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Abstract—Using the idea of prime and semiprime bi-ideals of
rings, the concept of prime and semiprime generalized bi-ideals of
rings is introduced, which is an extension of the concept of prime and
semiprime bi-ideals of rings and some interesting characterizations
of prime and semiprime generalized bi-ideals are obtained. Also,
we give the relationship between the Baer radical and prime and
semiprime generalized bi-ideals of rings in the same way as of bi-
ideals of rings which was studied by Roux.
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I. INTRODUCTION AND PRELIMINARIES

THE notion of generalized bi-ideals which is a general-

ization of bi-ideals of rings introduced by Szász [5],

[6] in 1970. In 1971, Lajos and Szász [3] studied bi-ideals

in associative rings. In 1983, Walt [7] studied prime and

semiprime bi-ideals of associative rings with unity. In 1995,

Roux [4] extended the results of prime and semiprime bi-ideals

of associative rings with unity to associative rings without

unity. Moreover, Roux proved that the Baer radical of rings

is the intersection of all semiprime bi-ideals. The concept of

bi-ideals play an important role in studying the structure of

rings. Now, the notion of generalized bi-ideals is an important

and useful generalization of bi-ideals of rings. Therefore, we

will study generalized bi-ideals of rings in the same way as

of bi-ideals of rings which was studied by Roux.

Our aim in this paper is threefold.

1) To introduce the concept of prime and semiprime gen-

eralized bi-ideals of rings.

2) To characterize the properties of prime and semiprime

generalized bi-ideals of rings.

3) To characterize the relationship between the Baer radical

and prime and semiprime generalized bi-ideals of rings.

To present the main results we discuss some elementary

definitions that we use later. Throughout this paper, A will

represent a ring. A subset I of A is called a left(right) ideal

of A if

(1) I is a subgroup of 〈A,+〉,
(2) ax ∈ I(xa ∈ I) for all a ∈ A and x ∈ I .

A subset I of A is called an ideal of A if it is both a left

and a right ideal of A. Let X be a subset of A and support

that {Aj | j ∈ J} be a family of all (left, right) ideals of A

containing X . Then
⋂

j∈J Aj is called the (left, right) ideal

of A generated by X [2] and denoted by ((X)l, (X)r)(X). If
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X = {x}, then ((X)l, (X)r) (X) is usually denoted by (x)
((x)l, (x)r). From [2], we have

(x)r = {nx +
m
∑

i=1

xsi | si ∈ A,m ∈ Z
+, n ∈ Z}

and

(x)l = {nx +
m
∑

i=1

six | si ∈ A,m ∈ Z
+, n ∈ Z}.

Let I be an ideal of A. Then

(1) I is called a prime ideal of A if

XY ⊆ I implies X ⊆ I or Y ⊆ I

for any ideals X and Y of A. Equivalently,

xAy ⊆ I implies x ∈ I or y ∈ I

for any x, y ∈ A [1].

(2) I is called a semiprime ideal of A if

X2 ⊆ I implies X ⊆ I

for any ideal X of A. Equivalently,

xAx ⊆ I implies x ∈ I

for any x ∈ A [1].

From [1], a semiprime ideal of A is an intersection of prime

ideals of A. If I is a left(right) ideal of A, then I is a subgroup

of 〈A,+〉. Since II ⊆ AI ⊆ I , we have I is a subsemigroup

of 〈A, ·〉. Hence I is a subring of A. A subset B of A is called

a bi-ideal [4] of A if

(1) B is a subring of A,

(2) b1ab2 ∈ B for all b1, b2 ∈ B and a ∈ A.

We can easily prove that bi-ideals are a generalization of

left(right) ideals. A subset B of A is called a generalized

bi-ideal [5] of A if

(1) B is a subgroup of 〈A,+〉,
(2) b1ab2 ∈ B for all b1, b2 ∈ B and a ∈ A.

Hence generalized bi-ideals are a generalization of bi-ideals.

Let B be a generalized bi-ideal of A. Then

(1) B is called a prime generalized bi-ideal of A if

xAy ⊆ B implies x ∈ B or y ∈ B

for any x, y ∈ A.

(2) B is called a semiprime generalized bi-ideal of A if

xAx ⊆ B implies x ∈ B

for any x ∈ A.

For any generalized bi-ideal B of A, let

L(B) = {x ∈ B | Ax ⊆ B}

and
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H(B) = {y ∈ L(B) | yA ⊆ L(B)}.

Let {Pi | i ∈ I} be a family of all prime ideals of A. Then
⋂

i∈I Pi is called the Baer radical [1] of A and denoted by

β(A). From [1], we have β(A) is the smallest semiprime ideal

of A. A ring A is called regular [4] if for any a ∈ A, there

exists x ∈ A such that a = axa.

II. LEMMAS

Before the characterizations of prime and semiprime gen-

eralized bi-ideals of rings for the main results, we give some

auxiliary results which are necessary in what follows. The

following two lemmas are easy to verify.

