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Abstract—Restarted GMRES methods augmented with approxi-
mate eigenvectors are widely used for solving large sparse linear
systems. Recently a new scheme of augmenting with error approx-
imations is proposed. The main aim of this paper is to develop
a restarted GMRES method augmented with the combination of
harmonic Ritz vectors and error approximations. We demonstrate
that the resulted combination method can gain the advantages of two
approaches: (i) effectively deflate the small eigenvalues in magnitude
that may hamper the convergence of the method and (ii) partially
recover the global optimality lost due to restarting. The effectiveness
and efficiency of the new method are demonstrated through various
numerical examples.
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I. INTRODUCTION

THE generalized minimum residual (GMRES) method
[24] is one of the most popular iterative methods for

solving large sparse linear systems of equations

Ax = b, (1)

where A ∈ Rn×n is nonsingular, and b, x ∈ Rn. In order
to limit the computational costs and storage requirements, the
method is usually restarted after a fixed number of iterations.
The resulted method is called restarted GMRES method,
denoted by GMRES(m). In the context of GMRES(m), it is
generally recognized that previous subspace information is lost
due to restarting, which makes the global subspace dimension
decrease, so that the global convergence of GMRES(m) is
impaired [29]. To alleviate the unwilling phenomena of conver-
gence deterioration, several augmented or deflated restarting
schemes have been proposed to accelerate the convergence, see
excellent review papers [13], [31] for a comprehensive survey
of acceleration techniques for Kryov subspace methods. The
main idea of these methods is to utilize judiciously chosen
subspace information from previous generated subspaces. The
information is then used to either augment the next approxi-
mate Krylov subspace [2], [4], [8], [9], [16], [19], [20], [21],
[23], [27], [28] or construct effective preconditioners [1], [3],
[15], [18], [34].

R. B. Morgan [19] proposed an augmented restarting tech-
nique called GMRES-E. The author suggested to retain some
fixed number of approximate eigenvectors corresponding to
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the smallest eigenvalues in magnitude and add them to the
new subspace in the next restart cycle. It is shown that
the approach is efficient if convergence of GMRES(m) is
hampered by a few well separated eigenvalues close to zero
[8], [19]. R. B. Morgan [20] further show that the approximate
eigenvectors can be implicitly included in the Krylov subspace,
and presented an implicitly restarted GMRES (GMRES-IR)
method. In M. Eiermann et al. [13], R. B. Morgan [20], [21],
the convergence properties of augmented restarted GMRES
method is discussed and they point out that augmenting with
harmonic Ritz vectors is important; it generally leads to better
convergence results than using other approximate eigenvectors.

Another kind of restarting procedure is enriching the Krylov
subspace at each restart cycle such that the approximate
subspace gradually includes the error approximation. In the
context of inner-outer iteration, this strategy is investigated
by van der Vorst and C. Vuik [33]. The method is called
GMRESR, which uses GCR [14] as the outer iteration. This
approach is further amended by E. Der Sturler [10], [11]. Be-
sides, Y. Saad [26] developed a flexible preconditioned method
(FGMRES). Recently, a simplified version of this accelerating
approach called LGMRES is proposed in [2] by A. Baker
et al. In the LGMRES method, the (k + 1)th approximate
solution xk+1 is constructed by using the Krylov subspace
augmented with l recently generated error approximations
zj , j = k, . . . , k − l + 1, where zj = xj − xj−1 and xj
is the approximate solution obtained at the end of the jth
restart cycle (k − l + 1 ≤ j ≤ k). Since the vectors zj is
the correction vector computed by the method from the jth
approximate subspace. So it represents the condensed useful
subspace information generated during the jth cycle, while it
is discarded in subsequent cycle of iterations. Collecting these
error approximations and adding them into the next approxi-
mate subspace, then the resulted method can partially recover
the global optimality of the GMRES method. Based on the
polynomial expression of the approximate solution, A. Baker
et al. has also showed that the practical LGMRES method
can be categorized as a truncated polynomial preconditioned
conjugate gradient method. A large number of experiments
on a variety of problems have shown that LGMRES is a
promising accelerating strategy.

