Search results for: Travelling Wave Tube Amplifier
656 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System
Authors: O. Afshar
Abstract:
A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.
Keywords: Receiver tube, heat convection, heat conduction, Nusselt number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894655 Heat transfer Characteristics of Fin-and-Tube heat Exchanger under Condensing Conditions
Authors: Abdenour Bourabaa, Mohamed Saighi, Said El Metenani
Abstract:
In the present work an investigation of the effects of the air frontal velocity, relative humidity and dry air temperature on the heat transfer characteristics of plain finned tube evaporator has been conducted. Using an appropriate correlation for the air side heat transfer coefficient the temperature distribution along the fin surface was calculated using a dimensionless temperature distribution. For a constant relative humidity and bulb temperature, it is found that the temperature distribution decreases with increasing air frontal velocity. Apparently, it is attributed to the condensate water film flowing over the fin surface. When dry air temperature and face velocity are being kept constant, the temperature distribution decreases with the increase of inlet relative humidity. An increase in the inlet relative humidity is accompanied by a higher amount of moisture on the fin surface. This results in a higher amount of latent heat transfer which involves higher fin surface temperature. For the influence of dry air temperature, the results here show an increase in the dimensionless temperature parameter with a decrease in bulb temperature. Increasing bulb temperature leads to higher amount of sensible and latent heat transfer when other conditions remain constant.Keywords: Fin efficiency, heat and mass transfer, dehumidifying conditions, finned tube heat exchangers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184654 Nonlinear Modelling of Sloshing Waves and Solitary Waves in Shallow Basins
Authors: Mohammad R. Jalali, Mohammad M. Jalali
Abstract:
The earliest theories of sloshing waves and solitary waves based on potential theory idealisations and irrotational flow have been extended to be applicable to more realistic domains. To this end, the computational fluid dynamics (CFD) methods are widely used. Three-dimensional CFD methods such as Navier-Stokes solvers with volume of fluid treatment of the free surface and Navier-Stokes solvers with mappings of the free surface inherently impose high computational expense; therefore, considerable effort has gone into developing depth-averaged approaches. Examples of such approaches include Green–Naghdi (GN) equations. In Cartesian system, GN velocity profile depends on horizontal directions, x-direction and y-direction. The effect of vertical direction (z-direction) is also taken into consideration by applying weighting function in approximation. GN theory considers the effect of vertical acceleration and the consequent non-hydrostatic pressure. Moreover, in GN theory, the flow is rotational. The present study illustrates the application of GN equations to propagation of sloshing waves and solitary waves. For this purpose, GN equations solver is verified for the benchmark tests of Gaussian hump sloshing and solitary wave propagation in shallow basins. Analysis of the free surface sloshing of even harmonic components of an initial Gaussian hump demonstrates that the GN model gives predictions in satisfactory agreement with the linear analytical solutions. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave interactions. Numerically predicted solitary wave propagation indicates that the GN model produces simulations in good agreement with the analytical solution of the linearised wave theory. Comparison between the GN model numerical prediction and the result from perturbation analysis confirms that nonlinear interaction between solitary wave and a solid wall is satisfactorilly modelled. Moreover, solitary wave propagation at an angle to the x-axis and the interaction of solitary waves with each other are conducted to validate the developed model.
Keywords: Even harmonic components of sloshing waves, Green–Naghdi equations, nonlinearity, solitary waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858653 Plasma Properties Effect on Fluorescent Tube Plasma Antenna Performance
Authors: A. N. Dagang, E. I. Ismail, Z. Zakaria
Abstract:
This paper presents the analysis on the performance of monopole antenna with fluorescent tubes. In this research, the simulation and experimental approach is conducted. The fluorescent tube with different length and size is designed using Computer Simulation Technology (CST) software and the characteristics of antenna parameter are simulated throughout the software. CST was used to simulate antenna parameters such as return loss, resonant frequency, gain and directivity. Vector Network Analyzer (VNA) was used to measure the return loss of plasma antenna in order to validate the simulation results. In the simulation and experiment, the supply frequency is set starting from 1 GHz to 10 GHz. The results show that the return loss of plasma antenna changes when size of fluorescent tubes is varied, correspond to the different plasma properties. It shows that different values of plasma properties such as plasma frequency and collision frequency gives difference result of return loss, gain and directivity. For the gain, the values range from 2.14 dB to 2.36 dB. The return loss of plasma antenna offers higher value range from -22.187 dB to -32.903 dB. The higher the values of plasma frequency and collision frequency, the higher return loss can be obtained. The values obtained are comparative to the conventional type of metal antenna.
