Search results for: flow channel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2863

Search results for: flow channel

2593 CFD Simulation and Validation of Flow Pattern Transition Boundaries during Moderately Viscous Oil-Water Two-Phase Flow through Horizontal Pipeline

Authors: Anand B. Desamala, Anjali Dasari, Vinayak Vijayan, Bharath K. Goshika, Ashok K. Dasmahapatra, Tapas K. Mandal

Abstract:

In the present study, computational fluid dynamics (CFD) simulation has been executed to investigate the transition boundaries of different flow patterns for moderately viscous oil-water (viscosity ratio 107, density ratio 0.89 and interfacial tension of 0.032 N/m.) two-phase flow through a horizontal pipeline with internal diameter and length of 0.025 m and 7.16 m respectively. Volume of Fluid (VOF) approach including effect of surface tension has been employed to predict the flow pattern. Geometry and meshing of the present problem has been drawn using GAMBIT and ANSYS FLUENT has been used for simulation. A total of 47037 quadrilateral elements are chosen for the geometry of horizontal pipeline. The computation has been performed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, co-axial flow and a T-junction as entry section. The simulation correctly predicts the transition boundaries of wavy stratified to stratified mixed flow. Other transition boundaries are yet to be simulated. Simulated data has been validated with our own experimental results.

Keywords: CFD simulation, flow pattern transition, moderately viscous oil-water flow, prediction of flow transition boundary, VOF technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4249
2592 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of Standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67HV from 21HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

Keywords: SPD, ECAP, FEM, Pure Al, Mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2512
2591 Design and Simulation of Electromagnetic Flow Meter for Circular Pipe Type

Authors: M. Karamifard, M. Kazeminejad, A. Maghsoodloo

Abstract:

Electromagnetic flow meter by measuring the varying of magnetic flux, which is related to the velocity of conductive flow, can measure the rate of fluids very carefully and precisely. Electromagnetic flow meter operation is based on famous Faraday's second Law. In these equipments, the constant magnetostatic field is produced by electromagnet (winding around the tube) outside of pipe and inducting voltage that is due to conductive liquid flow is measured by electrodes located on two end side of the pipe wall. In this research, we consider to 2-dimensional mathematical model that can be solved by numerical finite difference (FD) solution approach to calculate induction potential between electrodes. The fundamental concept to design the electromagnetic flow meter, exciting winding and simulations are come out by using MATLAB and PDE-Tool software. In the last stage, simulations results will be shown for improvement and accuracy of technical provision.

Keywords: Electromagnetic Flow Meter, Induction Voltage, Finite Difference

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4603
2590 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation

Authors: Anton Stadler, Thorsten Ike

Abstract:

In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.

Keywords: Low density, optical flow, upward smoke motion, video based smoke detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
2589 Modeling and Analysis of the Effects of Temperature and Pressure on the Gas-Crossover in Polymer Electrolyte Membrane Electrolyzer

Authors: A. H. Abdol Rahim, Alhassan Salami Tijani

Abstract:

Hydrogen produced by means of polymer electrolyte membrane electrolyzer (PEME) is one of the most promising methods due to clean and renewable energy source. In the process, some energy loss due to mass transfer through a PEM is caused by diffusion, electro-osmotic drag, and the pressure difference between the cathode channel and anode channel. In PEME, water molecules and ionic particles transferred between the electrodes from anode to cathode, Extensive mixing of the hydrogen and oxygen at anode channel due to gases cross-over must be avoided. In recent times the consciousness of safety issue in high pressure PEME where the oxygen mix with hydrogen at anode channel could create, explosive conditions have generated a lot of concern. In this paper, the steady state and simulation analysis of gases crossover in PEME on the temperature and pressure effect are presented. The simulations have been analysis in MATLAB based on the well-known Fick’s Law of molecular diffusion. The simulation results indicated that as temperature increases, there is a significant decrease in operating voltage.

Keywords: Diffusion, gases cross-over, steady state.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
2588 The Effect of Breaststroke Swimming Exercise to Increase the Value of Peak Expiratory Flow

Authors: Sri Sumartiningsih, Anies Setiowati

Abstract:

The purpose of this study is to investigate the influence of breaststroke swimming exercise to improving the peak expiratory flow. Methode: This study used 17 students of men aged 19-21 years, APE values measured before and after the study. Style swimming workout done in accordance with a program that has been made. Result: Value of peak expiratory flow in male students obtained on average before exercise (530 ± 15 811) liters / min and after doing the exercises (540.59 ± 17 092) liters / minute. Paired ttest showed t = -6.446 and p = 0.000, which means there are differences in peak expiratory flow values before and after exercise swimming breaststroke. Conclusion: The conclusion is the breaststroke swimming exercise can be improving of peak expiratory flow.

