzzy Clustering, Relational Clustering, Medoid-Based Clustering, Cluster Analysis, Unsupervised Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
518 Model-Based Small Area Estimation with Application to Unemployment Estimates

Authors: Hichem Omrani, Philippe Gerber, Patrick Bousch

Abstract:

The problem of Small Area Estimation (SAE) is complex because of various information sources and insufficient data. In this paper, an approach for SAE is presented for decision-making at national, regional and local level. We propose an Empirical Best Linear Unbiased Predictor (EBLUP) as an estimator in order to combine several information sources to evaluate various indicators. First, we present the urban audit project and its environmental, social and economic indicators. Secondly, we propose an approach for decision making in order to estimate indicators. An application is used to validate the theoretical proposal. Finally, a decision support system is presented based on open-source environment.

Keywords: Small area estimation, statistical method, sampling, empirical best linear unbiased predictor (EBLUP), decision-making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
517 A Robust Salient Region Extraction Based on Color and Texture Features

Authors: Mingxin Zhang, Zhaogan Lu, Junyi Shen

Abstract:

In current common research reports, salient regions are usually defined as those regions that could present the main meaningful or semantic contents. However, there are no uniform saliency metrics that could describe the saliency of implicit image regions. Most common metrics take those regions as salient regions, which have many abrupt changes or some unpredictable characteristics. But, this metric will fail to detect those salient useful regions with flat textures. In fact, according to human semantic perceptions, color and texture distinctions are the main characteristics that could distinct different regions. Thus, we present a novel saliency metric coupled with color and texture features, and its corresponding salient region extraction methods. In order to evaluate the corresponding saliency values of implicit regions in one image, three main colors and multi-resolution Gabor features are respectively used for color and texture features. For each region, its saliency value is actually to evaluate the total sum of its Euclidean distances for other regions in the color and texture spaces. A special synthesized image and several practical images with main salient regions are used to evaluate the performance of the proposed saliency metric and other several common metrics, i.e., scale saliency, wavelet transform modulus maxima point density, and important index based metrics. Experiment results verified that the proposed saliency metric could achieve more robust performance than those common saliency metrics.

Keywords: salient regions, color and texture features, image segmentation, saliency metric

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
516 A Sensorless Robust Tracking Control of an Implantable Rotary Blood Pump for Heart Failure Patients

Authors: Mohsen A. Bakouri, Andrey V. Savkin, Abdul-Hakeem H. Alomari, Robert F. Salamonsen, Einly Lim, Nigel H. Lovell

Abstract:

Physiological control of a left ventricle assist device (LVAD) is generally a complicated task due to diverse operating environments and patient variability. In this work, a tracking control algorithm based on sliding mode and feed forward control for a class of discrete-time single input single output (SISO) nonlinear uncertain systems is presented. The controller was developed to track the reference trajectory to a set operating point without inducing suction in the ventricle. The controller regulates the estimated mean pulsatile flow Qp and mean pulsatility index of pump rotational speed PIω that was generated from a model of the assist device. We recall the principle of the sliding mode control theory then we combine the feed-forward control design with the sliding mode control technique to follow the reference trajectory. The uncertainty is replaced by its upper and lower boundary. The controller was tested in a computer simulation covering two scenarios (preload and ventricular contractility). The simulation results prove the effectiveness and the robustness of the proposed controller

Keywords: robust control system, discrete-sliding mode, left ventricularle assist devicse, pulsatility index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
515 Does Corporate Governance or Transparency Affect Foreign Direct Investment?

Authors: Haksoon Kim

Abstract:

The paper investigates the relationship between the foreign direct investment (FDI) and the corporate governance or transparency by investigating the country-level FDI flows, FDI inward performance, corporate governance and transparency variables. From the regression analysis with Newey-West estimator of 28 country panel data from 1990- 2002, we find strong positive relationships between corporate governance or transparency level of hosting countries and FDI inward performance within hosting countries. A strong positive relationship is found between anti-director rights level or number of analysts of hosting countries and FDI inward performance within hosting countries. Also, we find a positive relationship between the number of analysts of hosting countries and FDI inflows. The empirical results are consistent with stock market liberalizations and corporate governance explanations of reasons for FDI.