The main aim of this paper is developing an accelerate the
convergence of GMRES(m) by augmenting with the combi-
nation of harmonic Ritz vectors and error approximations. We
demonstrate that for a class of problems, the resulted combina-
tion method is able to gain the advantages of two approaches.
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The effectiveness of the new method is demonstrated through
various numerical examples. The outline of this paper is as
follows. In Section 2, we review GMRES-E and LGMRES
methods, and discussed the geometric properties of the residual
vectors of two methods. In Section 3, we develop our new
method: LGMRES-E. In Section 4, numerical examples are
given to demonstrate the effectiveness of the new method.
Finally, concluding remarks are given in Section 5.

Throughout the paper, denote by

Km(A, v1) = span{v1, Av1, . . . , Am−1v1}
the m-dimensional Krylov subspace generated by A and v1,
by Rm the m-dimensional real space. The inner product 〈·, ·〉
is the Euclidean inner product, and the norm ‖·‖ denotes both
the Euclidean vector norm and the subordinate spectral matrix
norm. Some MATLAB notations and inner functions are used
whenever necessary.

II. AUGMENTED RESTARTED GMRES METHODS

A. GMRES-E

GMRES-E method proposed by R. B. Morgan [19] attempts
to improve the convergence of restarted GMRES method by
appending approximate eigenvectors to the Krylov subspace.
In this paper, we use GMRES-E(m, d) to denote the restarted
GMRES method augmented with harmonic Ritz vectors. Pre-
cisely, it represents that the correction vector is found in a
(m+d) dimensional approximate subspace constituted by the
m dimensional standard Krylov subspace and d harmonic Ritz
vectors.

At the end of (k+1)th restart cycle, GMRES-E(m, d) seeks
the approximate solution xk+1 of the form

xk+1 = xk + zk+1

with
zk+1 ∈ Km(A, rk) + {ϕj}dj=1,

where {ϕj}dj=1 is a group of vectors constituted by d har-
monic Ritz vectors associated with d smallest (in magnitude)
harmonic Ritz values. If ϕj is complex, then ϕ̄j is also an
harmonic Ritz vector of A. In this case, we should take the
real part and imaginary part of ϕj instead of ϕj and ϕ̄j for
practical applications.

Suppose columns of Vm+1 are the basis vectors constructed
by the Arnoldi process with starting vector v1 = rk/||rk||, and
s = m+ d. Let

W̃s = [v1, . . . , vm, ϕ1, . . . , ϕd]

and
Q̃s+1 = [v1, . . . , vm, vm+1, . . . , vs+1],

where vj+m+1, 1 ≤ j ≤ d, is computed by orthogonalizing
the vector Aϕj against the first m+j columns of Q̃s+1. Then

AW̃s = Q̃s+1H̃s,

where H̃s is an (s+1)-by-s upper Hessenberg matrix with its
elements constructed by the orthogonalization process. Then
the (k + 1)th approximate solution can be formed by

xk+1 = xk + W̃syk+1,

where yk+1 is computed by solving

‖rk+1‖ = ‖βe1 − H̃syk+1‖ = min
y∈Rs

‖βe1 − H̃sy‖. (2)

It is easy to see that (2) is equivalent to

rk+1 ⊥ AW̃s. (3)

The GMRES-E(m, d) method can be described as follows.

Algoritm 1. The kth cycle of GMRES-E(m, d) method.
1) rk = b−Axk, β = ||rk||, v1 = rk/β, s = m+ d;
2) for j = 1, 2, . . . , s
3) if j ≤ m, then w = Avj , else w = Aϕj−m;
4) for i=1:j,
5) h̃ij = (w, vi);
6) w = w − h̃ijvi;
7) end
8) h̃j+1,j = ||w||;
9) if h̃j+1,j = 0, then stop;

10) vj+1 = w/h̃j+1,j;
11) end
12) Compute yk+1 = argminy∈Cs ‖βe1 − H̃sy‖, form

xk+1 = xk + W̃syk+1;
13) Compute the harmonic Ritz vectors ϕj , j = 1, . . . , d;
14) Compute rk+1 = b−Axk+1, if ||rk+1|| < tol, then stop;
15) k = k + 1, goto 1.