Keywords: Breaststroke, peak expiratory flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
2587 Conducting Flow Measurement Laboratory Test Work

Authors: M. B. Kime

Abstract:

Mass flow measurement is the basis of most technoeconomic formulations in the chemical industry. This calls for reliable and accurate detection of mass flow. Flow measurement laboratory experiments were conducted using various instruments. These consisted of orifice plates, various sized rotameters, wet gas meter and soap bubble meter. This work was aimed at evaluating appropriate operating conditions and accuracy of the aforementioned devices. The experimental data collected were compared to theoretical predictions from Bernoulli’s equation and calibration curves supplied by the instrument’s manufacturers. The results obtained showed that rotameters were more reliable for measuring high and low flow rates; while soap-bubble meters and wet-gas meters were found to be suitable for measuring low flow rates. The laboratory procedures and findings of the actual work can assist engineering students and professionals in conducting their flow measurement laboratory test work.

Keywords: Flow measurement, orifice plates, rotameters, wet gas meter, soap bubble meter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4942
2586 Energy Separation Mechanism in Uni-Flow Vortex Tube Using Compressible Vortex Flow

Authors: Hiroshi Katanoda, Mohd Hazwan bin Yusof

Abstract:

A theoretical investigation from the view point of gas-dynamics and thermodynamics was carried out, in order to clarify the energy separation mechanism in a viscous compressible vortex, as a primary flow element in a uni-flow vortex tube. The mathematical solutions of tangential velocity, density and temperature in a viscous compressible vortical flow were used in this study.It is clear that a total temperature in the vortex core falls well below that distant from the vortex core in the radial direction, causing aregion with higher total temperature,compared to the distant region,peripheral to the vortex core.

Keywords: Energy separation mechanism, theoretical analysis, vortex tube, vortical flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
2585 Load Flow Analysis: An Overview

Authors: P. S. Bhowmik, D. V. Rajan, S. P. Bose

Abstract:

The load flow study in a power system constitutes a study of paramount importance. The study reveals the electrical performance and power flows (real and reactive) for specified condition when the system is operating under steady state. This paper gives an overview of different techniques used for load flow study under different specified conditions.

Keywords: Load Flow Studies, Y-matrix and Z-matrix iteration, Newton-Raphson method, Fast Decoupled method, Fuzzy logic, Artificial Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6857
2584 Simulation of Internal Flow Field of Pitot-Tube Jet Pump

Authors: Iqra Noor, Ihtzaz Qamar

Abstract:

Pitot-tube Jet pump, single-stage pump with low flow rate and high head, consists of a radial impeller that feeds water to rotating cavity. Water then enters stationary pitot-tube collector (diffuser), which discharges to the outside. By means of ANSYS Fluent 15.0, the internal flow characteristics for Pitot-tube Jet pump with standard pitot and curved pitot are studied. Under design condition, realizable k-e turbulence model and SIMPLEC algorithm are used to calculate 3D flow field inside both pumps. The simulation results reveal that energy is imparted to the flow by impeller and inside the rotor, forced vortex type flow is observed. Total pressure decreases inside pitot-tube whereas static pressure increases. Changing pitot-tube from standard to curved shape results in minimum flow circulation inside pitot-tube and leads to a higher pump performance.

Keywords: CFD, flow circulation, high pressure pump, impeller, internal flow, pickup tube pump, rectangle channels, rotating casing, turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
2583 Impact of Modeling Different Fading Channels on Wireless MAN Fixed IEEE802.16d OFDM System with Diversity Transmission Technique

Authors: Shanar Askar, Shahzad Memon, LachhmanDas, MSKalhoro

Abstract:

Wimax (Worldwide Interoperability for Microwave Access) is a promising technology which can offer high speed data, voice and video service to the customer end, which is presently, dominated by the cable and digital subscriber line (DSL) technologies. The performance assessment of Wimax systems is dealt with. The biggest advantage of Broadband wireless application (BWA) over its wired competitors is its increased capacity and ease of deployment. The aims of this paper are to model and simulate the fixed OFDM IEEE 802.16d physical layer under variant combinations of digital modulation (BPSK, QPSK, and 16-QAM) over diverse combination of fading channels (AWGN, SUIs). Stanford University Interim (SUI) Channel serial was proposed to simulate the fixed broadband wireless access channel environments where IEEE 802.16d is to be deployed. It has six channel models that are grouped into three categories according to three typical different outdoor Terrains, in order to give a comprehensive effect of fading channels on the overall performance of the system.