Lemma II.1. For all x ∈ A, xA is a right ideal and Ax is a

left ideal of A.

Lemma II.2. For all x ∈ A, xAx is a bi-ideal of A.

Lemma II.3. Let B be a generalized bi-ideal of A. Then L(B)
is a left ideal of A such that L(B) ⊆ B.

Proof: By definition, it is clear that ∅ 6= L(B) ⊆ B. Let

x, y ∈ L(B). Then x, y ∈ B and Ax ⊆ B and Ay ⊆ B, so

x−y ∈ B and A(x−y) ⊆ Ax−Ay ⊆ B. Thus x−y ∈ L(B),
so L(B) is a subgroup of 〈A,+〉. Let x ∈ L(B) and z ∈ A.

Since zx ∈ Ax ⊆ B, we have zx ∈ B and Azx ⊆ AAx ⊆
Ax ⊆ B. Hence zx ∈ L(B), so L(B) is a left ideal of A and

L(B) ⊆ B.

Lemma II.4. Let B be a generalized bi-ideal of A. Then

H(B) is a subgroup of 〈A,+〉.

Proof: Let x, y ∈ H(B). Then x, y ∈ L(B), xA ⊆ L(B)
and yA ⊆ L(B). Since x ∈ L(B), x ∈ B and Ax ⊆ B. Since

y ∈ L(B), y ∈ B and Ay ⊆ B. Since x, y ∈ B and B is a

subgroup of 〈A,+〉, we have x − y ∈ B. Thus A(x − y) ⊆
Ax−Ay ⊆ B, so x−y ∈ L(B). Now, (x−y)A ⊆ xA−yA ⊆
L(B) − L(B) ⊆ L(B), so x − y ∈ H(B). Hence H(B) is a

subgroup of 〈A,+〉.

Lemma II.5. Let B be a left ideal of A. Then L(B) = B.

Proof: Clearly, L(B) ⊆ B. Conversely, let x ∈ B. Since

B is a left ideal A, we have Ax ⊆ B. Thus x ∈ L(B), so

L(B) = B.

III. MAIN RESULTS

In this section, give some characterizations of prime and

semiprime generalized bi-ideals of rings. Finally, we prove

that the Baer radical of rings is the intersection of all prime

and semiprime bi-ideals.

Proposition III.1. Let B be a generalized bi-ideal of A. Then

B is a prime generalized bi-ideal of A if and only if for any

right ideal R and left ideal L of A, RL ⊆ B implies R ⊆ B

or L ⊆ B.

Proof: Assume that B is a prime generalized bi-ideal of

A. Let R be a right ideal of A and L a left ideal of A such that

RL ⊆ B. Suppose that R * B, let x ∈ L and r ∈ R\B. Then

rAx ⊆ RL ⊆ B. Since B is a prime generalized bi-ideal of

A and r 6∈ B, we have x ∈ B. Hence L ⊆ B.

Conversely, assume that for any right ideal R and left ideal

L of A, RL ⊆ B implies R ⊆ B or L ⊆ B. Let x, y ∈ A be

such that xAy ⊆ B. Then

(xA)(Ay) ⊆ xA2y ⊆ xAy ⊆ B.

By Lemma II.1, we have xA is a right ideal and Ay is a left

ideal of A. By assumption, we have xA ⊆ B or Ay ⊆ B.

Suppose xA ⊆ B. Then x2 ∈ B. Let z ∈ (x)r(x)l. Then, by

I and I, we get

z =
n
∑

i=1

(mix + xai)(kix + bix)

for some ai, bi ∈ A and mi, ki, n ∈ Z
+, so

z =
n
∑

i=1

mikix
2 + mixbix + kixaix + xaibix.

Since x2 ∈ B, bix, aix, aibix ∈ A and xA ⊆ B, we have

z ∈ B. Hence (x)r(x)l ⊆ B. By assumption, we have

(x)r ⊆ B or (x)l ⊆ B.

Hence x ∈ B. We can prove in a similar manner that y ∈ B.

Therefore B is a prime generalized bi-ideal of A.

Proposition III.2. Let B be a prime generalized bi-ideal of

A. Then B is a prime one-sided ideal of A.

Proof: We have to show that B is a one-sided ideal of

A. Now,

(BA)(AB) ⊆ BAB ⊆ B.

Since BA is a right ideal and AB is a left ideal of A and by

Proposition III.1, we have BA ⊆ B or AB ⊆ B. Hence B is

a right ideal or a left ideal of A.

Proposition III.3. Let B be a generalized bi-ideal of A. Then

H(B) is the largest ideal of A such that H(B) ⊆ B.

Proof: Since H(B) ⊆ L(B) and L(B) ⊆ B, H(B) ⊆ B.