In practical implementation, reorthogonalization is needed in
the orthonormalization process of the algorithm, We refer to
[19] for the implementation details.

In the context of the GMRES(m) method, the geometric
relationships between sequential and skip residual vectors are
investigated in [2], [29]. Following the definition given in
[2], we refer to the angles between two consecutive residual
vectors as the sequential angle, denoted by ∠(rk+1, rk); and
the angles between every other residual vectors as the skip
angles, denoted by ∠(rk+1, rk). Subsequently, we investigate
the geometry relationships between GMRES-E residual
vectors. These studies can be regarded as the straightforward
generalizations of the results in [2], and their proof are
patterned on the proof of Theorem 4-5 in [2]. We included
them for completeness.

Proposition 1: Let rk+1 and rk be the (k+1)th and the kth
residual vectors from GMRES-E method. Then their sequential
angles are given by

cos∠(rk+1, rk) =
||rk+1||
||rk|| . (4)

Proof: At the (k + 1)th cycle of GMRES-E method, we
seek the approximate solution of form xk+1 = xk+zk+1 with
zk+1 ∈ Km(A, rk) + {ϕj}dj=1. Therefore the corresponding
residual vectors satisfies

rk+1 = rk −Azk+1.

From (3) we have rk+1 ⊥ Azk+1, so

〈rk+1, rk〉 = ||rk+1||2.
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TABLE I
SOME RECORDED SEQUENTIAL AND SKIP ANGLES OF GMRES-E(12,3)

TESTED ON MATRIX SHERMAN1

k 20 30 40 50 60 70
∠(rk, rk−2) 8.1 4.5 4.8 3.4 0.8 0.5
∠(rk, rk−1) 39.1 41.2 39.4 36.9 40.5 42.6

TABLE II
SOME RECORDED SEQUENTIAL AND SKIP ANGLES OF GMRES-E(12,3)

TESTED ON MATRIX E05R0000

k 20 30 40 50 60 70
∠(rk, rk−2) 7.6 3.4 3.1 2.5 2.2 1.8
∠(rk, rk−1) 26.2 24.4 24.7 25.4 28.1 26.0

Based on the definition of cosine, then relationship (4) follows.

Proposition 2: Let rk+1 and rk−1 be the (k+1)th and the
(k−1)th residual vectors from GMRES-E method. Then their
skip angles are given by

cos∠(rk+1, rk−1) =
||rk+1||
||rk−1|| −

〈Azk, Azk+1〉
||rk+1||||rk−1|| , (5)

Proof: Let xk+1 = xk + zk+1 and xk = xk−1 + zk, then
we have

rk+1 = rk −Azk+1 (6)

and
rk = rk−1 −Azk. (7)

From (7), it follows that

〈rk+1, rk〉 = 〈rk+1, rk−1〉 − 〈Azk, rk+1〉.
As Proposition 1 reveals that 〈rk+1, rk〉 = 〈rk+1, rk+1〉, so
we have

〈rk+1, rk−1〉 = 〈rk+1, rk+1〉+ 〈Azk, rk+1〉
= 〈rk+1, rk+1〉+ 〈Azk, rk −Azk+1〉
= 〈rk+1, rk+1〉 − 〈Azk, Azk+1〉.

(8)
The proof is completed.

From Proposition 1 we can see that convergence rate of
the GMRES-E method can be learned from the cosine values
of the sequential angles. Particularly, relationship (4) indicates
that if the sequential residual vectors preserve at a large degree,
then fast convergence behavior will appear. However, relation-
ship (5) does not reveal such kinds of information in a simple
way, as 〈Azk, Azk+1〉 also has influence on the reduction of
the residual norm. In the context of restarted GMRES method,
similar phenomena are discovered and well investigated in [2],
[29]. In Section 3, we will present a property between the
skip angles of our new algorithm LGMRES-E, and give some
comparisons between the above propositions.