Keywords: corporate governance, corporate transparency, FDIflows, FDI inward performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
514 Profit Optimization for Solar Plant Electricity Production

Authors: Fl. Loury, P. Sablonière

Abstract:

In this paper a stochastic scenario-based model predictive control applied to molten salt storage systems in concentrated solar tower power plant is presented. The main goal of this study is to build up a tool to analyze current and expected future resources for evaluating the weekly power to be advertised on electricity secondary market. This tool will allow plant operator to maximize profits while hedging the impact on the system of stochastic variables such as resources or sunlight shortage.

Solving the problem first requires a mixed logic dynamic modeling of the plant. The two stochastic variables, respectively the sunlight incoming energy and electricity demands from secondary market, are modeled by least square regression. Robustness is achieved by drawing a certain number of random variables realizations and applying the most restrictive one to the system. This scenario approach control technique provides the plant operator a confidence interval containing a given percentage of possible stochastic variable realizations in such a way that robust control is always achieved within its bounds. The results obtained from many trajectory simulations show the existence of a ‘’reliable’’ interval, which experimentally confirms the algorithm robustness.

Keywords: Molten Salt Storage System, Concentrated Solar Tower Power Plant, Robust Stochastic Model Predictive Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
513 Nonlinear Sensitive Control of Centrifugal Compressor

Authors: F. Laaouad, M. Bouguerra, A. Hafaifa, A. Iratni

Abstract:

In this work, we treat the problems related to chemical and petrochemical plants of a certain complex process taking the centrifugal compressor as an example, a system being very complex by its physical structure as well as its behaviour (surge phenomenon). We propose to study the application possibilities of the recent control approaches to the compressor behaviour, and consequently evaluate their contribution in the practical and theoretical fields. Facing the studied industrial process complexity, we choose to make recourse to fuzzy logic for analysis and treatment of its control problem owing to the fact that these techniques constitute the only framework in which the types of imperfect knowledge can jointly be treated (uncertainties, inaccuracies, etc..) offering suitable tools to characterise them. In the particular case of the centrifugal compressor, these imperfections are interpreted by modelling errors, the neglected dynamics, no modelisable dynamics and the parametric variations. The purpose of this paper is to produce a total robust nonlinear controller design method to stabilize the compression process at its optimum steady state by manipulating the gas rate flow. In order to cope with both the parameter uncertainty and the structured non linearity of the plant, the proposed method consists of a linear steady state regulation that ensures robust optimal control and of a nonlinear compensation that achieves the exact input/output linearization.

Keywords: Compressor, Fuzzy logic, Surge control, Bilinearcontroller, Stability analysis, Nonlinear plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
512 Text-independent Speaker Identification Based on MAP Channel Compensation and Pitch-dependent Features

Authors: Jiqing Han, Rongchun Gao

Abstract:

One major source of performance decline in speaker recognition system is channel mismatch between training and testing. This paper focuses on improving channel robustness of speaker recognition system in two aspects of channel compensation technique and channel robust features. The system is text-independent speaker identification system based on two-stage recognition. In the aspect of channel compensation technique, this paper applies MAP (Maximum A Posterior Probability) channel compensation technique, which was used in speech recognition, to speaker recognition system. In the aspect of channel robust features, this paper introduces pitch-dependent features and pitch-dependent speaker model for the second stage recognition. Based on the first stage recognition to testing speech using GMM (Gaussian Mixture Model), the system uses GMM scores to decide if it needs to be recognized again. If it needs to, the system selects a few speakers from all of the speakers who participate in the first stage recognition for the second stage recognition. For each selected speaker, the system obtains 3 pitch-dependent results from his pitch-dependent speaker model, and then uses ANN (Artificial Neural Network) to unite the 3 pitch-dependent results and 1 GMM score for getting a fused result. The system makes the second stage recognition based on these fused results. The experiments show that the correct rate of two-stage recognition system based on MAP channel compensation technique and pitch-dependent features is 41.7% better than the baseline system for closed-set test.

