%0 Journal Article
	%A Mohamed A. Mahfouz and  M. A. Ismail
	%D 2009
	%J International Journal of Computer and Information Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 25, 2009
	%T Fuzzy Relatives of the CLARANS Algorithm With Application to Text Clustering
	%U https://publications.waset.org/pdf/410
	%V 25
	%X This paper introduces new algorithms (Fuzzy relative
of the CLARANS algorithm FCLARANS and Fuzzy c Medoids
based on randomized search FCMRANS) for fuzzy clustering of
relational data. Unlike existing fuzzy c-medoids algorithm (FCMdd)
in which the within cluster dissimilarity of each cluster is minimized
in each iteration by recomputing new medoids given current
memberships, FCLARANS minimizes the same objective function
minimized by FCMdd by changing current medoids in such away
that that the sum of the within cluster dissimilarities is minimized.
Computing new medoids may be effected by noise because outliers
may join the computation of medoids while the choice of medoids in
FCLARANS is dictated by the location of a predominant fraction of
points inside a cluster and, therefore, it is less sensitive to the
presence of outliers. In FCMRANS the step of computing new
medoids in FCMdd is modified to be based on randomized search.
Furthermore, a new initialization procedure is developed that add
randomness to the initialization procedure used with FCMdd. Both
FCLARANS and FCMRANS are compared with the robust and
linearized version of fuzzy c-medoids (RFCMdd). Experimental
results with different samples of the Reuter-21578, Newsgroups
(20NG) and generated datasets with noise show that FCLARANS is
more robust than both RFCMdd and FCMRANS. Finally, both
FCMRANS and FCLARANS are more efficient and their outputs
are almost the same as that of RFCMdd in terms of classification
	%P 32 - 39