Search results for: Legendre polynomials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 79

Search results for: Legendre polynomials

79 Optimal Control of a Linear Distributed Parameter System via Shifted Legendre Polynomials

Authors: Sanjeeb Kumar Kar

Abstract:

The optimal control problem of a linear distributed parameter system is studied via shifted Legendre polynomials (SLPs) in this paper. The partial differential equation, representing the linear distributed parameter system, is decomposed into an n - set of ordinary differential equations, the optimal control problem is transformed into a two-point boundary value problem, and the twopoint boundary value problem is reduced to an initial value problem by using SLPs. A recursive algorithm for evaluating optimal control input and output trajectory is developed. The proposed algorithm is computationally simple. An illustrative example is given to show the simplicity of the proposed approach.

Keywords: Optimal control, linear systems, distributed parametersystems, Legendre polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
78 A High Order Theory for Functionally Graded Shell

Authors: V. V. Zozulya

Abstract:

New theory for functionally graded (FG) shell based on expansion of the equations of elasticity for functionally graded materials (GFMs) into Legendre polynomials series has been developed. Stress and strain tensors, vectors of displacements, traction and body forces have been expanded into Legendre polynomials series in a thickness coordinate. In the same way functions that describe functionally graded relations has been also expanded. Thereby all equations of elasticity including Hook-s law have been transformed to corresponding equations for Fourier coefficients. Then system of differential equations in term of displacements and boundary conditions for Fourier coefficients has been obtained. Cases of the first and second approximations have been considered in more details. For obtained boundary-value problems solution finite element (FE) has been used of Numerical calculations have been done with Comsol Multiphysics and Matlab.

Keywords: Shell, FEM, FGM, legendre polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
77 A Study of Thermal Convection in Two Porous Layers Governed by Brinkman's Model in Upper Layer and Darcy's Model in Lower Layer

Authors: M. S. Al-Qurashi

Abstract:

This work examines thermal convection in two porous layers. Flow in the upper layer is governed by Brinkman-s equations model and in the lower layer is governed by Darcy-s model. Legendre polynomials are used to obtain numerical solution when the lower layer is heated from below.

Keywords: Brinkman's law, Darcy's law, porous layers, Legendre polynomials, the Oberbeck-Boussineq approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
76 Orthogonal Functions Approach to LQG Control

Authors: B. M. Mohan, Sanjeeb Kumar Kar

Abstract:

In this paper a unified approach via block-pulse functions (BPFs) or shifted Legendre polynomials (SLPs) is presented to solve the linear-quadratic-Gaussian (LQG) control problem. Also a recursive algorithm is proposed to solve the above problem via BPFs. By using the elegant operational properties of orthogonal functions (BPFs or SLPs) these computationally attractive algorithms are developed. To demonstrate the validity of the proposed approaches a numerical example is included.

Keywords: Linear quadratic Gaussian control, linear quadratic estimator, linear quadratic regulator, time-invariant systems, orthogonal functions, block-pulse functions, shifted legendre polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
75 On Bounds For The Zeros of Univariate Polynomial

Authors: Matthias Dehmer1 Jürgen Kilian

Abstract:

Problems on algebraical polynomials appear in many fields of mathematics and computer science. Especially the task of determining the roots of polynomials has been frequently investigated.Nonetheless, the task of locating the zeros of complex polynomials is still challenging. In this paper we deal with the location of zeros of univariate complex polynomials. We prove some novel upper bounds for the moduli of the zeros of complex polynomials. That means, we provide disks in the complex plane where all zeros of a complex polynomial are situated. Such bounds are extremely useful for obtaining a priori assertations regarding the location of zeros of polynomials. Based on the proven bounds and a test set of polynomials, we present an experimental study to examine which bound is optimal.