In order to study the influence of term 〈Azk, Azk+1〉 on skip
angles in (5), we record some sequential and skip angles of
GMRES-E tested on two matrices “sherman1” and “e05r0000”
from [22]. For a sequence of indexes k, the corresponding skip
and sequence angles are recorded and listed in Table I and
Table II. In the test, the residual norms of “sherman1” and

“e05r0000” both reach the 10−9 after 236 and 148 restarts,
respectively. From Tables I- II, we can see that the sequential
angles are preserved at a reasonable large degree while the
skip angles become quite small, i.e., the directions of the
residual vectors often alternate in a cyclic fashion. As the
residual vector will be normalized as the starting vector for
next cycle, so small skip angles implies that the every other
approximate subspaces are close to each other. This phenom-
ena is discovered in [2] in the restarted GMRES method. The
occurrence of small skip angles implies that the convergence
can be accelerated if this alternating behavior of the residual
vectors is corrected. Inspired by the idea of the LGMRES
method, we will present a combinative augmentation technique
such that both the sequential angles and the skip angles can
be kept at reasonable large degrees.

B. LGMRES

Implementation of the LGMRES method is similar to the
GMRES-E method. At the end of each restart cycle, the
LGMRES(m, l) method finds the correction vector in an
(m + l) dimensional subspace constituted by the m dimen-
sional standard Krylov subspace and l recently generated error
approximations.

Let x̂ be the exact solution of (1), and xk be the approximate
solution obtained at the end of kth restart cycle. Then the kth
error defined by

ek = x̂− xk.

It is obvious that if the next approximate subspace incorporates
this error vector, then the linear system (1) will be solved in
the next restart cycle. The main problem is that ek = A−1rk
is unknown. So it is natural to come forth the GMRESR
family of methods [33], or the schemes of constructing a vector
M−1
k rk to approximate ek at every restart cycle, which leads

to the flexible preconditioned GMRES method [8], [26] (if
Mk changes with k).

As the correction is originated from last approximate
subspace, so it represents in certain sense the approximate
subspace information generated in the last cycle. However,
the subspace is discarded due to restarting. It is proposed in
[2] that zk should be retained in the subsequent approximate
subspace. If p previously generated error approximations are
collected, then the (k + 1)th cycle of the LGMRES method
will seek an approximate solution of the form

xk+1 = xk + qm−1(A)rk +

k∑
j=k−l+1

αkjzj ,

where qm−1 is a polynomial of degree at most m− 1, which
is determined along with αkj such that the norm of rk+1

is minimized. The (k + 1)th cycle of the LGMRES(m, l)
algorithm can be described as follows.

Algorithm 2. The kth cycle of the LGMRES(m, l) method
1) Given rk, β = ||rk||, v1 = rk/β, s = m+ l;
2) Orthonormalization process: the same as steps 2 to 11 in

Algorithm 1, except revising the third step as: if j ≤ m,
then w = Avj , else w = Azk−(j−m−1);
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3) Find yk+1 = argminy∈Rs ‖βe1 − Ĥsy‖, form
xk+1 = xk + Ŵsyk+1; where elements of Ĥs are
generated by the orthogonalization process in step
2 and Q̂s+1 = [v1, . . . , vm, vm+1, . . . , vs+1], Ŵs =
[v1, . . . , vm, zk, . . . , zk−l+1];

4) Form zk+1 = Ŵsyk+1; (also Azk+1 = Q̂s+1Ĥsyk+1);
5) Compute rk+1 = b−Axk+1, if ||rk+1|| < tol, then stop;
6) k = k + 1, goto 1.

A few implementation details are given in [2], we list them
as follows:

• Only m matrix-vector multiplications are required per
cycle of iterations if l pairs of zj and Azj are stored.

• For k < l, there are no enough error vectors, so it is
recommended using Arnoldi vectors instead of zj when
j < 1 such that the dimension of the approximation
subspace can be fixed as m+ l.

• The optimal values for l are typically very small, gener-
ally l ≤ 3.

