Search results for: real-time demand
1009 Modeling and Analysis of Adaptive Buffer Sharing Scheme for Consecutive Packet Loss Reduction in Broadband Networks
Authors: Sakshi Kausha, R.K Sharma
Abstract:
High speed networks provide realtime variable bit rate service with diversified traffic flow characteristics and quality requirements. The variable bit rate traffic has stringent delay and packet loss requirements. The burstiness of the correlated traffic makes dynamic buffer management highly desirable to satisfy the Quality of Service (QoS) requirements. This paper presents an algorithm for optimization of adaptive buffer allocation scheme for traffic based on loss of consecutive packets in data-stream and buffer occupancy level. Buffer is designed to allow the input traffic to be partitioned into different priority classes and based on the input traffic behavior it controls the threshold dynamically. This algorithm allows input packets to enter into buffer if its occupancy level is less than the threshold value for priority of that packet. The threshold is dynamically varied in runtime based on packet loss behavior. The simulation is run for two priority classes of the input traffic – realtime and non-realtime classes. The simulation results show that Adaptive Partial Buffer Sharing (ADPBS) has better performance than Static Partial Buffer Sharing (SPBS) and First In First Out (FIFO) queue under the same traffic conditions.Keywords: Buffer Management, Consecutive packet loss, Quality-of-Service, Priority based packet discarding, partial buffersharing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16371008 Evaluation of Energy-Aware QoS Routing Protocol for Ad Hoc Wireless Sensor Networks
Authors: M.K.Jeya Kumar
Abstract:
Many advanced Routing protocols for wireless sensor networks have been implemented for the effective routing of data. Energy awareness is an essential design issue and almost all of these routing protocols are considered as energy efficient and its ultimate objective is to maximize the whole network lifetime. However, the introductions of video and imaging sensors have posed additional challenges. Transmission of video and imaging data requires both energy and QoS aware routing in order to ensure efficient usage of the sensors and effective access to the gathered measurements. In this paper, the performance of the energy-aware QoS routing Protocol are analyzed in different performance metrics like average lifetime of a node, average delay per packet and network throughput. The parameters considered in this study are end-to-end delay, real time data generation/capture rates, packet drop probability and buffer size. The network throughput for realtime and non-realtime data was also has been analyzed. The simulation has been done in NS2 simulation environment and the simulation results were analyzed with respect to different metrics.
Keywords: Cluster nodes, end-to-end delay, QoS routing, routing protocols, sensor networks, least-cost-path.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19391007 Providing On-Demand Path and Arrival Time Information Considering Realtime Delays of Buses
Authors: Yoshifumi Ishizaki, Naoki Kanatani, Masaki Ito, Toshihiko Sasama, Takao Kawamura, Kazunori Sugahara
Abstract:
This paper demonstrates the bus location system for the route bus through the experiment in the real environment. A bus location system is a system that provides information such as the bus delay and positions. This system uses actual services and positions data of buses, and those information should match data on the database. The system has two possible problems. One, the system could cost high in preparing devices to get bus positions. Two, it could be difficult to match services data of buses. To avoid these problems, we have developed this system at low cost and short time by using the smart phone with GPS and the bus route system. This system realizes the path planning considering bus delay and displaying position of buses on the map. The bus location system was demonstrated on route buses with smart phones for two months.Keywords: Route Bus, Path Planning System, GPS, Smart Phone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14491006 Critical Analysis of Parking Situation of GEC Circle of Chittagong City, Bangladesh
Authors: Md. Ashraful Islam, Rahat Sharif
Abstract:
Chittagong is the Commercial Capital of Bangladesh. The study area at GEC in Chittagong is one of the most commercial activity centers of Chittagong. This paper first analyzes the parking demand of the commercial centers, based on the parking survey. Further, it analyzes the relationship between the parking demand of the commercial buildings and the public transport accessibility. The conclusion is that the parking demand rate of the shopping centre and supermarkets decreases with the increasing of the public transport accessibility. This paper also provides the parking demand rate under the different levels of the public transport accessibility and the parking demand model with the accessibility. The conclusions are valuable for the researches on the parking demand and the making of the parking index for the commercial buildings.
Keywords: Parking, accumulation, inventory, demand, supply, occupancy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13911005 Production Scheduling Improvements in an Automotive Sector Company
Authors: Govind Sharan Dangayach, Himanshu Bhatt
Abstract:
The paper attempts to overcome the fluctuations occurring in demand of the components in an automotive sector company. Resource and time being the strict constraints, the production is not able to match the pace of the fluctuating demand. So, we introduce some production schedules that help in meeting out the required demand. The merits and demerits of the approaches are also highlighted.