Keywords: complex polynomials, zeros, inequalities

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
74 On the Efficiency of Five Step Approximation Method for the Solution of General Third Order Ordinary Differential Equations

Authors: N. M. Kamoh, M. C. Soomiyol

Abstract:

In this work, a five step continuous method for the solution of third order ordinary differential equations was developed in block form using collocation and interpolation techniques of the shifted Legendre polynomial basis function. The method was found to be zero-stable, consistent and convergent. The application of the method in solving third order initial value problem of ordinary differential equations revealed that the method compared favorably with existing methods.

Keywords: Shifted Legendre polynomials, third order block method, discrete method, convergent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659
73 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon

Authors: Haniye Dehestani, Yadollah Ordokhani

Abstract:

In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective.

Keywords: Collocation method, fractional partial differential equations, Legendre-Laguerre functions, pseudo-operational matrix of integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
72 Comparing the Efficiency of Simpson’s 1/3 and 3/8 Rules for the Numerical Solution of First Order Volterra Integro-Differential Equations

Authors: N. M. Kamoh, D. G. Gyemang, M. C. Soomiyol

Abstract:

This paper compared the efficiency of Simpson’s 1/3 and 3/8 rules for the numerical solution of first order Volterra integro-differential equations. In developing the solution, collocation approximation method was adopted using the shifted Legendre polynomial as basis function. A block method approach is preferred to the predictor corrector method for being self-starting. Experimental results confirmed that the Simpson’s 3/8 rule is more efficient than the Simpson’s 1/3 rule.

Keywords: Collocation shifted Legendre polynomials, Simpson’s rule and Volterra integro-differential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
71 An Optimization of Orbital Transfer for Spacecrafts with Finite-thrust Based on Legendre Pseudospectral Method

Authors: Yanan Yang, Zhigang Wang, Xiang Chen

Abstract:

This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System-s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transform the optimal control problem into a constrained parameter optimization problem. The developed novel optimization algorithm can be used to solve similar optimization problems of spacecraft finite-thrust orbital transfer. The results of a numerical simulation verified the validity of the proposed optimization method. The simulation results reveal that pseudospectral optimization method is a promising method for real-time trajectory optimization and provides good accuracy and fast convergence.

Keywords: Finite-thrust, Orbital transfer, Legendre pseudospectral method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
70 Approximation of Sturm-Liouville Problems by Exponentially Weighted Legendre-Gauss Tau Method

Authors: Mohamed K. El Daou

Abstract:

We construct an exponentially weighted Legendre- Gauss Tau method for solving differential equations with oscillatory solutions. The proposed method is applied to Sturm-Liouville problems. Numerical examples illustrating the efficiency and the high accuracy of our results are presented.

Keywords: Oscillatory functions, Sturm-Liouville problems, legendre polynomial, gauss points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
69 Bilinear and Bilateral Generating Functions for the Gauss’ Hypergeometric Polynomials

Authors: Manoj Singh, Mumtaz Ahmad Khan, Abdul Hakim Khan

Abstract:

The object of the present paper is to investigate several general families of bilinear and bilateral generating functions with different argument for the Gauss’ hypergeometric polynomials.

Keywords: Appell’s functions, Gauss hypergeometric functions, Heat polynomials, Kampe’ de Fe’riet function, Laguerre polynomials, Lauricella’s function, Saran’s functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
68 Optimal Control of Volterra Integro-Differential Systems Based On Legendre Wavelets and Collocation Method

Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh

Abstract:

In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet together with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.

Keywords: Collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894
67 System Overflow/Blocking Transients For Queues with Batch Arrivals Using a Family of Polynomials Resembling Chebyshev Polynomials

Authors: Vitalice K. Oduol, C. Ardil

Abstract:

The paper shows that in the analysis of a queuing system with fixed-size batch arrivals, there emerges a set of polynomials which are a generalization of Chebyshev polynomials of the second kind. The paper uses these polynomials in assessing the transient behaviour of the overflow (equivalently call blocking) probability in the system. A key figure to note is the proportion of the overflow (or blocking) probability resident in the transient component, which is shown in the results to be more significant at the beginning of the transient and naturally decays to zero in the limit of large t. The results also show that the significance of transients is more pronounced in cases of lighter loads, but lasts longer for heavier loads.