Keywords: WIMAX, OFDM, Additive White Gaussian Noise, Fading Channel, SUI, Doppler Effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
2582 Numerical Study of Flow Separation Control over a NACA2415 Airfoil

Authors: M. Tahar Bouzaher

Abstract:

This study involves numerical simulation of the flow around a NACA2415 airfoil, with a 18° angle of attack, and flow separation control using a rod, It involves putting a cylindrical rod - upstream of the leading edge- in vertical translation movement in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, nonstationary flow is simulated using ANSYS FLUENT 13. The rod movement is reproduced using the dynamic mesh technique and an in-house developed UDF (User Define Function). The frequency varies from 75 to 450 Hz and the considered amplitudes are 2%, and 3% of the foil chord. The frequency chosen closed to the frequency of separation. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 61%.

Keywords: CFD, Flow separation, Active control, Boundary layer, rod, NACA 2415.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2999
2581 CFD Analysis of Two Phase Flow in a Horizontal Pipe – Prediction of Pressure Drop

Authors: P. Bhramara, V. D. Rao, K. V. Sharma , T. K. K. Reddy

Abstract:

In designing of condensers, the prediction of pressure drop is as important as the prediction of heat transfer coefficient. Modeling of two phase flow, particularly liquid – vapor flow under diabatic conditions inside a horizontal tube using CFD analysis is difficult with the available two phase models in FLUENT due to continuously changing flow patterns. In the present analysis, CFD analysis of two phase flow of refrigerants inside a horizontal tube of inner diameter, 0.0085 m and 1.2 m length is carried out using homogeneous model under adiabatic conditions. The refrigerants considered are R22, R134a and R407C. The analysis is performed at different saturation temperatures and at different flow rates to evaluate the local frictional pressure drop. Using Homogeneous model, average properties are obtained for each of the refrigerants that is considered as single phase pseudo fluid. The so obtained pressure drop data is compared with the separated flow models available in literature.

Keywords: Adiabatic conditions, CFD analysis, Homogeneousmodel and Liquid – Vapor flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3697
2580 An Efficient Ant Colony Optimization Algorithm for Multiobjective Flow Shop Scheduling Problem

Authors: Ahmad Rabanimotlagh

Abstract:

In this paper an ant colony optimization algorithm is developed to solve the permutation flow shop scheduling problem. In the permutation flow shop scheduling problem which has been vastly studied in the literature, there are a set of m machines and a set of n jobs. All the jobs are processed on all the machines and the sequence of jobs being processed is the same on all the machines. Here this problem is optimized considering two criteria, makespan and total flow time. Then the results are compared with the ones obtained by previously developed algorithms. Finally it is visible that our proposed approach performs best among all other algorithms in the literature.

Keywords: Scheduling, Flow shop, Ant colony optimization, Makespan, Flow time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
2579 Effects of Roughness on Forward Facing Step in an Open Channel

Authors: S. M. Rifat, André L. Marchildon, Mark F. Tachie

Abstract:

Experiments were performed to investigate the effects of roughness on the reattachment and redevelopment regions over a 12 mm forward facing step (FFS) in an open channel flow. The experiments were performed over an upstream smooth wall and a smooth FFS, an upstream wall coated with sandpaper 36 grit and a smooth FFS and an upstream rough wall produced from sandpaper 36 grit and a FFS coated with sandpaper 36 grit. To investigate only the wall roughness effects, Reynolds number, Froude number, aspect ratio and blockage ratio were kept constant. Upstream profiles showed reduced streamwise mean velocities close to the rough wall compared to the smooth wall, but the turbulence level was increased by upstream wall roughness. The reattachment length for the smooth-smooth wall experiment was 1.78h; however, when it is replaced with rough-smooth wall the reattachment length decreased to 1.53h. It was observed that the upstream roughness increased the physical size of contours of maximum turbulence level; however, the downstream roughness decreased both the size and magnitude of contours in the vicinity of the leading edge of the step. Quadrant analysis was performed to investigate the dominant Reynolds shear stress contribution in the recirculation region. The Reynolds shear stress and turbulent kinetic energy profiles after the reattachment showed slower recovery compared to the streamwise mean velocity, however all the profiles fairly collapse on their corresponding upstream profiles at x/h = 60. It was concluded that to obtain a complete collapse several more streamwise distances would be required.