Keywords: Production scheduling, Demand rise, Capacity constrained resource (CCR), Overtime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19031004 Demand Response from Residential Air Conditioning Load Using a Programmable Communication Thermostat
Authors: Saurabh Chanana, Monika Arora
Abstract:
Demand response is getting increased attention these days due to the increase in electricity demand and introduction of renewable resources in the existing power grid. Traditionally demand response programs involve large industrial consumers but with technological advancement, demand response is being implemented for small residential and commercial consumers also. In this paper, demand response program aims to reduce the peak demand as well as overall energy consumption of the residential customers. Air conditioners are the major reason of peak load in residential sector in summer, so a dynamic model of air conditioning load with thermostat action has been considered for applying demand response programs. A programmable communicating thermostat (PCT) is a device that uses real time pricing (RTP) signals to control the thermostat setting. A new model incorporating PCT in air conditioning load has been proposed in this paper. Results show that introduction of PCT in air conditioner is useful in reducing the electricity payments of customers as well as reducing the peak demand.
Keywords: Demand response, Home energy management Programmable communicating thermostat, Thermostatically controlled appliances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30261003 Forecasting Materials Demand from Multi-Source Ordering
Authors: Hui Hsin Huang
Abstract:
The downstream manufactures will order their materials from different upstream suppliers to maintain a certain level of the demand. This paper proposes a bivariate model to portray this phenomenon of material demand. We use empirical data to estimate the parameters of model and evaluate the RMSD of model calibration. The results show that the model has better fitness.
Keywords: Farlie-Gumbel-Morgenstern family of bivariate distributions, multi-source ordering, materials demand quantity, recency, ordering time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9471002 Evidence of the Long-run Equilibrium between Money Demand Determinants in Croatia
Authors: B. Skrabic, N. Tomic-Plazibat
Abstract:
In this paper real money demand function is analyzed within multivariate time-series framework. Cointegration approach is used (Johansen procedure) assuming interdependence between money demand determinants, which are nonstationary variables. This will help us to understand the behavior of money demand in Croatia, revealing the significant influence between endogenous variables in vector autoregrression system (VAR), i.e. vector error correction model (VECM). Exogeneity of the explanatory variables is tested. Long-run money demand function is estimated indicating slow speed of adjustment of removing the disequilibrium. Empirical results provide the evidence that real industrial production and exchange rate explains the most variations of money demand in the long-run, while interest rate is significant only in short-run.Keywords: Cointegration, Long-run equilibrium, Money demand function, Vector error correction model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21551001 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.
Keywords: Building energy prediction, data mining, demand response, electricity market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22051000 On Cultivating Interdisciplinary Business Interpreting Talents Based On Market Demand
Authors: Haiyan Wang
Abstract:
Business interpreting talents are in badly need for local economic development, but currently there are problems of traditional business interpreting training mode in China. In view of the good opportunity for college business interpreters provided by international trading center development in Qingdao China and with the aim of being in line with market demand and enhancing business interpreters' employment competitive advantage, this paper aims to explore how to cultivate interdisciplinary business interpreting talents based on market demand.
Keywords: Interdisciplinary talents, business interpreting, market demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986999 Issues in Travel Demand Forecasting
Authors: Huey-Kuo Chen
Abstract:
Travel demand forecasting including four travel choices, i.e., trip generation, trip distribution, modal split and traffic assignment constructs the core of transportation planning. In its current application, travel demand forecasting has associated with three important issues, i.e., interface inconsistencies among four travel choices, inefficiency of commonly used solution algorithms, and undesirable multiple path solutions. In this paper, each of the three issues is extensively elaborated. An ideal unified framework for the combined model consisting of the four travel choices and variable demand functions is also suggested. Then, a few remarks are provided in the end of the paper
Keywords: Travel choices, B algorithm, entropy maximization, dynamic traffic assignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358998 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition
Authors: Ali Nadi, Ali Edrissi
Abstract:
Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.
Keywords: Disaster management, real-time demand, reinforcement learning, relief demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937997 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand
Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh
Abstract:
Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680996 The AI Application and Talent Demand of Taiwan High-Tech Manufacturing Industry
Authors: Shi-Yu Lu, Chung-Han Yeh, Li-Ping Chen, Yu-Cheng Chang
Abstract:
This paper uses both quantitative and qualitative approaches to survey the current status of AI-related applications and the structure of key AI jobs in Taiwan's high-tech manufacturing industry, as well as the demand for professional AI talents, skills, and training. The result shows that AI applications and talent demand vary from different industries in many aspects, including technologies used, talent structure, and training methods. This paper serves as a reference for the government to establish appropriate talent training programs, and to reduce the demand gap for professional AI talents in Taiwan manufacturers.
