Search results for: Generalized second-order Arnoldi process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5822

Search results for: Generalized second-order Arnoldi process

5822 Restarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems

Authors: Liping Zhou, Liang Bao, Yiqin Lin, Yimin Wei, Qinghua Wu

Abstract:

This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and present a generalized second-order Arnoldi process for constructing an orthonormal basis of the generalized second-order Krylov subspace. Then, by using the projection technique and the refined projection technique, we propose a restarted generalized second-order Arnoldi method and a restarted refined generalized second-order Arnoldi method for computing some eigenpairs of largescale quadratic eigenvalue problems. Some theoretical results are also presented. Some numerical examples are presented to illustrate the effectiveness of the proposed methods.

Keywords: Quadratic eigenvalue problem, Generalized secondorder Krylov subspace, Generalized second-order Arnoldi process, Projection technique, Refined technique, Restarting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
5821 Weighted Harmonic Arnoldi Method for Large Interior Eigenproblems

Authors: Zhengsheng Wang, Jing Qi, Chuntao Liu, Yuanjun Li

Abstract:

The harmonic Arnoldi method can be used to find interior eigenpairs of large matrices. However, it has been shown that this method may converge erratically and even may fail to do so. In this paper, we present a new method for computing interior eigenpairs of large nonsymmetric matrices, which is called weighted harmonic Arnoldi method. The implementation of the method has been tested by numerical examples, the results show that the method converges fast and works with high accuracy.

Keywords: Harmonic Arnoldi method, weighted harmonic Arnoldi method, eigenpair, interior eigenproblem, non symmetric matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
5820 Multilevel Arnoldi-Tikhonov Regularization Methods for Large-Scale Linear Ill-Posed Systems

Authors: Yiqin Lin, Liang Bao

Abstract:

This paper is devoted to the numerical solution of large-scale linear ill-posed systems. A multilevel regularization method is proposed. This method is based on a synthesis of the Arnoldi-Tikhonov regularization technique and the multilevel technique. We show that if the Arnoldi-Tikhonov method is a regularization method, then the multilevel method is also a regularization one. Numerical experiments presented in this paper illustrate the effectiveness of the proposed method.

Keywords: Discrete ill-posed problem, Tikhonov regularization, discrepancy principle, Arnoldi process, multilevel method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
5819 Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F

Authors: Fatemeh Panjeh Ali Beik

Abstract:

In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.

Keywords: Matrix equations, Iterative methods, Block Krylovsubspace methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
5818 Note to the Global GMRES for Solving the Matrix Equation AXB = F

Authors: Fatemeh Panjeh Ali Beik

Abstract:

In the present work, we propose a new projection method for solving the matrix equation AXB = F. For implementing our new method, generalized forms of block Krylov subspace and global Arnoldi process are presented. The new method can be considered as an extended form of the well-known global generalized minimum residual (Gl-GMRES) method for solving multiple linear systems and it will be called as the extended Gl-GMRES (EGl- GMRES). Some new theoretical results have been established for proposed method by employing Schur complement. Finally, some numerical results are given to illustrate the efficiency of our new method.

Keywords: Matrix equation, Iterative method, linear systems, block Krylov subspace method, global generalized minimum residual (Gl-GMRES).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
5817 A Projection Method Based on Extended Krylov Subspaces for Solving Sylvester Equations

Authors: Yiqin Lin, Liang Bao, Yimin Wei

Abstract:

In this paper we study numerical methods for solving Sylvester matrix equations of the form AX +XBT +CDT = 0. A new projection method is proposed. The union of Krylov subspaces in A and its inverse and the union of Krylov subspaces in B and its inverse are used as the right and left projection subspaces, respectively. The Arnoldi-like process for constructing the orthonormal basis of the projection subspaces is outlined. We show that the approximate solution is an exact solution of a perturbed Sylvester matrix equation. Moreover, exact expression for the norm of residual is derived and results on finite termination and convergence are presented. Some numerical examples are presented to illustrate the effectiveness of the proposed method.

Keywords: Arnoldi process, Krylov subspace, Iterative method, Sylvester equation, Dissipative matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
5816 Investigation on Machine Tools Energy Consumptions

Authors: Shiva Abdoli, Daniel T. Semere

Abstract:

Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.

Keywords: Process parameters, cutting process, energy efficiency, Material Removal Rate (MRR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3414
5815 Generalized Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators

Authors: Yuli Hu, Shaoquan Sun

Abstract:

The aim of this paper is to introduce the concepts of generalized fuzzy subalgebras, generalized fuzzy ideals and generalized fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.