Keywords: Plasma antenna, fluorescent tube, computer simulation technology, plasma parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662652 Analysis of Control by Flattening of the Welded Tubes
Authors: Hannachi Med Tahar, H. Djebaili, B. Daheche
Abstract:
In this approach, we have tried to describe the flattening of welded tubes, and its experimental application. The test is carried out at the (National product processing company dishes and tubes production). Usually, the final products (tubes) undergo a series of non-destructive inspection online and offline welding, and obviously destructive mechanical testing (bending, flattening, flaring, etc.). For this and for the purpose of implementing the flattening test, which applies to the processing of round tubes in other forms, it took four sections of welded tubes draft (before stretching hot) and welded tubes finished (after drawing hot and annealing), it was also noted the report 'health' flattened tubes must not show or crack or tear. The test is considered poor if it reveals a lack of ductility of the metal.
Keywords: Flattening, destructive testing, tube drafts, finished tube, Castem 2001.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273651 An Experimental Study on Evacuated Tube Solar Collector for Heating of Air in India
Authors: Avadhesh Yadav, V.K. Bajpai
Abstract:
A solar powered air heating system using one ended evacuated tubes is experimentally investigated. A solar air heater containing forty evacuated tubes is used for heating purpose. The collector surface area is about 4.44 m2. The length and outer diameters of the outer glass tube and absorber tube are 1500, 47 and 37 mm, respectively. In this experimental setup, we have a header (heat exchanger) of square shape (190 mm x 190 mm). The length of header is 1500 mm. The header consists of a hollow pipe in the center whose diameter is 60 mm through which the air is made to flow. The experimental setup contains approximately 108 liters of water. Water is working as heat collecting medium which collects the solar heat falling on the tubes. This heat is delivered to the air flowing through the header pipe. This heat flow is due to natural convection and conduction. The outlet air temperature depends upon several factors along with air flow rate and solar radiation intensity. The study has been done for both up-flow and down-flow of air in header in similar weather conditions, at different flow rates. In the present investigations the study has been made to find the effect of intensity of solar radiations and flow rate of air on the out let temperature of the air with time and which flow is more efficient. The obtained results show that the system is highly effective for the heating in this region. Moreover, it has been observed that system is highly efficient for the particular flow rate of air. It was also observed that downflow configuration is more effective than up-flow condition at all flow rates due to lesser losses in down-flow. The results show that temperature differences of upper head and lower head, both of water and surface of pipes on the respective ends is lower in down-flow.
Keywords: air flow direction, Evacuated tube solar collector, solar air heating, solar thermal utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5191650 Arbitrary Amplitude Ion-Acoustic Solitary Waves in Electron-Ion-Positron Plasma with Nonthermal Electrons
Authors: Basudev Ghosh, Sreyasi Banerjee
Abstract:
Using pseudo potential method arbitrary amplitude ion-acoustic solitary waves have been theoretically studied in a collisionless plasma consisting of warm drifting positive ions, Boltzmann positrons and nonthermal electrons. Ion-acoustic solitary wave solutions have been obtained and the dependence of the solitary wave profile on different plasma parameters has been studied numerically. Lower and higher order compressive and rarefactive solitary waves are observed in presence of positrons, nonthermal electrons, ion drift velocity and finite ion temperature. Inclusion of higher order nonlinearity is shown to have significant correction to the solitary wave profile for the same values of plasma parameters.