Keywords: Artificial intelligence, manufacturing, talent, training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 393995 On Solving Single-Period Inventory Model under Hybrid Uncertainty
Authors: Madhukar Nagare, Pankaj Dutta
Abstract:
Inventory decisional environment of short life-cycle products is full of uncertainties arising from randomness and fuzziness of input parameters like customer demand requiring modeling under hybrid uncertainty. Prior inventory models incorporating fuzzy demand have unfortunately ignored stochastic variation of demand. This paper determines an unambiguous optimal order quantity from a set of n fuzzy observations in a newsvendor inventory setting in presence of fuzzy random variable demand capturing both fuzzy perception and randomness of customer demand. The stress of this paper is in providing solution procedure that attains optimality in two steps with demand information availability in linguistic phrases leading to fuzziness along with stochastic variation. The first step of solution procedure identifies and prefers one best fuzzy opinion out of all expert opinions and the second step determines optimal order quantity from the selected event that maximizes profit. The model and solution procedure is illustrated with a numerical example.Keywords: Fuzzy expected value, Fuzzy random demand, Hybrid uncertainty, Optimal order quantity, Single-period inventory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020994 Investigating the Demand for Short-shelf Life Food Products for SME Wholesalers
Authors: Yamini Raju, Parminder S. Kang, Adam Moroz, Ross Clement, Ashley Hopwell, Alistair Duffy
Abstract:
Accurate forecasting of fresh produce demand is one the challenges faced by Small Medium Enterprise (SME) wholesalers. This paper is an attempt to understand the cause for the high level of variability such as weather, holidays etc., in demand of SME wholesalers. Therefore, understanding the significance of unidentified factors may improve the forecasting accuracy. This paper presents the current literature on the factors used to predict demand and the existing forecasting techniques of short shelf life products. It then investigates a variety of internal and external possible factors, some of which is not used by other researchers in the demand prediction process. The results presented in this paper are further analysed using a number of techniques to minimize noise in the data. For the analysis past sales data (January 2009 to May 2014) from a UK based SME wholesaler is used and the results presented are limited to product ‘Milk’ focused on café’s in derby. The correlation analysis is done to check the dependencies of variability factor on the actual demand. Further PCA analysis is done to understand the significance of factors identified using correlation. The PCA results suggest that the cloud cover, weather summary and temperature are the most significant factors that can be used in forecasting the demand. The correlation of the above three factors increased relative to monthly and becomes more stable compared to the weekly and daily demand.Keywords: Demand Forecasting, Deteriorating Products, Food Wholesalers, Principal Component Analysis and Variability Factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3368993 A Design of Supply Chain Management System with Flexible Planning Capability
Authors: Chia-Hui Huang, Han-Ying Kao
Abstract:
In production planning (PP) periods with excess capacity and growing demand, the manufacturers have two options to use the excess capacity. First, it could do more changeovers and thus reduce lot sizes, inventories, and inventory costs. Second, it could produce in excess of demand in the period and build additional inventory that can be used to satisfy future demand increments, thus delaying the purchase of the next machine that is required to meet the growth in demand. In this study we propose an enhanced supply chain planning model with flexible planning capability. In addition, a 3D supply chain planning system is illustrated.Keywords: Supply chain, capacity expansion, inventory management, planning system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562992 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data
Authors: Sašo Pečnik, Borut Žalik
Abstract:
This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR datasets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.
Keywords: Filtering, graphics, level-of-details, LiDAR, realtime visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546991 The Using Artificial Neural Network to Estimate of Chemical Oxygen Demand
Authors: S. Areerachakul
Abstract:
Nowadays, the increase of human population every year results in increasing of water usage and demand. Saen Saep canal is important canal in Bangkok. The main objective of this study is using Artificial Neural Network (ANN) model to estimate the Chemical Oxygen Demand (COD) on data from 11 sampling sites. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2007-2011. The twelve parameters of water quality are used as the input of the models. These water quality indices affect the COD. The experimental results indicate that the ANN model provides a high correlation coefficient (R=0.89).