The next proposition is given in [2], it indicates that the
convergence of LGMRES method also correlates the skip
angles, and fast convergence implies large skip angles.
Experiments in [2] showed that the LGMRES method can
preserve both sequential and skip angles at reasonable large
degrees, so accelerated convergence behavior is exhibited.

Proposition 3: [2]
Let rk, rk+1 and rk−1 be the kth, the (k+1)th and the (k−1)th
residual vectors respectively, formed by the LGMRES method.
Then the angles between these residual vectors are given by

cos∠(rk+1, rk) =
||rk+1||
||rk|| , (9)

cos∠(rk+1, rk−1) =
||rk+1||
||rk−1|| . (10)

III. THE PROPOSED METHOD

From the numerical results in Section 2.1, we can see that
the sequential angles of GMRES-E can be retained at moderate
degrees while the skip angles are usually pretty small, i.e.,
every other residual vectors of GMRES-E point to nearly the
same direction. According to the analysis of GMRES(m) in
[2], the phenomena of low skip angles implies that some
subspace information is lost due to restarting, such that the
global optimal property of the full GMRES method is lost.
Thereby a faster convergence rate can be achieved if previously
generated subspace information can be included in the next
approximate subspace.

In this section, we develop a restarted GMRES method aug-
mented with a combination of harmonic Ritz vectors and error
approximations. Our idea is to append error approximations to
the augmented subspace at the end of every restarted cycle of
GMRES-E. We call the new algorithm LGMRES-E and use
LGMRES-E(m, d, l) to denote that at the end of each restart
cycle of the method, a new approximate solution is found
in an (m + d + l) dimensional subspace constructed by the
Krylov subspace augmented with d harmonic Ritz vectors and

l error approximations. For example, the (k+1)th approximate
solution xk+1 is of the form

xk+1 = xk + zk+1

and zk+1 is computed from

span{rk, Ark, . . . , Am−1rk, ϕ1, . . . , ϕd, zk−l+1, . . . , zk},
where ϕj , 1 ≤ j ≤ d, are the harmonic Ritz vectors calculated
at the end of the kth cycle of iterations, and zj , k−l+1 ≤ j ≤
k, are the most recently generated error approximations. When
k < l, error approximations are not generated, and thereby
GMRES-E(m, d+ l) is used instead.

Let s = m+ d+ l, and

Ws = [v1, . . . , vm, ϕ1, . . . , ϕd, zk−l+1, . . . , zk],

where the first m columns are the orthonormalized Arnoldi
basis vectors (obtained by the orthogonalization process of
Algorithm 1). Let

Qs+1 = [v1, . . . , vm+1, vm+2, . . . , vs+1]

be n×(s+1) matrix whose first m+1 columns are the Arnoldi
basis vectors and whose last (d + l) columns are formed by
orthogonalizing the vectors Aϕi and Azj , for 1 ≤ i ≤ d and
k − l + 1 ≤ j ≤ k, against their previous columns of Qs+1,
respectively. The above procedure can be demonstrated by the
following algorithm,

Algorithm 1: The kth cycle of LGMRES-E(m, d, l)
1) Given rk, β = ||rk||, v1 = rk/β, s = m+ l + d;
2) for j = 1, 2, . . . , s

3) w =

⎧⎨
⎩

Avj , j ≤ m
Aϕj−m, m+ 1 ≤ j ≤ m+ d
Azj−m−d+k−l, m+ d+ 1 ≤ j ≤ m+ d+ l

4) for i=1:j,
5) hij = (w, vi);
6) w = w − hijvi;
7) end
8) hj+1,j = ||w||;
9) if hj+1,j = 0, then stop;

10) vj+1 = w/hj+1,j ;
11) end
12) Find yk+1 = argminy∈Rs ‖βe1 −Hsy‖, form xk+1 =

xk +Wsyk+1;
13) Record zk+1 = Wsyk+1; (also Azk+1 =

Qs+1Hsyk+1);
14) Compute the harmonic Ritz vectors ϕj , j = 1, . . . , d;
15) Compute rk+1 = b−Axk+1, if ||rk+1|| < tol, then stop;
16) k = k + 1, goto 1.