Keywords: BCI-algebras with operators, generalized fuzzy subalgebras, generalized fuzzy ideals, generalized fuzzy quotient algebras.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
5814 The Gerber-Shiu Functions of a Risk Model with Two Classes of Claims and Random Income

Authors: Shan Gao

Abstract:

In this paper, we consider a risk model involving two independent classes of insurance risks and random premium income. We assume that the premium income process is a Poisson Process, and the claim number processes are independent Poisson and generalized Erlang(n) processes, respectively. Both of the Gerber- Shiu functions with zero initial surplus and the probability generating functions (p.g.f.) of the Gerber-Shiu functions are obtained.

Keywords: Poisson process, generalized Erlang risk process, Gerber-Shiu function, generating function, generalized Lundberg equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
5813 An Iterative Algorithm to Compute the Generalized Inverse A(2) T,S Under the Restricted Inner Product

Authors: Xingping Sheng

Abstract:

Let T and S be a subspace of Cn and Cm, respectively. Then for A ∈ Cm×n satisfied AT ⊕ S = Cm, the generalized inverse A(2) T,S is given by A(2) T,S = (PS⊥APT )†. In this paper, a finite formulae is presented to compute generalized inverse A(2) T,S under the concept of restricted inner product, which defined as < A,B >T,S=< PS⊥APT,B > for the A,B ∈ Cm×n. By this iterative method, when taken the initial matrix X0 = PTA∗PS⊥, the generalized inverse A(2) T,S can be obtained within at most mn iteration steps in absence of roundoff errors. Finally given numerical example is shown that the iterative formulae is quite efficient.

Keywords: Generalized inverse A(2) T, S, Restricted inner product, Iterative method, Orthogonal projection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
5812 The New Relative Efficiency Based on the Least Eigenvalue in Generalized Linear Model

Authors: Chao Yuan, Bao Guang Tian

Abstract:

A new relative efficiency is defined as LSE and BLUE in the generalized linear model. The relative efficiency is based on the ratio of the least eigenvalues. In this paper, we discuss about its lower bound and the relationship between it and generalized relative coefficient. Finally, this paper proves that the new estimation is better under Stein function and special condition in some degree.

Keywords: Generalized linear model, generalized relative coefficient, least eigenvalue, relative efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1191
5811 How Team Efficacy Beliefs Impact Project Performance: An Empirical Investigation of Team Potency in Capital Projects in the Process Industries

Authors: C. Scott-Young, D. Samson

Abstract:

Team efficacy beliefs show promise in enhancing team performance. Using a model-based quantitative research design, we investigated the antecedents and performance consequences of generalized team efficacy (potency) in a sample of 56 capital projects executed by 15 Fortune 500 companies in the process industries. Empirical analysis of our field survey identified that generalized team efficacy beliefs were positively associated with an objective measure of project cost performance. Regression analysis revealed that team competence, empowering leadership, and performance feedback all predicted generalized team efficacy beliefs. Tests of mediation revealed that generalized team efficacy fully mediated between these three inputs and project cost performance.

Keywords: Team efficacy, Potency, Leadership, Feedback, Project cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167
5810 Generalized Chebyshev Collocation Method

Authors: Junghan Kim, Wonkyu Chung, Sunyoung Bu, Philsu Kim

Abstract:

In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower degree polynomial. The constructed algorithm controls both the error and the time step size simultaneously and further the errors at each integration step are embedded in the algorithm itself, which provides the efficiency of the computational cost. For the assessment of the effectiveness, numerical results obtained by the proposed method and the Radau IIA are presented and compared.

Keywords: Generalized Chebyshev Collocation method, Generalized Chebyshev Polynomial, Initial value problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642
5809 (T1, T2)*- Semi Star Generalized Locally Closed Sets

Authors: M. Sundararaman, K. Chandrasekhara Rao

Abstract:

The aim of this paper is to continue the study of (T1, T2)-semi star generalized closed sets by introducing the concepts of (T1, T2)-semi star generalized locally closed sets and study their basic properties in bitopological spaces.

Keywords: (T1, T2)*-semi star generalized locally closed sets, T1T2-semi star generalized closed sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
5808 The Baer Radical of Rings in Term of Prime and Semiprime Generalized Bi-ideals

Authors: Rattiya Boonruang, Aiyared Iampan

Abstract:

Using the idea of prime and semiprime bi-ideals of rings, the concept of prime and semiprime generalized bi-ideals of rings is introduced, which is an extension of the concept of prime and semiprime bi-ideals of rings and some interesting characterizations of prime and semiprime generalized bi-ideals are obtained. Also, we give the relationship between the Baer radical and prime and semiprime generalized bi-ideals of rings in the same way as of biideals of rings which was studied by Roux.