Keywords: Artificial neural network, chemical oxygen demand, estimate, surface water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267990 Evaluating the Nexus between Energy Demand and Economic Growth Using the VECM Approach: Case Study of Nigeria, China, and the United States
Authors: Rita U. Onolemhemhen, Saheed L. Bello, Akin P. Iwayemi
Abstract:
The effectiveness of energy demand policy depends on identifying the key drivers of energy demand both in the short-run and the long-run. This paper examines the influence of regional differences on the link between energy demand and other explanatory variables for Nigeria, China and USA using the Vector Error Correction Model (VECM) approach. This study employed annual time series data on energy consumption (ED), real gross domestic product (GDP) per capita (RGDP), real energy prices (P) and urbanization (N) for a thirty-six-year sample period. The utilized time-series data are sourced from World Bank’s World Development Indicators (WDI, 2016) and US Energy Information Administration (EIA). Results from the study, shows that all the independent variables (income, urbanization, and price) substantially affect the long-run energy consumption in Nigeria, USA and China, whereas, income has no significant effect on short-run energy demand in USA and Nigeria. In addition, the long-run effect of urbanization is relatively stronger in China. Urbanization is a key factor in energy demand, it therefore recommended that more attention should be given to the development of rural communities to reduce the inflow of migrants into urban communities which causes the increase in energy demand and energy excesses should be penalized while energy management should be incentivized.Keywords: Economic growth, energy demand, income, real GDP, urbanization, VECM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988989 Physiological and Psychological Influence on Office Workers during Demand Response
Authors: Megumi Nishida, Naoya Motegi, Takurou Kikuchi, Tomoko Tokumura
Abstract:
In recent years, the power system has been changed and a flexible power pricing system such as demand response has been sought in Japan. The demand response system works simply in the household sector and the owner as the decision-maker, can benefit from power saving. On the other hand, the execution of demand response in the office building is more complex than in the household because various people such as owners, building administrators and occupants are involved in the decision-making process. While the owners benefit from demand saving, the occupants are exposed to restricted benefits of a demand-saved environment. One of the reasons is that building systems are usually under centralized management and each occupant cannot choose freely whether to participate in demand response or not. In addition, it is unclear whether incentives give occupants the motivation to participate. However, the recent development of IT and building systems enables the personalized control of the office environment where each occupant can control the lighting level or temperature individually. Therefore, it can be possible to have a system which each occupant can make a decision of whether or not to participate in demand response in the office building. This study investigates personal responses to demand response requests, under the condition where each occupant can adjust their brightness individually in their workspace. Once workers participate in the demand response, their desk-lights are automatically turned off. The participation rates in the demand response events are compared among four groups, which are divided by different motivation, the presence, or absence of incentives and the method of participation. The result shows that there are significant differences of participation rates in demand response event between four groups. The method of participation has a large effect on the participation rate. The “Opt-out” groups where the occupants are automatically enrolled in a demand response event if they do not express non-participation have the highest participation rate in the four groups. Incentives also have an effect on the participation rate. This study also reports on the impact of low illumination office environment on the occupants, such as stress or fatigue. The electrocardiogram and the questionnaire are used to investigate the autonomic nervous activity and subjective fatigue symptoms of the occupants. There is no big difference between dim workspace during demand response event and bright workspace in autonomic nervous activity and fatigue.
Keywords: Demand response, illumination, questionnaire, electrocardiograph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577988 Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex
Authors: Li Zhu, Binghua Wang, Yong Sun
Abstract:
China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained.
Keywords: Agritourism complex, energy planning, energy demand simulation, hierarchical structure model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897987 A Multi-period Profit Maximization Policy for a Stochastic Demand Inventory System with Upward Substitution
Authors: Soma Roychowdhury
Abstract:
This paper deals with a periodic-review substitutable inventory system for a finite and an infinite number of periods. Here an upward substitution structure, a substitution of a more costly item by a less costly one, is assumed, with two products. At the beginning of each period, a stochastic demand comes for the first item only, which is quality-wise better and hence costlier. Whenever an arriving demand finds zero inventory of this product, a fraction of unsatisfied customers goes for its substitutable second item. An optimal ordering policy has been derived for each period. The results are illustrated with numerical examples. A sensitivity analysis has been done to examine how sensitive the optimal solution and the maximum profit are to the values of the discount factor, when there is a large number of periods.Keywords: Multi-period model, inventory, random demand, upward substitution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439986 Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine
Authors: Karin Kandananond
Abstract:
The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.Keywords: Artificial neural network (ANN), Bullwhip effect, Consumer products, Demand forecasting, Supply chain, Support vector machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009985 Housing Loans Determinants before and during Financial Crisis
Authors: Josip Visković, Ana Rimac Smiljanić, Ines Ivić
Abstract:
Housing loans play an important role in CEE countries’ economies. This fact is based on their share in total loans to households and their importance for economic activity and growth in CEE countries. Therefore, it is important to find out key determinants of housing loans demand in these countries. The aim of this study is to research and analyze the determinants of the demand for housing loans in Croatia. In this regard, the effect of economic activity, loan terms and real estate prices were analyzed. Also, the aim of this study is to find out what motivates people to take housing loans. Therefore, primarily empirical study was conducted among the Croatian residents. The results show that demand for housing loans is positively affected by economic growth, higher personal income and flexible loan terms, while it is negatively affected by interest rate rise.