By Lemma II.4, we have H(B) is a subgroup of 〈A,+〉. Let

x ∈ H(B) and y ∈ A. Then x ∈ L(B), so Ax ⊆ B and

xA ⊆ L(B). Thus yx ∈ Ax ⊆ B. Since Ayx ⊆ Ax ⊆ B, we

have yx ∈ L(B). By Lemma II.3, we have yxA ⊆ AxA ⊆
AL(B) ⊆ L(B). Thus yx ∈ H(B). Hence H(B) is a left

ideal of A. Similarly, xy ∈ xA ⊆ L(B). Thus xyA ⊆ xA ⊆
L(B), so xy ∈ H(B). Hence H(B) is a right ideal of A.

Therefore H(B) is an ideal A such that H(B) ⊆ B. Assume

that S is an ideal of A such that S ⊆ B and let s ∈ S.

Then s ∈ B and As ⊆ AS ⊆ S ⊆ B, so s ∈ L(B). Hence

S ⊆ L(B). Now, sA ⊆ SA ⊆ S ⊆ L(B), so s ∈ H(B).
Hence S ⊆ H(B). Therefore H(B) is the largest ideal of A

such that H(B) ⊆ B.

Proposition III.4. Let B be a generalized bi-ideal of A. Then

H(B) is a prime ideal of A.

Proof: Let X and Y be ideals of A such that XY ⊆
H(B). Since H(B) ⊆ B, XY ⊆ B. By Proposition III.1,

we have X ⊆ B or Y ⊆ B. By Proposition III.3, we have

H(B) is the largest ideal of A such that H(B) ⊆ B. Thus
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X ⊆ H(B) or Y ⊆ H(B). Hence H(B) is a prime ideal of

A.

Corollary III.5. The Baer radical β(A) is the intersection of

all prime generalized bi-ideals of A.

Proof: Let

B = {B | B is a prime generalized bi-ideal of A},

H = {H(B) | B is a prime generalized bi-ideal of A},

P = {P | P is a prime ideal of A}.

Since every prime ideal of A is a prime generalized bi-ideal,

we have P ⊆ B. Thus
⋂

B ⊆
⋂

P = β(A).

Since H(B) ⊆ B and by Proposition III.4, we have

β(A) =
⋂

P ⊆
⋂

H ⊆
⋂

B.

From III and III, we have β(A) =
⋂

B. This completes the

proof.

Proposition III.6. Let B be a semiprime generalized bi-ideal

and L (R) a left(right) ideal of A. If L2 ⊆ B(R2 ⊆ B), then

L ⊆ B(R ⊆ B).

Proof: Assume L2 ⊆ B and suppose that L * B. Then

there exists x ∈ L but x 6∈ B. Now, xAx ⊆ LAL ⊆ LL ⊆ B.

Since B is a semiprime generalized bi-ideal of A, we have

x ∈ B that is a contradiction. Hence L ⊆ B. In a similar way,

we can prove that if R2 ⊆ B, then R ⊆ B.

Proposition III.7. Let B be a semiprime generalized bi-ideal

of A. Then H(B) is a semiprime ideal of A.

Proof: By Proposition III.3, we have H(B) is an ideal

of A. Let X be an ideal of A such that X2 ⊆ H(B). Since

H(B) ⊆ B, X2 ⊆ B. By Proposition III.6, we have X ⊆ B.

By Proposition III.3 again, we have X ⊆ H(B). Hence H(B)
is a semiprime ideal of A.

Corollary III.8. The Baer radical β(A) is the intersection of

all semiprime generalized bi-ideals of A.

Proof: Let

S = {S | S is a semiprime ideal of A},

C = {C | C is a semiprime generalized bi-ideal of A},

H = {H(C) | C is a semiprime generalized bi-ideal of A}.

Since every semiprime ideal of A is a semiprime generalized

bi-ideal, we have S ⊆ C . Since β(A) is the smallest

semiprime ideal of A, we have
⋂

C ⊆
⋂

S = β(A).

By Proposition III.7, we have H(C) is a semiprime ideal of

A and H(C) ⊆ C. Thus

β(A) =
⋂

S ⊆
⋂

H ⊆
⋂

C .

From III and III, we have β(A) =
⋂

C . The proof is then

completed.

Proposition III.9. A ring A is regular if and only if every

generalized bi-ideal of A is a semiprime generalized bi-ideal.

Proof: Assume that A is regular and let B be a general-

ized bi-ideal of A. Let a ∈ A be such that aAa ⊆ B. Since

A is regular, there exists x ∈ A such that a = axa. Thua

a = axa ∈ aAa ⊆ B. Hence B is a semiprime generalized

bi-ideal of A.

Conversely, assume that every generalized bi-ideal of A

is a semiprime generalized bi-ideal. Let a ∈ A. Then, by

Lemma II.2, we have aAa is a generalized bi-ideal of A. By

assumption, we have aAa is a semiprime generalized bi-ideal

of A. Now, aAa ⊆ aAa, we get a ∈ aAa. Thus a = axa

for some x ∈ A. Hence A is regular, and so the proof is

completed.

IV. CONCLUSION

In comparison our above results with results of bi-ideals of

rings, we see that the Baer Radical is the intersection of all

prime and semiprime generalized bi-ideals of A which is an

analogous result of bi-ideals of rings.
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