Keywords: ring, prime and semiprime (generalized) bi-ideal, Baer radical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
5807 Convergence Analysis of the Generalized Alternating Two-Stage Method

Authors: Guangbin Wang, Liangliang Li, Fuping Tan

Abstract:

In this paper, we give the generalized alternating twostage method in which the inner iterations are accomplished by a generalized alternating method. And we present convergence results of the method for solving nonsingular linear systems when the coefficient matrix of the linear system is a monotone matrix or an H-matrix.

Keywords: Generalized alternating two-stage method, linear system, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264
5806 Regular Generalized Star Star closed sets in Bitopological Spaces

Authors: K. Kannan, D. Narasimhan, K. Chandrasekhara Rao, R. Ravikumar

Abstract:

The aim of this paper is to introduce the concepts of τ1τ2-regular generalized star star closed sets , τ1τ2-regular generalized star star open sets and study their basic properties in bitopological spaces.

Keywords: τ1τ2-regular closed sets, τ1τ2-regular open sets, τ1τ2-regular generalized closed sets, τ1τ2-regular generalized star closed sets, τ1τ2-regular generalized star star closed sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
5805 A Generalized Framework for Working with Multiagent Systems

Authors: Debal Saha, NirmalBaranHui

Abstract:

The present paper discusses the basic concepts and the underlying principles of Multi-Agent Systems (MAS) along with an interdisciplinary exploitation of these principles. It has been found that they have been utilized for lots of research and studies on various systems spanning across diverse engineering and scientific realms showing the need of development of a proper generalized framework. Such framework has been developed for the Multi-Agent Systems and it has been generalized keeping in mind the diverse areas where they find application. All the related aspects have been categorized and a general definition has been given where ever possible.

Keywords: Generalized framework, multiagent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
5804 On Properties of Generalized Bi-Γ-Ideals of Γ-Semirings

Authors: Teerayut Chomchuen, Aiyared Iampan

Abstract:

The notion of Γ-semirings was introduced by Murali Krishna Rao as a generalization of the notion of Γ-rings as well as of semirings. We have known that the notion of Γ-semirings is a generalization of the notion of semirings. In this paper, extending Kaushik, Moin and Khan’s work, we generalize the notion of generalized bi-Γ-ideals of Γ-semirings and investigate some related properties of generalized bi-Γ-ideals.

Keywords: Γ-semiring, bi-Γ-ideal, generalized bi-Γ-ideal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
5803 Solving Linear Matrix Equations by Matrix Decompositions

Authors: Yongxin Yuan, Kezheng Zuo

Abstract:

In this paper, a system of linear matrix equations is considered. A new necessary and sufficient condition for the consistency of the equations is derived by means of the generalized singular-value decomposition, and the explicit representation of the general solution is provided.

Keywords: Matrix equation, Generalized inverse, Generalized singular-value decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
5802 Minimization Problems for Generalized Reflexive and Generalized Anti-Reflexive Matrices

Authors: Yongxin Yuan

Abstract:

Let R ∈ Cm×m and S ∈ Cn×n be nontrivial unitary involutions, i.e., RH = R = R−1 = ±Im and SH = S = S−1 = ±In. A ∈ Cm×n is said to be a generalized reflexive (anti-reflexive) matrix if RAS = A (RAS = −A). Let ρ be the set of m × n generalized reflexive (anti-reflexive) matrices. Given X ∈ Cn×p, Z ∈ Cm×p, Y ∈ Cm×q and W ∈ Cn×q, we characterize the matrices A in ρ that minimize AX−Z2+Y HA−WH2, and, given an arbitrary A˜ ∈ Cm×n, we find a unique matrix among the minimizers of AX − Z2 + Y HA − WH2 in ρ that minimizes A − A˜. We also obtain sufficient and necessary conditions for existence of A ∈ ρ such that AX = Z, Y HA = WH, and characterize the set of all such matrices A if the conditions are satisfied. These results are applied to solve a class of left and right inverse eigenproblems for generalized reflexive (anti-reflexive) matrices.

Keywords: approximation, generalized reflexive matrix, generalized anti-reflexive matrix, inverse eigenvalue problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1111
5801 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model

Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong

Abstract:

This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.

Keywords: Defective autoparts products, Bayesian framework, Generalized linear mixed model (GLMM), Risk factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
5800 Generalized Chaplygin Gas and Varying Bulk Viscosity in Lyra Geometry

Authors: A. K. Sethi, R. N. Patra, B. Nayak

Abstract:

In this paper, we have considered Friedmann-Robertson-Walker (FRW) metric with generalized Chaplygin gas which has viscosity in the context of Lyra geometry. The viscosity is considered in two different ways (i.e. zero viscosity, non-constant r (rho)-dependent bulk viscosity) using constant deceleration parameter which concluded that, for a special case, the viscous generalized Chaplygin gas reduces to modified Chaplygin gas. The represented model indicates on the presence of Chaplygin gas in the Universe. Observational constraints are applied and discussed on the physical and geometrical nature of the Universe.