Keywords: Forward facing step, open channel, separated and reattached turbulent flows, wall roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
2578 Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing

Authors: M. Ranjeeth, S. Anuradha

Abstract:

Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as Pf Vs Pd for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment.

Keywords: Spectrum sensing, Energy detection, fading channels, Probability of detection, probability of false alarm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3100
2577 Thermohydraulic Performance of Double Flow Solar Air Heater with Corrugated Absorber

Authors: S. P. Sharma, Som Nath Saha

Abstract:

This paper deals with the analytical investigation of thermal and thermohydraulic performance of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater has been presented, and a computer program in C++ language is developed to estimate the outlet temperature of air for the evaluation of thermal and thermohydraulic efficiency by solving the governing equations numerically using relevant correlations for heat transfer coefficients. The results obtained from the mathematical model is compared with the available experimental results and it is found to be reasonably good. The results show that the double flow solar air heaters have higher efficiency than conventional solar air heater, although the double flow corrugated absorber is superior to that of flat plate double flow solar air heater. It is also observed that the thermal efficiency increases with increase in mass flow rate; however, thermohydraulic efficiency increases with increase in mass flow rate up to a certain limit, attains the maximum value, then thereafter decreases sharply.

Keywords: Corrugated absorber, double flow, solar air heater, thermohydraulic efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
2576 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient

Authors: Anjanna Matta, P. A. L. Narayana

Abstract:

An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleigh number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.

Keywords: Linear stability analysis, heat source, porous medium, mass flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
2575 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows

Authors: F. A. Hamad, S. He

Abstract:

In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.

Keywords: Circular cylinder, cross-flow, heat transfer, multicomponent multiphase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
2574 Error Rate Performance Comparisons of Precoding Schemes over Fading Channels for Multiuser MIMO

Authors: M. Arulvizhi

Abstract:

In Multiuser MIMO communication systems, interuser interference has a strong impact on the transmitted signals. Precoding technique schemes are employed for multiuser broadcast channels to suppress an interuser interference. Different Linear and nonlinear precoding schemes are there. For the massive system dimension, it is difficult to design an appropriate precoding algorithm with low computational complexity and good error rate performance at the same time over fading channels. This paper describes the error rate performance of precoding schemes over fading channels with the assumption of perfect channel state information at the transmitter. To estimate the bit error rate performance, different propagation environments namely, Rayleigh, Rician and Nakagami fading channels have been offered. This paper presents the error rate performance comparison of these fading channels based on precoding methods like Channel Inversion and Dirty paper coding for multiuser broadcasting system. MATLAB simulation has been used. It is observed that multiuser system achieves better error rate performance by Dirty paper coding over Rayleigh fading channel.

Keywords: Multiuser MIMO, channel inversion precoding, dirty paper coding, fading channels, BER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718
2573 A Reliable FPGA-based Real-time Optical-flow Estimation

Authors: M. M. Abutaleb, A. Hamdy, M. E. Abuelwafa, E. M. Saad

Abstract:

Optical flow is a research topic of interest for many years. It has, until recently, been largely inapplicable to real-time applications due to its computationally expensive nature. This paper presents a new reliable flow technique which is combined with a motion detection algorithm, from stationary camera image streams, to allow flow-based analyses of moving entities, such as rigidity, in real-time. The combination of the optical flow analysis with motion detection technique greatly reduces the expensive computation of flow vectors as compared with standard approaches, rendering the method to be applicable in real-time implementation. This paper describes also the hardware implementation of a proposed pipelined system to estimate the flow vectors from image sequences in real time. This design can process 768 x 576 images at a very high frame rate that reaches to 156 fps in a single low cost FPGA chip, which is adequate for most real-time vision applications.

Keywords: Optical flow, motion detection, real-time systems, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
2572 Influence of Vortex Generator on Flow Behavior of Air Stream

Authors: Chakkapong Supasri, Tanongkiat Kiatsiriroat, Atipoang Nuntaphan

Abstract:

 

This research studied the influence of delta wing and delta winglet vortex generators on air flow characteristic. Normally, the vortex generator has been used for enhancing the heat transfer performance by promote the helical flow of air stream. The vortex generator was setup in the wind tunnel and the flow pattern of air stream passing the vortex generator was observed by using smoke generator. The Reynolds number of air stream was between 30,000 and 80,000. It is found that the delta winglet having 20mm fin height and 30 degree of air stream contact angle generates the maximum helical flow of air stream.