Keywords: Channel Compensation, Channel Robustness, MAP, Speaker Identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
511 A Comparative Analysis of Solid Waste Treatment Technologies on Cost and Environmental Basis

Authors: Nesli Aydin

Abstract:

Waste management decision making in developing countries has moved towards being more pragmatic, transparent, sustainable and comprehensive. Turkey is required to make its waste related legislation compatible with European Legislation as it is a candidate country of the European Union. Improper Turkish practices such as open burning and open dumping practices must be abandoned urgently, and robust waste management systems have to be structured. The determination of an optimum waste management system in any region requires a comprehensive analysis in which many criteria are taken into account by stakeholders. In conducting this sort of analysis, there are two main criteria which are evaluated by waste management analysts; economic viability and environmentally friendliness. From an analytical point of view, a central characteristic of sustainable development is an economic-ecological integration. It is predicted that building a robust waste management system will need significant effort and cooperation between the stakeholders in developing countries such as Turkey. In this regard, this study aims to provide data regarding the cost and environmental burdens of waste treatment technologies such as an incinerator, an autoclave (with different capacities), a hydroclave and a microwave coupled with updated information on calculation methods, and a framework for comparing any proposed scenario performances on a cost and environmental basis.

Keywords: Decision making, economic viability, environmentally friendliness, stakeholder, waste management systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
510 Scale Time Offset Robust Modulation (STORM) in a Code Division Multiaccess Environment

Authors: David M. Jenkins Jr.

Abstract:

Scale Time Offset Robust Modulation (STORM) [1]– [3] is a high bandwidth waveform design that adds time-scale to embedded reference modulations using only time-delay [4]. In an environment where each user has a specific delay and scale, identification of the user with the highest signal power and that user-s phase is facilitated by the STORM processor. Both of these parameters are required in an efficient multiuser detection algorithm. In this paper, the STORM modulation approach is evaluated with a direct sequence spread quadrature phase shift keying (DS-QPSK) system. A misconception of the STORM time scale modulation is that a fine temporal resolution is required at the receiver. STORM will be applied to a QPSK code division multiaccess (CDMA) system by modifying the spreading codes. Specifically, the in-phase code will use a typical spreading code, and the quadrature code will use a time-delayed and time-scaled version of the in-phase code. Subsequently, the same temporal resolution in the receiver is required before and after the application of STORM. In this paper, the bit error performance of STORM in a synchronous CDMA system is evaluated and compared to theory, and the bit error performance of STORM incorporated in a single user WCDMA downlink is presented to demonstrate the applicability of STORM in a modern communication system.

Keywords: Pseudonoise coded communication, Cyclic codes, Code division multiaccess

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
509 Evolution of Web Development Techniques in Modern Technology

Authors: Abdul Basit Kiani, Maryam Kiani

Abstract:

The art of web development in new technologies is a dynamic journey, shaped by the constant evolution of tools and platforms. With the emergence of JavaScript frameworks and APIs, web developers are empowered to craft web applications that are not only robust but also highly interactive. The aim is to provide an overview of the developments in the field. The integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.

Keywords: Web development, software testing, progressive web apps, web and mobile native application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 381
508 Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. Several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature, and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
507 A Method for 3D Mesh Adaptation in FEA

Authors: S. Sfarni, E. Bellenger, J. Fortin, M. Guessasma

Abstract:

The use of the mechanical simulation (in particular the finite element analysis) requires the management of assumptions in order to analyse a real complex system. In finite element analysis (FEA), two modeling steps require assumptions to be able to carry out the computations and to obtain some results: the building of the physical model and the building of the simulation model. The simplification assumptions made on the analysed system in these two steps can generate two kinds of errors: the physical modeling errors (mathematical model, domain simplifications, materials properties, boundary conditions and loads) and the mesh discretization errors. This paper proposes a mesh adaptive method based on the use of an h-adaptive scheme in combination with an error estimator in order to choose the mesh of the simulation model. This method allows us to choose the mesh of the simulation model in order to control the cost and the quality of the finite element analysis.