Keywords: batch arrivals, blocking probability, generalizedChebyshev polynomials, overflow probability, queue transientanalysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
66 Near-Lossless Image Coding based on Orthogonal Polynomials

Authors: Krishnamoorthy R, Rajavijayalakshmi K, Punidha R

Abstract:

In this paper, a near lossless image coding scheme based on Orthogonal Polynomials Transform (OPT) has been presented. The polynomial operators and polynomials basis operators are obtained from set of orthogonal polynomials functions for the proposed transform coding. The image is partitioned into a number of distinct square blocks and the proposed transform coding is applied to each of these individually. After applying the proposed transform coding, the transformed coefficients are rearranged into a sub-band structure. The Embedded Zerotree (EZ) coding algorithm is then employed to quantize the coefficients. The proposed transform is implemented for various block sizes and the performance is compared with existing Discrete Cosine Transform (DCT) transform coding scheme.

Keywords: Near-lossless Coding, Orthogonal Polynomials Transform, Embedded Zerotree Coding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
65 A Modified Decoupled Semi-Analytical Approach Based On SBFEM for Solving 2D Elastodynamic Problems

Authors: M. Fakharian, M. I. Khodakarami

Abstract:

In this paper, a new trend for improvement in semianalytical method based on scale boundaries in order to solve the 2D elastodynamic problems is provided. In this regard, only the boundaries of the problem domain discretization are by specific subparametric elements. Mapping functions are uses as a class of higherorder Lagrange polynomials, special shape functions, Gauss-Lobatto- Legendre numerical integration, and the integral form of the weighted residual method, the matrix is diagonal coefficients in the equations of elastodynamic issues. Differences between study conducted and prior research in this paper is in geometry production procedure of the interpolation function and integration of the different is selected. Validity and accuracy of the present method are fully demonstrated through two benchmark problems which are successfully modeled using a few numbers of DOFs. The numerical results agree very well with the analytical solutions and the results from other numerical methods.

Keywords: 2D Elastodynamic Problems, Lagrange Polynomials, G-L-Lquadrature, Decoupled SBFEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
64 Local Error Control in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe an effective local error control algorithm for RK5GL3, which uses local extrapolation with an eighth-order Runge-Kutta method in tandem with RK5GL3, and a Hermite interpolating polynomial for solution estimation at the Gauss-Legendre quadrature nodes.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, Hermite interpolating polynomial, initial value problem, local error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
63 Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken.

Keywords: Newton interpolation, Lagrange interpolation, linear complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
62 On the Construction of m-Sequences via Primitive Polynomials with a Fast Identification Method

Authors: Abhijit Mitra

Abstract:

The paper provides an in-depth tutorial of mathematical construction of maximal length sequences (m-sequences) via primitive polynomials and how to map the same when implemented in shift registers. It is equally important to check whether a polynomial is primitive or not so as to get proper m-sequences. A fast method to identify primitive polynomials over binary fields is proposed where the complexity is considerably less in comparison with the standard procedures for the same purpose.

Keywords: Finite field, irreducible polynomial, primitive polynomial, maximal length sequence, additive shift register, multiplicative shift register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3939
61 Some Results on the Generalized Higher Rank Numerical Ranges

Authors: Mohsen Zahraei

Abstract:

In this paper, the notion of rank−k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for Є > 0, the notion of Birkhoff-James approximate orthogonality sets for Є−higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed definitions yield a natural generalization of the standard higher rank numerical ranges.

Keywords: Rank−k numerical range, isometry, numerical range, rectangular matrix polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
60 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method

Authors: Said Laachir, Aziz Laaribi

Abstract:

The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.