Keywords: Vortex generator, Flow behavior, Visual study, Delta wing, Delta winglet, Smoke generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
2571 Performance of Coded Multi-Line Copper Wire for G.fast Communications in the Presence of Impulsive Noise

Authors: Israa Al-Neami, Ali J. Al-Askery, Martin Johnston, Charalampos Tsimenidis

Abstract:

In this paper, we focus on the design of a multi-line copper wire (MLCW) communication system. First, we construct our proposed MLCW channel and verify its characteristics based on the Kolmogorov-Smirnov test. In addition, we apply Middleton class A impulsive noise (IN) to the copper channel for further investigation. Second, the MIMO G.fast system is adopted utilizing the proposed MLCW channel model and is compared to a single line G-fast system. Second, the performance of the coded system is obtained utilizing concatenated interleaved Reed-Solomon (RS) code with four-dimensional trellis-coded modulation (4D TCM), and compared to the single line G-fast system. Simulations are obtained for high quadrature amplitude modulation (QAM) constellations that are commonly used with G-fast communications, the results demonstrate that the bit error rate (BER) performance of the coded MLCW system shows an improvement compared to the single line G-fast systems.

Keywords: G.fast, Middleton Class A impulsive noise, mitigation techniques, copper channel Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703
2570 Enhance Image Transmission Based on DWT with Pixel Interleaver

Authors: Muhanned Alfarras

Abstract:

The recent growth of using multimedia transmission over wireless communication systems, have challenges to protect the data from lost due to wireless channel effect. Images are corrupted due to the noise and fading when transmitted over wireless channel, in wireless channel the image is transmitted block by block, Due to severe fading, entire image blocks can be damaged. The aim of this paper comes out from need to enhance the digital images at the wireless receiver side. Proposed Boundary Interpolation (BI) Algorithm using wavelet, have been adapted here used to reconstruction the lost block in the image at the receiver depend on the correlation between the lost block and its neighbors. New Proposed technique by using Boundary Interpolation (BI) Algorithm using wavelet with Pixel interleaver has been implemented. Pixel interleaver work on distribute the pixel to new pixel position of original image before transmitting the image. The block lost through wireless channel is only effects individual pixel. The lost pixels at the receiver side can be recovered by using Boundary Interpolation (BI) Algorithm using wavelet. The results showed that the New proposed algorithm boundary interpolation (BI) using wavelet with pixel interleaver is better in term of MSE and PSNR.

Keywords: Image Transmission, Wavelet, Pixel Interleaver, Boundary Interpolation Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
2569 Experimental Investigation of On-Body Channel Modelling at 2.45 GHz

Authors: Hasliza A. Rahim, Fareq Malek, Nur A. M. Affendi, Azuwa Ali, Norshafinash Saudin, Latifah Mohamed

Abstract:

This paper presents the experimental investigation of on-body channel fading at 2.45 GHz considering two effects of the user body movement; stationary and mobile. A pair of body-worn antennas was utilized in this measurement campaign. A statistical analysis was performed by comparing the measured on-body path loss to five well-known distributions; lognormal, normal, Nakagami, Weibull and Rayleigh. The results showed that the average path loss of moving arm varied higher than the path loss in sitting position for upper-arm-to-left-chest link, up to 3.5 dB. The analysis also concluded that the Nakagami distribution provided the best fit for most of on-body static link path loss in standing still and sitting position, while the arm movement can be best described by log-normal distribution.

Keywords: On-Body channel communications, fading characteristics, statistical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
2568 Current Deflecting Wall: A Promising Structure for Minimising Siltation in Semi-Enclosed Docks

Authors: A. A. Purohit, A. Basu, K. A. Chavan, M. D. Kudale

Abstract:

