\r\ncopper wire (MLCW) communication system. First, we construct

\r\nour proposed MLCW channel and verify its characteristics based

\r\non the Kolmogorov-Smirnov test. In addition, we apply Middleton

\r\nclass A impulsive noise (IN) to the copper channel for further

\r\ninvestigation. Second, the MIMO G.fast system is adopted utilizing

\r\nthe proposed MLCW channel model and is compared to a single

\r\nline G-fast system. Second, the performance of the coded system

\r\nis obtained utilizing concatenated interleaved Reed-Solomon (RS)

\r\ncode with four-dimensional trellis-coded modulation (4D TCM), and

\r\ncompared to the single line G-fast system. Simulations are obtained

\r\nfor high quadrature amplitude modulation (QAM) constellations

\r\nthat are commonly used with G-fast communications, the results

\r\ndemonstrate that the bit error rate (BER) performance of the coded

\r\nMLCW system shows an improvement compared to the single line

\r\nG-fast systems.","references":"[1] S. Kiykioglu, \u201cCentral office interface techniques for digital subscriber\r\nlines,\u201d Nov. 30 2004, uS Patent 6,826,278.\r\n[2] R. Peng and R.-R. Chen, \u201cApplication of nonbinary ldpc cycle codes\r\nto mimo channels,\u201d IEEE Transactions on Wireless Communications,\r\nvol. 7, no. 6, 2008.\r\n[3] T. Magesacher, W. Henkel, G. Taub\u00a8ock, and T. Nordstr\u00a8om, \u201cCable\r\nmeasurements supporting xdsl technologies,\u201d e&i Elektrotechnik und\r\nInformationstechnik, vol. 119, no. 2, pp. 37\u201343, 2002.\r\n[4] A. G. Olson, A. Chopra, Y. Mortazavi, I. C. Wong, and B. L. Evans,\r\n\u201cReal-time mimo discrete multitone transceiver testbed,\u201d in Signals,\r\nSystems and Computers, 2007. ACSSC 2007. Conference Record of the\r\nForty-First Asilomar Conference on. IEEE, 2007, pp. 126\u2013129.\r\n[5] G. Ginis and C.-N. Peng, \u201cAlien crosstalk cancellation for multipair\r\ndigital subscriber line systems,\u201d EURASIP Journal on Advances in\r\nSignal Processing, vol. 2006, no. 1, p. 016828, 2006.\r\n[6] G. Taubock and W. Henkel, \u201cMimo systems in the subscriber-line\r\nnetwork,\u201d in Proc. of the 5th Int. OFDM-Workshop. Citeseer, 2000,\r\npp. 18\u20131.\r\n[7] I. Al-Neami, C. T. Healy, M. Johnston, and C. Tsimenidis, \u201cInvestigation\r\ninto impulsive noise techniques for a G.FAST system,\u201d in 11th Int.\r\nSympo. Commun. Systems, Net., and Digital Signal Process. IEEE,\r\n2018.\r\n[8] S. V. Zhidkov, \u201cImpulsive noise suppression in ofdm-based\r\ncommunication systems,\u201d IEEE Transactions on Consumer Electronics,\r\nvol. 49, no. 4, pp. 944\u2013948, 2003.\r\n[9] G. ITU-T, \u201c9701-fast access to subscriber terminals (g. fast)-physical\r\nlayer specification,\u201d ITU-T recommendation, Series G: Transmission\r\nSystems and Media, Digital Systems and Networks, 2014.\r\n[10] W. Y. Chen, \u201cDSL: simulation techniques and standards development for\r\ndigital subscriber lines,\u201d In: Macmillan Technology Series, Macmillan\r\nTechnical Publishing, Indianapolis, 1998.\r\n[11] R. Strobel, R. Stolle, and W. Utschick, \u201cWideband modeling of\r\ntwisted-pair cables for mimo applications,\u201d in 2013 IEEE Global\r\nCommunications Conference (GLOBECOM). IEEE, 2013, pp.\r\n2828\u20132833.\r\n[12] E. W. M. Coladarci Theodore, Casey D. Cobb and R. C. Clarke,\r\nFundamentals of Statistical Reasoning in Education. John Wiley &\r\nSons, 2010.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 148, 2019"}