Keywords: Ion-acoustic waves, Nonthermal electrons, Sagdeev potential, Solitary waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208649 A Novel Instantaneous Frequency Computation Approach for Empirical Mode Decomposition
Authors: Liming Zhang
Abstract:
This paper introduces a new instantaneous frequency computation approach -Counting Instantaneous Frequency for a general class of signals called simple waves. The classsimple wave contains a wide range of continuous signals for which the concept instantaneous frequency has a perfect physical sense. The concept of -Counting Instantaneous Frequency also applies to all the discrete data. For all the simple wave signals and the discrete data, -Counting instantaneous frequency can be computed directly without signal decomposition process. The intrinsic mode functions obtained through empirical mode decomposition belongs to simple wave. So -Counting instantaneous frequency can be used together with empirical mode decomposition.Keywords: Instantaneous frequency, empirical mode decomposition, intrinsic mode function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570648 Bode Stability Analysis for Single Wall Carbon Nanotube Interconnects Used in 3D-VLSI Circuits
Authors: Saeed H. Nasiri, Rahim Faez, Bita Davoodi, Maryam Farrokhi
Abstract:
Bode stability analysis based on transmission line modeling (TLM) for single wall carbon nanotube (SWCNT) interconnects used in 3D-VLSI circuits is investigated for the first time. In this analysis, the dependence of the degree of relative stability for SWCNT interconnects on the geometry of each tube has been acquired. It is shown that, increasing the length and diameter of each tube, SWCNT interconnects become more stable.Keywords: Bode stability criterion, Interconnects, Interlayer via, Single wall carbon nanotubes, Transmission line method, Time domain analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828647 Experimental on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid in Horizontal and Inclined Microfin Tube
Authors: F. Hekmatipour, M. A. Akhavan-Behabadi, B. Sajadi
Abstract:
In this paper, the combined free and forced convection heat transfer of the Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar, and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated with the Richardson number which is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlations are suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, CuO-HTO nanofluid flows in inclined microfin tubes.
Keywords: Nanofluid; heat transfer oil; mixed convection; inclined tube; laminar flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669646 Investigation of Ceramic-Metal Composites Produced by Electroless Ni Plating of AlN- Astaloy Cr-M
Authors: A. Yönetken, A. Erol, A. Yakar, G. Peşmen
Abstract:
The microstructure, mechanical properties and metalgraphic characteristics of Ni plated AlN-Astaloy Cr-M powders were investigated using specimens produced by tube furnace sintering at 1000-1400 °C temperature. A uniform nickel layer on AlN powders was deposited prior to sintering using electroless plating technique. A composite consisting of ternary additions, metallic phase, Ni and ceramic phase AlN within a matrix of Astaloy Cr-M had been prepared under Ar shroud and then tube furnace sintered. The experimental results carried out by using XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) for composition (10% AlN-Astaloy Cr-M) 10% Ni at 1400 °C suggest that the best properties as 132.45HB and permittivity were obtained at 1400 °C.
Keywords: Composite, Electroless, Nickel plating, Powder metallurgy, Sintering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592645 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem
Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen
Abstract:
A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.
Keywords: Communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184644 Simulation of Lightning Surge Propagation in Transmission Lines Using the FDTD Method
Authors: Kokiat Aodsup, Thanatchai Kulworawanichpong
Abstract:
This paper describes a finite-difference time-domainFDTD) method to analyze lightning surge propagation in electric transmission lines. Numerical computation of solving the Telegraphist-s equations is determined and investigated its effectiveness. A source of lightning surge wave on power transmission lines is modeled by using Heidler-s surge model. The proposed method was tested against medium-voltage power transmission lines in comparison with the solution obtained by using lattice diagram. As a result, the calculation showed that the method is one of accurate methods to analyze transient lightning wave in power transmission lines.Keywords: Traveling wave, Lightning surge, Bewley lattice diagram, Telegraphist's equations, Finite-difference time-domain (FDTD) method,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5328643 Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface
Authors: Jipeng Yan, Xingchen Yang, Xiaowei Zhou, Mengxing Tang, Honghai Liu
Abstract:
Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices.Keywords: Shear elastic modulus, skeletal muscle, ultrasound, wearable human-machine interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787642 Voltage Sag Effect on Three Phase Five Leg Transformers
Authors: M. R. Dolatian, A. Jalilian
Abstract:
The behavior of three phase five leg transformer under voltage sag is studied in this paper. This paper proposes a simple, practical model of a three phase-five leg, saturated transformer with accurate performance. Transformer saturation is produced when the voltage sag is recovered and it causes inrush current in transformer. Effects of voltage sag depth, duration and initial point on wave have been analyzed in this paper. Initial point on wave can produce maximum inrush current in five leg transformers while comparing with three leg transformers. The magnetic circuit symmetry of five leg transformer produces the more symmetrical shape of inrush current curves versus initial point on wave and sag duration than three leg transformer. The simulations show that current peak has a periodical dependence on sag duration and linear dependence on sag depth. Inrush current that is produced in three phase five leg transformer is higher than three phase three leg transformer.Keywords: Inrush current, three phase five leg transformer, saturation, voltage sag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2924641 Investigation on the Bogie Pseudo-Hunting Motion of a Reduced-Scale Model Railway Vehicle Running on Double-Curved Rails
Authors: Barenten Suciu, Ryoichi Kinoshita
Abstract:
In this paper, an experimental and theoretical study on the bogie pseudo-hunting motion of a reduced-scale model railway vehicle, running on double-curved rails, is presented. Since the actual bogie hunting motion, occurring for real railway vehicles running on straight rails at high travelling speeds, cannot be obtained in laboratory conditions, due to the speed and wavelength limitations, a pseudo- hunting motion was induced by employing double-curved rails. Firstly, the test rig and the experimental procedure are described. Then, a geometrical model of the double-curved rails is presented. Based on such model, the variation of the carriage rotation angle relative to the bogies and the working conditions of the yaw damper are clarified. Vibration spectra recorded during vehicle travelling, on straight and double-curved rails, are presented and interpreted based on a simple vibration model of the railway vehicle. Ride comfort of the vehicle is evaluated according to the ISO 2631 standard, and also by using some particular frequency weightings, which account for the discomfort perceived during the reading and writing activities. Results obtained in this work are useful for the adequate design of the yaw dampers, which are used to attenuate the lateral vibration of the train car bodies.Keywords: Double-curved rail, octave analysis, lateral vibration, ride comfort, yaw damper, railway vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455640 Design and Implementation of a 10-bit SAR ADC
Authors: Hasmayadi Abdul Majid, Rohana Musa
Abstract:
This paper presents the development of a 38.5 kS/s 10-bit low power SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and SAR digital logic to create 10 effective bits while consuming less than 7.8 mW with a 3.3 V power supply.
Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Resistive DAC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5432639 Effect of Blade Shape on the Performance of Wells Turbine for Wave Energy Conversion
Authors: Katsuya Takasaki, Manabu Takao, Toshiaki Setoguchi
Abstract:
The effect of a 3-dimensional (3D) blade on the turbine characteristics of Wells turbine for wave energy conversion has been investigated experimentally by model testing under steady flow conditions in this study, in order to improve the peak efficiency and stall characteristics. The aim of use of 3D blade is to prevent flow separation on the suction surface near the tip. The chord length is constant with radius and the blade profile changes gradually from the mean radius to tip. The proposed blade profiles in the study are NACA0015 from the hub to mean radius and NACA0025 at the tip. The performances of Wells turbine with 3D blades has been compared with those of the original Wells turbine, i.e., the turbine with 2-dimensional (2D) blades. As a result, it was concluded that although the peak efficiency of Wells turbine can be improved by the use of the proposed 3D blade, its blade does not overcome the weakness of stalling.