Keywords: Finite element, discretization errors, adaptivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
506 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.

Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
505 Effects of Market Share and Diversification on Nonlife Insurers- Performance

Authors: M. Pervan, T. Pavic Kramaric

Abstract:

The aim of this paper is to investigate the influence of market share and diversification on the nonlife insurers- performance. The underlying relationships have been investigated in different industries and different disciplines (economics, management...), still, no consistency exists either in the magnitude or statistical significance of the relationship between market share (and diversification as well) on one side and companies- performance on the other side. Moreover, the direction of the relationship is also somewhat questionable. While some authors find this relationship to be positive, the others reveal its negative association. In order to test the influence of market share and diversification on companies- performance in Croatian nonlife insurance industry for the period from 1999 to 2009, we designed an empirical model in which we included the following independent variables: firms- profitability from previous years, market share, diversification and control variables (i.e. ownership, industrial concentration, GDP per capita, inflation). Using the two-step generalized method of moments (GMM) estimator we found evidence of a positive and statistically significant influence of both, market share and diversification, on insurers- profitability.

Keywords: Diversification, market share, nonlife insurance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
504 Development of a Robust Supply Chain for Dynamic Operating Environment

Authors: Shilan Li, Ivan Arokiam, Peter Jarvis, Wendy Garner, Gazelleh Moradi, Stuart Wakefield

Abstract:

Development of a Robust Supply Chain for Dynamic Operating Environment as we move further into the twenty first century, organisations are under increasing pressure to deliver a high product variation at a reasonable cost without compromise in quality. In a number of cases this will take the form of a customised or high variety low volume manufacturing system that requires prudent management of resources, among a number of functions, to achieve competitive advantage. Purchasing and Supply Chain management is one of such function and due to the substantial interaction with external elements needs to be strategically managed. This requires a number of primary and supporting tools that will enable the appropriate decisions to be made rapidly. This capability is especially vital in a dynamic environment as it provides a pivotal role in increasing the profit margin of the product. The management of this function can be challenging by itself and even more for Small and Medium Enterprises (SMEs) due to the limited resources and expertise available at their disposal. This paper discusses the development of tools and concepts towards effectively managing the purchasing and supply chain function. The developed tools and concepts will provide a cost effective way of managing this function within SMEs. The paper further shows the use of these tools within Contechs, a manufacturer of luxury boat interiors, and the associated benefits achieved as a result of this implementation. Finally a generic framework towards use in such environments is presented.

Keywords: Lean, Supply Chain, High variety Low volume, Small and Medium Enterprises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
503 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting

Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu

Abstract:

Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.

Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
502 Belt Conveyor Dynamics in Transient Operation for Speed Control

Authors: D. He, Y. Pang, G. Lodewijks

Abstract:

Belt conveyors play an important role in continuous dry bulk material transport, especially at the mining industry. Speed control is expected to reduce the energy consumption of belt conveyors. Transient operation is the operation of increasing or decreasing conveyor speed for speed control. According to literature review, current research rarely takes the conveyor dynamics in transient operation into account. However, in belt conveyor speed control, the conveyor dynamic behaviors are significantly important since the poor dynamics might result in risks. In this paper, the potential risks in transient operation will be analyzed. An existing finite element model will be applied to build a conveyor model, and simulations will be carried out to analyze the conveyor dynamics. In order to realize the soft speed regulation, Harrison’s sinusoid acceleration profile will be applied, and Lodewijks estimator will be built to approximate the required acceleration time. A long inclined belt conveyor will be studied with two major simulations. The conveyor dynamics will be given.

Keywords: Belt conveyor, speed control, transient operation, dynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
501 FACTS Based Stabilization for Smart Grid Applications

Authors: Adel M. Sharaf, Foad H. Gandoman

Abstract:

Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PVhybrid- Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid- Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6- pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.

Keywords: AC FACTS, Smart grid, Stabilization, PV-Battery Storage, Switched Filter-Compensation (SFC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247
500 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images

Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj

Abstract:

Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.

Keywords: Image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181