Many estuarine harbours in the world are facing the problem of siltation in docks, channel entrances, etc. The harbours in India are not an exception and require maintenance dredging to achieve navigable depths for keeping them operable. Hence, dredging is inevitable and is a costly affair. The heavy siltation in docks in well mixed tide dominated estuaries is mainly due to settlement of cohesive sediments in suspension. As such there is a need to have a permanent solution for minimising the siltation in such docks to alter the hydrodynamic flow field responsible for siltation by constructing structures outside the dock. One of such docks on the west coast of India, wherein siltation of about 2.5-3 m/annum prevails, was considered to understand the hydrodynamic flow field responsible for siltation. The dock is situated in such a region where macro type of semi-diurnal tide (range of about 5m) prevails. In order to change the flow field responsible for siltation inside the dock, suitability of Current Deflecting Wall (CDW) outside the dock was studied, which will minimise the sediment exchange rate and siltation in the dock. The well calibrated physical tidal model was used to understand the flow field during various phases of tide for the existing dock in Mumbai harbour. At the harbour entrance where the tidal flux exchanges in/out of the dock, measurements on water level and current were made to estimate the sediment transport capacity. The distorted scaled model (1:400 (H) & 1:80 (V)) of Mumbai area was used to study the tidal flow phenomenon, wherein tides are generated by automatic tide generator. Hydraulic model studies carried out under the existing condition (without CDW) reveal that, during initial hours of flood tide, flow hugs the docks breakwater and part of flow which enters the dock forms number of eddies of varying sizes inside the basin, while remaining part of flow bypasses the entrance of dock. During ebb, flow direction reverses, and part of the flow re-enters the dock from outside and creates eddies at its entrance. These eddies do not allow water/sediment-mass to come out and result in settlement of sediments in dock both due to eddies and more retention of sediment. At latter hours, current strength outside the dock entrance reduces and allows the water-mass of dock to come out. In order to improve flow field inside the dockyard, two CDWs of length 300 m and 40 m were proposed outside the dock breakwater and inline to Pier-wall at dock entrance. Model studies reveal that, during flood, major flow gets deflected away from the entrance and no eddies are formed inside the dock, while during ebb flow does not re-enter the dock, and sediment flux immediately starts emptying it during initial hours of ebb. This reduces not only the entry of sediment in dock by about 40% but also the deposition by about 42% due to less retention. Thus, CDW is a promising solution to significantly reduce siltation in dock.

Keywords: Current deflecting wall, eddies, hydraulic model, macro tide, siltation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
2567 Recursive Least Squares Adaptive Filter a better ISI Compensator

Authors: O. P. Sharma, V. Janyani, S. Sancheti

Abstract:

Inter-symbol interference if not taken care off may cause severe error at the receiver and the detection of signal becomes difficult. An adaptive equalizer employing Recursive Least Squares algorithm can be a good compensation for the ISI problem. In this paper performance of communication link in presence of Least Mean Square and Recursive Least Squares equalizer algorithm is analyzed. A Model of communication system having Quadrature amplitude modulation and Rician fading channel is implemented using MATLAB communication block set. Bit error rate and number of errors is evaluated for RLS and LMS equalizer algorithm, due to change in Signal to Noise Ratio (SNR) and fading component gain in Rician fading Channel.

Keywords: Least mean square (LMS), Recursive least squares(RLS), Adaptive equalization, Bit error rate (BER), Rician fading channel, Quadrature Amplitude Modulation (QAM), Signal to noiseratio (SNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3077
2566 Effect of Equal Channel Angular Pressing Process on Impact Property of Pure Copper

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

Ultrafine grained (UFG) and nanostructured (NS) materials have experienced a rapid development during the last decade and made profound impact on every field of materials science and engineering. The present work has been undertaken to develop ultrafine grained pure copper by severe plastic deformation method and to examine the impact property by different characterizing tools.

For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 17° and 20mm had been designed and manufactured. Commercial pure copper billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 136HV from 52HV after the final pass. Also, about 285% and 125% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by imposing ECAP process and pass numbers. It is needed to say that about 56% reduction in the impact energy have been attained for the samples as contrasted to annealed specimens. 

Keywords: SPD, ECAP, Pure Cu, Impact property.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837
2565 Performance Evaluation of Cooperative Diversity in Flat Fading Channel with Error Control Coding

Authors: Oluseye Adeniyi Adeleke, Mohd Fadzli Salleh

Abstract:

Cooperative communication provides transmit diversity, even when, due to size constraints, mobile units cannot accommodate multiple antennas. A versatile cooperation method called coded cooperation has been developed, in which cooperation is implemented through channel coding with a view to controlling the errors inherent in wireless communication. In this work we evaluate the performance of coded cooperation in flat Rayleigh fading environment using a concept known as the pair wise error probability (PEP). We derive the PEP for a flat fading scenario in coded cooperation and then compare with the signal-to-noise ratio of the users in the network. Results show that an increase in the SNR leads to a decrease in the PEP. We also carried out simulations to validate the result.

Keywords: Channel state information, coded cooperation, cooperative systems, pairwise-error-probability, Reed-Solomon codes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
2564 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow

Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani

Abstract:

Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200; in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.

Keywords: Nanofluid, heat transfer, unsteady flow, forced convection, cross-flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2522