The above procedures can be summarized as the following
relationship

AWs = Qs+1Hs, (11)

where Hs is an (s+ 1)-by-s upper Hessenberg matrix whose
nonzero elements hi,j are defined by the orthogonalization
process of Algorithm 3.

By using (11), the (k + 1)th approximate solution of form

xk+1 = xk +Wsyk+1,
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TABLE III
SHERMAN1

k 20 30 40 50
∠(rk, rk−2) 69.3 56.6 69.1 66.5
∠(rk, rk−1) 55.7 42.7 52.4 52.2

TABLE IV
E05R0000

k 20 30 40 50
∠(rk, rk−2) 59.7 68.1 64.6 62.6
∠(rk, rk−1) 48.2 52.3 45.9 47.8

can be derived by solving the following minimization problem,

‖rk+1‖ = ‖βe1 −Hsyk+1‖ = min
y∈Rs

‖βe1 −Hsy‖. (12)

It is easy to verify that (12) is equivalent to

rk+1 ⊥ AWs. (13)

Proposition 4: Let rk+1, rk, and rk−1 be the residual
vectors from LGMRES-E. Then the angles between these
residual vectors are given by

cos∠(rk+1, rk) =
||rk+1||
||rk|| , (14)

cos∠(rk+1, rk−1) =
||rk+1||
||rk−1|| . (15)

Proof: Define zk = Wsyk, then it is easy to see that
the residual vectors satisfy rk+1 = rk − Azk+1 and rk =
rk−1 −Azk. As (13) implies rk+1 ⊥ Azk+1, so

〈rk+1, rk+1〉 = 〈rk+1, rk〉.
Moreover, from (13) we also have rk+1 ⊥ Azk, so

〈rk+1, rk−1 − rk〉 = 0.

Thus relationships (14) and (15) are proved by the definition
of cosine.

The results (14) and (15) show that the residual vectors
of LGMRES-E have similar geometric properties with that
of LGMRES discussed in [2]. LGMRES-E(12,2,1) is tested
on the same matrices as the ones in Table I and Table II.
The tested results are shown in Table III and Table IV. By
using the same stopping criterion as before, the first linear
system “sherman1” converges after 58 restarts and the second
linear system “e05r0000” converges after 51 restarts. From
Table III and Table IV, it is easy to see that the skip angles
of LGMRES-E are generally larger than the corresponding
sequence angles, and both kinds of angles can kept at rea-
sonable degrees. This implies that LGMRES-E can avoid the
alternating behavior observed in the GMRES-E method, and
therefore a faster convergence behavior is expected. In the
next section, numerical examples are given to demonstrate the
improvement of LGMRES-E method for a class of problems.

IV. EXPERIMENTAL RESULTS

In this section, we report some numerical results tested on
a variety of matrices from Matrix Market Collection [22] and
Harwell-Beoing sparse matrix collection [12] and University
of Florida Sparse Matrix Collection [7]. All the tests are run on
a desktop machine with INTEL PENTIUM IV 2.4GHZ CPUs
and 256M of main memory, by using MATLAB 7.0.4. Without
special explanation, we always use a random vector as the right
hand side, and the initial approximation x0 is chosen as a zero
vector. We terminated the iterations once the residual vectors
rk satisfies

||rk||
||r0|| ≤ 10−8.

All the matrices used in this paper is outlined in Table V.
The columns labeled size and nnz are for matrix dimension
and number of non-zeros entries. λmax refers to the estimate
of the largest (in magnitude) eigenvalue of A, and λ−i, i =
1, 2, 3, refer to the estimation of three smallest eigenvalues in
magnitude, respectively.