Keywords: Helmholtz equation, Nikiforov-Uvarov method, exact solutions, eigenfunctions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3003
59 Holistic Face Recognition using Multivariate Approximation, Genetic Algorithms and AdaBoost Classifier: Preliminary Results

Authors: C. Villegas-Quezada, J. Climent

Abstract:

Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p" variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ - Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F -s polynomials to each of the Fi -s polynomials. The winner is the polynomial family closer to F -s corresponding to target face in data base.

Keywords: AdaBoost Classifier, Holistic Face Recognition, Minimax Multivariate Approximation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
58 Single-Crystal Kerfless 2D Array Transducer for Volumetric Medical Imaging: Theoretical Study

Authors: Jurij Tasinkiewicz

Abstract:

The aim of this work is to present a theoretical analysis of a 2D ultrasound transducer comprised of crossed arrays of metal strips placed on both sides of thin piezoelectric layer (a). Such a structure is capable of electronic beam-steering of generated wavebeam both in elevation and azimuth. In this paper a semi-analytical model of the considered transducer is developed. It is based on generalization of the well-known BIS-expansion method. Specifically, applying the electrostatic approximation, the electric field components on the surface of the layer are expanded into fast converging series of double periodic spatial harmonics with corresponding amplitudes represented by the properly chosen Legendre polynomials. The problem is reduced to numerical solving of certain system of linear equations for unknown expansion coefficients.

Keywords: Beamforming, transducer array, BIS-expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
57 Fuzzy Fingerprint Vault using Multiple Polynomials

Authors: Daesung Moon, Woo-Yong Choi, Kiyoung Moon

Abstract:

Fuzzy fingerprint vault is a recently developed cryptographic construct based on the polynomial reconstruction problem to secure critical data with the fingerprint data. However, the previous researches are not applicable to the fingerprint having a few minutiae since they use a fixed degree of the polynomial without considering the number of fingerprint minutiae. To solve this problem, we use an adaptive degree of the polynomial considering the number of minutiae extracted from each user. Also, we apply multiple polynomials to avoid the possible degradation of the security of a simple solution(i.e., using a low-degree polynomial). Based on the experimental results, our method can make the possible attack difficult 2192 times more than using a low-degree polynomial as well as verify the users having a few minutiae.

Keywords: Fuzzy vault, fingerprint recognition multiple polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
56 Quadrature Formula for Sampled Functions

Authors: Khalid Minaoui, Thierry Chonavel, Benayad Nsiri, Driss Aboutajdine

Abstract:

This paper deals with efficient quadrature formulas involving functions that are observed only at fixed sampling points. The approach that we develop is derived from efficient continuous quadrature formulas, such as Gauss-Legendre or Clenshaw-Curtis quadrature. We select nodes at sampling positions that are as close as possible to those of the associated classical quadrature and we update quadrature weights accordingly. We supply the theoretical quadrature error formula for this new approach. We show on examples the potential gain of this approach.

Keywords: Gauss-Legendre, Clenshaw-Curtis, quadrature, Peano kernel, irregular sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
55 Error Propagation in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe the propagation of local errors in this method, and show that the global order of RK5GL3 is expected to be six, one better than the underlying Runge- Kutta method.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, order, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
54 Image Adaptive Watermarking with Visual Model in Orthogonal Polynomials based Transformation Domain

Authors: Krishnamoorthi R., Sheba Kezia Malarchelvi P. D.

Abstract:

In this paper, an image adaptive, invisible digital watermarking algorithm with Orthogonal Polynomials based Transformation (OPT) is proposed, for copyright protection of digital images. The proposed algorithm utilizes a visual model to determine the watermarking strength necessary to invisibly embed the watermark in the mid frequency AC coefficients of the cover image, chosen with a secret key. The visual model is designed to generate a Just Noticeable Distortion mask (JND) by analyzing the low level image characteristics such as textures, edges and luminance of the cover image in the orthogonal polynomials based transformation domain. Since the secret key is required for both embedding and extraction of watermark, it is not possible for an unauthorized user to extract the embedded watermark. The proposed scheme is robust to common image processing distortions like filtering, JPEG compression and additive noise. Experimental results show that the quality of OPT domain watermarked images is better than its DCT counterpart.

