Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Bilinear and Bilateral Generating Functions for the Gauss’ Hypergeometric Polynomials
Authors: Manoj Singh, Mumtaz Ahmad Khan, Abdul Hakim Khan
Abstract:
The object of the present paper is to investigate several general families of bilinear and bilateral generating functions with different argument for the Gauss’ hypergeometric polynomials.
Keywords: Appell’s functions, Gauss hypergeometric functions, Heat polynomials, Kampe’ de Fe’riet function, Laguerre polynomials, Lauricella’s function, Saran’s functions.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099822
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660References:
[1] B.L. Sharma, Integrals involving hypergeometric functions of two variables, Proc. Nat. Acad. Sci. India. Sec., A-36, 713-718, 1966.
[2] D.T. Haimo, Expansion in terms of generalized heat polynomials and their Appell transform, J. Math. Mech., 15 , 735-758, 1966 .
[3] E.D. Rainville, Special Functions, MacMillan, New York 1960.
[4] H.M. Srivastava and H.L. Manocha, A Treatise on generating functions, Halsted press (Ellis Horwood Limited, Chichester), John Wiley and sons, New York, Chichester Brisbane, Toronto, 1984.
[5] I.K. Khanna and V. Srinivasa Bhagavan, Lie Group-Theoretic origins of certain generating functions of the generalized hypergeometric polynomials, Integeral transform and Special function, Vol-11, No.2, 177-188, 2001.
[6] M. Singh, M.A. Khan, A.H. Khan and S. Sharma, Some generating functions for the Gauss’ hypergeometric polynomials, Research Today: Mathematical and Computer Sciences,Vol.1, 3-13, 2013.
[7] P. Appell and J. Kamp´e de F´eriet, Fonctions hyp´ergeom´etriques et hyperspheriques, Polynˆomes d’ Hermite Gauthier-Villars, Paris, 1926.
[8] S. Saran, Hypergeometric functions of three variables, Ganita, India, Vol.1, No.5, 83-90, 1954.
[9] S.D. Bajpai and M.S. Arora, Some -orthogonality of a class of the Gauss’ hypergeometric polynomials, Anna. Math. Blasic Pascal, Vol-1, No.1, 75-83 (1994).