Keywords: Fluid machinery, ocean engineering, stall, wave energy conversion, Wells turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3605638 Characterization of Sintered Fe-Cr-Mn Powder Mixtures Containing Intermetallics
Authors: A. Yönetken, A. Erol, M. Cakmakkaya
Abstract:
Intermetallic materials are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %88Ni- %10Cr and %2Mn powders were investigated using specimens produced by tube furnace sintering at 900-1300°C temperature. A composite consisting of ternary additions, a metallic phase, Fe, Cr and Mn have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %88Ni-%10Cr and %2Mn at 1300°C suggest that the best properties as 138,80HV and 6,269/cm3 density were obtained at 1300°C.Keywords: Composite, Intermetallic, High temperature, Sintering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472637 Analytical Solution for Free Vibration of Rectangular Kirchhoff Plate from Wave Approach
Authors: Mansour Nikkhah-Bahrami, Masih Loghmani, Mostafa Pooyanfar
Abstract:
In this paper, an analytical approach for free vibration analysis of four edges simply supported rectangular Kirchhoff plates is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for plate with simply supported boundary condition are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of a simply supported rectangular Kirchhoff plate. Subsequently, the eigenvalue problem for free vibration of plates is formulated and the equation of plate natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.Keywords: Kirchhoff plate, propagation matrix, reflection matrix, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418636 Polarization Modulation by free-Standing Asymmetric Hole Arrays
Authors: Hong-Wen Hsieh, Shun-Tung Yen
Abstract:
We theoretically demonstrate modulation of light polarization by a crossed rectangular hole array with asymmetric arm lengths. There are two waveguide modes that can modulate the x- and y- polarized incident waves independently. A specific structure is proposed to convert a left-hand incident wave to a right-hand outgoing wave by transmission.Keywords: Crossed rectangular hole array, extraordinary optical transmission, polarization modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282635 Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles
Authors: J. Thirunavukkarasu, M. Poulet, T. Turner, S. Pickering
Abstract:
Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is blended with glass fibers, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled fiber without sizing agent were identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste.
Keywords: electrostatic charging, hybrid fiber composite, recycling, short fiber composites
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664634 Development of Wave-Dissipating Block Installation Simulation for Inexperienced Worker Training
Authors: Hao Min Chuah, Tatsuya Yamazaki, Ryosui Iwasawa, Tatsumi Suto
Abstract:
In recent years, with the advancement of digital technology, the movement to introduce so-called ICT (Information and Communication Technology), such as computer technology and network technology, to civil engineering construction sites and construction sites is accelerating. As part of this movement, attempts are being made in various situations to reproduce actual sites inside computers and use them for designing and construction planning, as well as for training inexperienced engineers. The installation of wave-dissipating blocks on coasts, etc., is a type of work that has been carried out by skilled workers based on their years of experience and is one of the tasks that is difficult for inexperienced workers to carry out on site. Wave-dissipating blocks are structures that are designed to protect coasts, beaches, and so on from erosion by reducing the energy of ocean waves. Wave-dissipating blocks usually weigh more than 1 t and are installed by being suspended by a crane, so it would be time-consuming and costly for inexperienced workers to train on-site. In this paper, therefore, a block installation simulator is developed based on Unity 3D, a game development engine. The simulator computes porosity. Porosity is defined as the ratio of the total volume of the wave breaker blocks inside the structure to the final shape of the ideal structure. Using the evaluation of porosity, the simulator can determine how well the user is able to install the blocks. The voxelization technique is used to calculate the porosity of the structure, simplifying the calculations. Other techniques, such as raycasting and box overlapping, are employed for accurate simulation. In the near future, the simulator will install an automatic block installation algorithm based on combinatorial optimization solutions and compare the user-demonstrated block installation and the appropriate installation solved by the algorithm.
Keywords: 3D simulator, porosity, user interface, voxelization, wave-dissipating blocks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63633 A Study of the Replacement of Natural Coarse Aggregate by Spherically-Shaped and Crushed Waste Cathode Ray Tube Glass in Concrete
Authors: N. N. M. Pauzi, M. R. Karim, M. Jamil, R. Hamid, M. F. M. Zain
Abstract:
The aim of this study is to conduct an experimental investigation on the influence of complete replacement of natural coarse aggregate with spherically-shape and crushed waste cathode ray tube (CRT) glass to the aspect of workability, density, and compressive strength of the concrete. After characterizing the glass, a group of concrete mixes was prepared to contain a 40% spherical CRT glass and 60% crushed CRT glass as a complete (100%) replacement of natural coarse aggregates. From a total of 16 types of concrete mixes, the optimum proportion was selected based on its best performance. The test results showed that the use of spherical and crushed glass that possesses a smooth surface, rounded, irregular and elongated shape, and low water absorption affects the workability of concrete. Due to a higher specific gravity of crushed glass, concrete mixes containing CRT glass had a higher density compared to ordinary concrete. Despite the spherical and crushed CRT glass being stronger than gravel, the results revealed a reduction in compressive strength of the concrete. However, using a lower water to binder (w/b) ratio and a higher superplasticizer (SP) dosage, it is found to enhance the compressive strength of 60.97 MPa at 28 days that is lower by 13% than the control specimen. These findings indicate that waste CRT glass in the form of spherical and crushed could be used as an alternative of coarse aggregate that may pave the way for the disposal of hazardous e-waste.
