Effect of Equal Channel Angular Pressing Process on Impact Property of Pure Copper
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Effect of Equal Channel Angular Pressing Process on Impact Property of Pure Copper

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

Ultrafine grained (UFG) and nanostructured (NS) materials have experienced a rapid development during the last decade and made profound impact on every field of materials science and engineering. The present work has been undertaken to develop ultrafine grained pure copper by severe plastic deformation method and to examine the impact property by different characterizing tools.

For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 17° and 20mm had been designed and manufactured. Commercial pure copper billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 136HV from 52HV after the final pass. Also, about 285% and 125% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by imposing ECAP process and pass numbers. It is needed to say that about 56% reduction in the impact energy have been attained for the samples as contrasted to annealed specimens. 

Keywords: SPD, ECAP, Pure Cu, Impact property.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1336400

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839

References:


[1] A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Micari, G. D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Annals - Manufacturing Technology 57 (2008) 716-735.
[2] M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Materials Science and Engineering A241 (1998) 122–128.
[3] V. M. Segal, Materials Science and Engineering A338 (2002) 331–344.
[4] R. Ding, C. Chung, Y. Chiu, P. Lyon, Materials Science and Engineering A 527 (2010) 3777–3784, doi:10.1016/j.msea.2010.02.030.
[5] T. Peng, Q.D. Wang, J.B. Lin, Materials Science and Engineering A 516 (2009) 23–30, doi:10.1016/j.msea.2009.04.024.
[6] G. Khatibi, J. Horky, B. Weiss, M.J. Zehetbauer, International Journal of Fatigue 32 (2010) 269–278, doi:10.1016/j.ijfatigue.2009.06.017.
[7] G. Krallics a, J.G. Lenard, Journal of Materials Processing Technology 152 (2004) 154–161, doi:10.1016/j.jmatprotec.2004.03.015.
[8] M. Kazeminezhad, E. Hosseini, Materials and Design 31 (2010) 94–103, doi:10.1016/j.matdes.2009.07.008.
[9] M. Zebardast, A. Karimi Taheri, The cold welding of copper to aluminum using equal channel angular extrusion (ECAE) process, Journal of Materials Processing Technology 211 (2011) 1034-1043.
[10] F. Djavanroodi, M. Ebrahimi, B. Rajabifar, S. Akramizadeh, Fatigue design factors for ECAPed materials, Materials Science and Engineering A 528 (2010) 745-750.
[11] F. Djavanroodi, M. Ebrahimi (2010). "Effect of die parameters and material properties in ECAP with parallel channels”. Materials Science and Engineering A 527 (2010) 7593–7599.
[12] F. Djavanroodi, H. Ahmadian, K. Kohkan, R. Naseri (2013) "Ultrasonic assisted-ECAP". Ultrasonics 53 (2013) 1089–1096.
[13] M. Ebrahimi, B. Rajabifar, F. Djavanroodi, (2013). "New approaches to optimize strain behavior of Al6082 during equal channel angular pressing". Journal of Strain Analysis for Engineering Design Volume 48 August 2013 pp. 395-404.
[14] F. Djavanroodi, A. A. Zolfaghari, M. Ebrahimi and K. M. Nikbin "Equal channel angular pressing of tubular samples” Acta Metall. Sin. (Engl. Lett.) October 2013, Volume 26, Issue 5, pp 574-580.
[15] V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, R. Z. Valiev, Materials Science and Engineering A299 (2001) 59–67.
[16] S. Xu, G. Zhao, Y. Luan, Y. Guan, Journal of Materials Processing Technology 176 (2006) 251–259, doi:10.1016/j.jmatprotec.2006.03.167.
[17] L. B. Tong, M. Y. Zheng, X. S. Hu, K. Wu, S. W. Xu, S. Kamado, Y. Kojima, Materials Science and Engineering A (2008), doi:10.1016/j.msea.2010.03.062.
[18] Kazuko Furuno, Hiroki Akamatsu, Keiichiro Oh-ishi, Minoru Furukawa, ZenjiHorita, Terence G. Langdon, Microstructural development in equal-channel angular pressing using a 60 die, ActaMaterialia 52 (2004) 2497-2507.
[19] O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, Y. Watanabe, Microstructure behavior of Al–Mg–Sc alloy processed by ECAP at elevated temperature, ActaMaterialia 56 (2008) 821-834.
[20] Majid Hoseini, Mahmood Meratian, Mohammad R. Toroghinejad, Jerzy A. Szpunar, The role of grain orientation in microstructure evolution of pure aluminum processed by equal channel angular pressing, Materials Characterization 61 (2010) 1371-1378.
[21] K. J. Kim, D. Y. Yang, J. W. Yoon, Investigation of microstructure characteristics of commercially pure aluminum during equal channel angular extrusion, Materials Science and Engineering A 485 (2008) 621-626.