Keywords: Orthogonal Polynomials based Transformation, Digital Watermarking, Copyright Protection, Visual model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
53 Application of Legendre Transformation to Portfolio Optimization

Authors: Peter Benneth, Tsaroh N. Theophilus, Prince Benjamin

Abstract:

This research work aims at studying the application of Legendre Transformation Method (LTM) to Hamilton Jacobi Bellman (HJB) equation which is an example of optimal control problem. We discuss the steps involved in modelling the HJB equation as it relates to mathematical finance by applying the Ito’s lemma and maximum principle theorem. By applying the LTM and dual theory, the resultant HJB equation is transformed to a linear Partial Differential Equation (PDE). Also, the Optimal Investment Strategy (OIS) and the optimal value function were obtained under the exponential utility function. Furthermore, some numerical results were also presented with observations that the OIS under exponential utility is directly proportional to the appreciation rate of the risky asset and inversely proportional to the instantaneous volatility, predetermined interest rate, risk averse coefficient. Finally, it was observed that the optimal fund size is an increasing function of the risk free interest rate. This result is consistent with some existing results.

Keywords: Legendre transformation method, Optimal investment strategy, Ito’s lemma, Hamilton Jacobi Bellman equation, Geometric Brownian motion, financial market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67
52 Codebook Generation for Vector Quantization on Orthogonal Polynomials based Transform Coding

Authors: R. Krishnamoorthi, N. Kannan

Abstract:

In this paper, a new algorithm for generating codebook is proposed for vector quantization (VQ) in image coding. The significant features of the training image vectors are extracted by using the proposed Orthogonal Polynomials based transformation. We propose to generate the codebook by partitioning these feature vectors into a binary tree. Each feature vector at a non-terminal node of the binary tree is directed to one of the two descendants by comparing a single feature associated with that node to a threshold. The binary tree codebook is used for encoding and decoding the feature vectors. In the decoding process the feature vectors are subjected to inverse transformation with the help of basis functions of the proposed Orthogonal Polynomials based transformation to get back the approximated input image training vectors. The results of the proposed coding are compared with the VQ using Discrete Cosine Transform (DCT) and Pairwise Nearest Neighbor (PNN) algorithm. The new algorithm results in a considerable reduction in computation time and provides better reconstructed picture quality.

Keywords: Orthogonal Polynomials, Image Coding, Vector Quantization, TSVQ, Binary Tree Classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
51 The RK1GL2X3 Method for Initial Value Problems in Ordinary Differential Equations

Authors: J.S.C. Prentice

Abstract:

The RK1GL2X3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on the RK1GL2 method which, in turn, is a particular case of the general RKrGLm method. The RK1GL2X3 method is a fourth-order method, even though its underlying Runge-Kutta method RK1 is the first-order Euler method, and hence, RK1GL2X3 is considerably more efficient than RK1. This enhancement is achieved through an implementation involving triple-nested two-point Gauss- Legendre quadrature.

Keywords: RK1GL2X3, RK1GL2, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
50 Factoring a Polynomial with Multiple-Roots

Authors: Feng Cheng Chang

Abstract:

A given polynomial, possibly with multiple roots, is factored into several lower-degree distinct-root polynomials with natural-order-integer powers. All the roots, including multiplicities, of the original polynomial may be obtained by solving these lowerdegree distinct-root polynomials, instead of the original high-degree multiple-root polynomial directly. The approach requires polynomial Greatest Common Divisor (GCD) computation. The very simple and effective process, “Monic polynomial subtractions" converted trickily from “Longhand polynomial divisions" of Euclidean algorithm is employed. It requires only simple elementary arithmetic operations without any advanced mathematics. Amazingly, the derived routine gives the expected results for the test polynomials of very high degree, such as p( x) =(x+1)1000.

Keywords: Polynomial roots, greatest common divisor, Longhand polynomial division, Euclidean GCD Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577