Keywords: Cathode ray tube, glass, coarse aggregate, compressive strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369632 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space
Authors: Chao He, Shunhua Zhou, Peijun Guo
Abstract:
The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.
Keywords: Underground railway, twin tunnels, wave translation and transformation, transfer matrix method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727631 Streamwise Vorticity in the Wake of a Sliding Bubble
Authors: R. O’Reilly Meehan, D. B. Murray
Abstract:
In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.Keywords: Bubbly flow, particle image velocimetry, two-phase flow, wake structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917630 Two-Dimensional Solitary Wave Solution to the Quadratic Nonlinear Schrdinger Equation
Authors: Sarun Phibanchon
Abstract:
The solitary wave solution of the quadratic nonlinear Schrdinger equation is determined by the iterative method called Petviashvili method. This solution is also used for the initial condition for the time evolution to study the stability analysis. The spectral method is applied for the time evolution.
Keywords: soliton, iterative method, spectral method, plasma
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860629 SEM-EBSD Observation for Microtubes by Using Dieless Drawing Process
Authors: Takashi Sakai, Itaru Kumisawa
Abstract:
Because die drawing requires insertion of a die, a plug, or a mandrel, higher precision and efficiency are demanded for drawing equipment for a tube having smaller diameter. Manufacturing of such tubes is also accompanied by problems such as cracking and fracture. We specifically examine dieless drawing, which is less affected by these drawing-related difficulties. This deformation process is governed by a similar principle to that of reduction in diameter when pulling a heated glass tube. We conducted dieless drawing of SUS304 stainless steel microtubes under various conditions with three factor parameters of heating temperature, area reduction, and drawing speed. We used SEM-EBSD to observe the processing condition effects on microstructural elements. As the result of this study, crystallographic orientation of microtube is clear by using SEM-EBSD analysis.
Keywords: Microtube, dieless drawing, IPF, inverse pole figure, GOS, grain orientation spread, crystallographic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 767628 Experimental Study and Analysis of Parabolic trough Collector with Various Reflectors
Authors: Avadhesh Yadav, Manoj Kumar, Balram
Abstract:
A solar powered air heating system using parabolic trough collector was experimentally investigated. In this experimental setup, the reflected solar radiations were focused on absorber tube which was placed at focal length of the parabolic trough. In this setup, air was used as working fluid which collects the heat from absorber tube. To enhance the performance of parabolic trough, collector with different type of reflectors were used. It was observed For Aluminum sheet maximum temperature is 52.3ºC, which 24.22% more than steel sheet as reflector and 8.5% more than Aluminum foil as reflector, also efficiency by using Aluminum sheet as reflector compared to steel sheet as reflector is 61.18% more. Efficiency by using Aluminum sheet as reflector compared to Aluminum foil as reflector is 18.98% more.
Keywords: Parabolic trough collector, Reflectors, Air flow rates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4988627 Surge Protection of Power Supply used for Automation Devices in Power Distribution System
Authors: Liheng Ying, Guangjiong Sun
Abstract:
The intent of this essay is to evaluate the effectiveness of surge suppressor aimed at power supply used for automation devices in power distribution system which is consist of MOV and T type low-pass filter. Books, journal articles and e-sources related to surge protection of power supply used for automation devices in power distribution system were consulted, and the useful information was organized, analyzed and developed into five parts: characteristics of surge wave, protection against surge wave, impedance characteristics of target, using Matlab to simulate circuit response after 5kV,1.2/50s surge wave and suggestions for surge protection. The results indicate that various types of load situation have great impact on the effectiveness of surge protective device. Therefore, type and parameters of surge protective device need to be carefully selected, and load matching is also vital to be concerned.Keywords: automation devices in power distribution system, MOV, surge, T type low-pass filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786