%0 Journal Article
	%A Jiqing Han and  Rongchun Gao
	%D 2010
	%J International Journal of Electrical and Computer Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 39, 2010
	%T Text-independent Speaker Identification Based on MAP Channel Compensation and Pitch-dependent Features
	%U https://publications.waset.org/pdf/1962
	%V 39
	%X One major source of performance decline in speaker
recognition system is channel mismatch between training and testing.
This paper focuses on improving channel robustness of speaker
recognition system in two aspects of channel compensation technique
and channel robust features. The system is text-independent speaker
identification system based on two-stage recognition. In the aspect of
channel compensation technique, this paper applies MAP (Maximum
A Posterior Probability) channel compensation technique, which was
used in speech recognition, to speaker recognition system. In the
aspect of channel robust features, this paper introduces
pitch-dependent features and pitch-dependent speaker model for the
second stage recognition. Based on the first stage recognition to
testing speech using GMM (Gaussian Mixture Model), the system
uses GMM scores to decide if it needs to be recognized again. If it
needs to, the system selects a few speakers from all of the speakers
who participate in the first stage recognition for the second stage
recognition. For each selected speaker, the system obtains 3
pitch-dependent results from his pitch-dependent speaker model, and
then uses ANN (Artificial Neural Network) to unite the 3
pitch-dependent results and 1 GMM score for getting a fused result.
The system makes the second stage recognition based on these fused
results. The experiments show that the correct rate of two-stage
recognition system based on MAP channel compensation technique
and pitch-dependent features is 41.7% better than the baseline system
for closed-set test.
	%P 505 - 511