Keywords: CEE countries, Croatia, demand determinants, housing loans.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206984 Water Demand Prediction for Touristic Mecca City in Saudi Arabia using Neural Networks
Authors: Abdel Hamid Ajbar, Emad Ali
Abstract:
Saudi Arabia is an arid country which depends on costly desalination plants to satisfy the growing residential water demand. Prediction of water demand is usually a challenging task because the forecast model should consider variations in economic progress, climate conditions and population growth. The task is further complicated knowing that Mecca city is visited regularly by large numbers during specific months in the year due to religious occasions. In this paper, a neural networks model is proposed to handle the prediction of the monthly and yearly water demand for Mecca city, Saudi Arabia. The proposed model will be developed based on historic records of water production and estimated visitors- distribution. The driving variables for the model include annuallyvarying variables such as household income, household density, and city population, and monthly-varying variables such as expected number of visitors each month and maximum monthly temperature.Keywords: Water demand forecast; Neural Networks model; water resources management; Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813983 Realtime Lip Contour Tracking For Audio-Visual Speech Recognition Applications
Authors: Mehran Yazdi, Mehdi Seyfi, Amirhossein Rafati, Meghdad Asadi
Abstract:
Detection and tracking of the lip contour is an important issue in speechreading. While there are solutions for lip tracking once a good contour initialization in the first frame is available, the problem of finding such a good initialization is not yet solved automatically, but done manually. We have developed a new tracking solution for lip contour detection using only few landmarks (15 to 25) and applying the well known Active Shape Models (ASM). The proposed method is a new LMS-like adaptive scheme based on an Auto regressive (AR) model that has been fit on the landmark variations in successive video frames. Moreover, we propose an extra motion compensation model to address more general cases in lip tracking. Computer simulations demonstrate a fair match between the true and the estimated spatial pixels. Significant improvements related to the well known LMS approach has been obtained via a defined Frobenius norm index.Keywords: Lip contour, Tracking, LMS-Like
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796982 Intelligent Caching in on-demand Routing Protocol for Mobile Adhoc Networks
Authors: Shobha.K.R., K. Rajanikanth
Abstract:
An on-demand routing protocol for wireless ad hoc networks is one that searches for and attempts to discover a route to some destination node only when a sending node originates a data packet addressed to that node. In order to avoid the need for such a route discovery to be performed before each data packet is sent, such routing protocols must cache routes previously discovered. This paper presents an analysis of the effect of intelligent caching in a non clustered network, using on-demand routing protocols in wireless ad hoc networks. The analysis carried out is based on the Dynamic Source Routing protocol (DSR), which operates entirely on-demand. DSR uses the cache in every node to save the paths that are learnt during route discovery procedure. In this implementation, caching these paths only at intermediate nodes and using the paths from these caches when required is tried. This technique helps in storing more number of routes that are learnt without erasing the entries in the cache, to store a new route that is learnt. The simulation results on DSR have shown that this technique drastically increases the available memory for caching the routes discovered without affecting the performance of the DSR routing protocol in any way, except for a small increase in end to end delay.Keywords: Caching, DSR, on demand routing, MANET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991981 Vehicle Velocity Estimation for Traffic Surveillance System
Authors: H. A. Rahim, U. U. Sheikh, R. B. Ahmad, A. S. M. Zain
Abstract:
This paper describes an algorithm to estimate realtime vehicle velocity using image processing technique from the known camera calibration parameters. The presented algorithm involves several main steps. First, the moving object is extracted by utilizing frame differencing technique. Second, the object tracking method is applied and the speed is estimated based on the displacement of the object-s centroid. Several assumptions are listed to simplify the transformation of 2D images from 3D real-world images. The results obtained from the experiment have been compared to the estimated ground truth. From this experiment, it exhibits that the proposed algorithm has achieved the velocity accuracy estimation of about ± 1.7 km/h.
Keywords: camera calibration, object tracking, velocity estimation, video image processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4456980 Two-Level Identification of HVAC Consumers for Demand Response Potential Estimation Based on Setpoint Change
Authors: M. Naserian, M. Jooshaki, M. Fotuhi-Firuzabad, M. Hossein Mohammadi Sanjani, A. Oraee
Abstract:
In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a solution is presented to uncover consumers with high air conditioner demand among a large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.
Keywords: Data-driven analysis, demand response, direct load control, HVAC system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240