Keywords: Bulk viscosity, Lyra geometry, generalized Chaplygin gas, cosmology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
5799 Weyl Type Theorem and the Fuglede Property

Authors: M. H. M. Rashid

Abstract:

Given H a Hilbert space and B(H) the algebra of bounded linear operator in H, let δAB denote the generalized derivation defined by A and B. The main objective of this article is to study Weyl type theorems for generalized derivation for (A,B) satisfying a couple of Fuglede.

Keywords: Fuglede Property, Weyl’s theorem, generalized derivation, Aluthge Transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 558
5798 Implementation of Generalized Plasticity in Load-Deformation Behavior of Foundation with Emphasis on Localization Problem

Authors: A. H. Akhaveissy

Abstract:

Nonlinear finite element method with eight noded isoparametric quadrilateral element is used for prediction of loaddeformation behavior including bearing capacity of foundations. Modified generalized plasticity model with non-associated flow rule is applied for analysis of soil-footing system. Also Von Mises and Tresca criterions are used for simulation of soil behavior. Modified generalized plasticity model is able to simulate load-deformation including softening behavior. Localization phenomena are considered by different meshes. Localization phenomena have not been seen in the examples. Predictions by modified generalized plasticity model show good agreement with laboratory data and theoretical prediction in comparison the other models.

Keywords: Localization phenomena, Generalized plasticity, Non-associated Flow Rule

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
5797 On Fourier Type Integral Transform for a Class of Generalized Quotients

Authors: A. S. Issa, S. K. Q. AL-Omari

Abstract:

In this paper, we investigate certain spaces of generalized functions for the Fourier and Fourier type integral transforms. We discuss convolution theorems and establish certain spaces of distributions for the considered integrals. The new Fourier type integral is well-defined, linear, one-to-one and continuous with respect to certain types of convergences. Many properties and an inverse problem are also discussed in some details.

Keywords: Fourier type integral, Fourier integral, generalized quotient, Boehmian, distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
5796 The Induced Generalized Hybrid Averaging Operator and its Application in Financial Decision Making

Authors: José M. Merigó, Montserrat Casanovas

Abstract:

We present the induced generalized hybrid averaging (IGHA) operator. It is a new aggregation operator that generalizes the hybrid averaging (HA) by using generalized means and order inducing variables. With this formulation, we get a wide range of mean operators such as the induced HA (IHA), the induced hybrid quadratic averaging (IHQA), the HA, etc. The ordered weighted averaging (OWA) operator and the weighted average (WA) are included as special cases of the HA operator. Therefore, with this generalization we can obtain a wide range of aggregation operators such as the induced generalized OWA (IGOWA), the generalized OWA (GOWA), etc. We further generalize the IGHA operator by using quasi-arithmetic means. Then, we get the Quasi-IHA operator. Finally, we also develop an illustrative example of the new approach in a financial decision making problem. The main advantage of the IGHA is that it gives a more complete view of the decision problem to the decision maker because it considers a wide range of situations depending on the operator used.

Keywords: Decision making, Aggregation operators, OWA operator, Generalized means, Selection of investments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
5795 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: k-factor, GARMA, LLWNN, G-GARCH, electricity price, forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 998
5794 Behrens-Fisher Problem with One Variance Unknown

Authors: Sa-aat Niwitpong, Rada Somkhuean, Suparat Niwitpong

Abstract:

This paper presents the generalized p-values for testing the Behrens-Fisher problem when one variance is unknown. We also derive a closed form expression of the upper bound of the proposed generalized p-value.

Keywords: Generalized p-value, hypothesis testing, upper bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
5793 Restarted GMRES Method Augmented with the Combination of Harmonic Ritz Vectors and Error Approximations

Authors: Qiang Niu, Linzhang Lu

Abstract:

Restarted GMRES methods augmented with approximate eigenvectors are widely used for solving large sparse linear systems. Recently a new scheme of augmenting with error approximations is proposed. The main aim of this paper is to develop a restarted GMRES method augmented with the combination of harmonic Ritz vectors and error approximations. We demonstrate that the resulted combination method can gain the advantages of two approaches: (i) effectively deflate the small eigenvalues in magnitude that may hamper the convergence of the method and (ii) partially recover the global optimality lost due to restarting. The effectiveness and efficiency of the new method are demonstrated through various numerical examples.

Keywords: Arnoldi process, GMRES, Krylov subspace, systems of linear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941