In [2], A. Baker et.al has demonstrated that the optimal
number l of error approximations used in LGMRES at every
cycle of the iterations is typically small, generally less than
3, and the distinction of the performances is actually close
to each other for l ≤ 3. We observe in this paper that the
optimal value for l is also small. The number of restarts to
make the relative residual norm below 10−5 is recorded in
Table VI, from which we can see that LGMRES-E(m, d, l)
with l = 1 produces better results on most of the tested
matrices. Therefore we set l = 1 for LGMRES-E(m, d, l) and
LGMRES(m, l) in the following examples. We remark that
if larger subspaces are used, then there are indeed cases that
LGMRES-E(m, d, l) with l > 1 produces better results. Mo-
rover, we observe that GMRES-E and LGMRES-E generally
exhibit certain superlinear convergence behavior for most of
the tested problems, especially for the problems with well-
separated small eigenvalues. This is because both methods
can periodically deflate small eigenvalues that hamper the
convergence, which improves the convergence of GMRES(m)
[19]. However, the linear independence between every other
approximate subspaces is impaired, which can be learned from
the small skip angles displayed in Table I and Table II. This
phenomena indicates that every other subspace have similar
information such that the GMRES-E gain little progress in
every other restart cycles. By retaining error approximations,
LGMRES-E can partially preserve the linear independence
between the sequential and every other approximate sub-
spaces, so that LGMRES-E can improve the performance
of GMRES-E. As far as LGMRES method is concerned,
we observe that the residual norms of LGMRES decreases
steadily, often with an alternating behavior of local slow and
local superlinear convergence. The reason may be that small
eigenvalues produce continual influence on the convergence
rate at the early phase of every cycle. To show the superiority
of the new method, we mainly compare the convergence
behaviors between LGMRES-E and GMRES-E or LGMRES-
E and LGMRES in the following discussions. The convergence
curves of three algorithms will be outlined in each figure.
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TABLE V
THE MATRICES INFORMATION USED IN THE NUMERICAL TESTS

matrix size nnz λ−1 λ−2 λ−3 λmax

sherman1 1000 3750 -3.0× 10−4 -1.0× 10−3 -1.1× 10−3 -5.04
sherman4 1104 3786 0.03 0.09 0.28 66.5
sherman5 3312 20793 0.05 0.13 0.40 594.5
cavity05 1182 32747 2.3× 10−5 9.7× 10−4 9.7× 10−4 13
cavity10 2597 76367 4.4× 10−6 4.3× 10−4 4.3× 10−4 13.05

e05r0000 236 5856 -4× 10−4 -3.9× 10−4 -3.9× 10−4 12.8
saylr4 3654 22316 -1.9× 10−3 -2.7× 10−2 -0.1 -1.3× 104

memplus 17758 126150 1.16× 10−5 1.17× 10−5 1.18× 10−5 1.49
orsreg1 2205 14133 -4.91 -4.98 -5.2 -2.8× 104

wang4 26068 177196 4.6× 10−6 5.2× 10−6 1.5× 10−5 0.09

TABLE VI
THE PERFORMANCE OF LGMRES-E(21, 4− l, l) FOR DIFFERENT l.

l sherman1 sherman4 sherman5 cavity05 cavity10 saylr4
1 19 5 87 38 61 124
2 18 5 116 52 81 167
3 21 5 140 51 89 178

Example 1.
Three matrices “sherman1”, “sherman4” and “sherman5”
from Harwell-Beoing sparse matrix collection [12] are tested,
and the corresponding right hand sides given in the matrix
collection are used. These matrices are all real nonsymmetric,
generated in oil reservoir simulation. Table VII shows the
tested results for “sherman1” and “sherman4”. The matrix
“sherman4” can be handled easily even by GMRES(20).
It is easy to see that LGMRES-E(17,2,1) behaves slightly
better than GMRES-E(17,3) while considerably faster than
LGMRES(19,1). The matrix “sherman1” is a relatively
difficult one. LGMRES-E(17,2,1) is slightly superior to
LGMRES(19,1) while far better than GMRES-E(17,3). As
noted in [20], the matrix “sherman5” is a difficult matrix
without preconditioning. If the dimension of the approximate
subspace is set to be 20, only LGMRES-E(17,2,1) converges
within 500 restarts. When enlarging the subspace dimension
to be 30, all the algorithms converges as are shown in
Figures 1. GMRES-E(27,3) converges within 208 restarts in
71.9 seconds, and LGMRES-E(27,2,1) converges within 117
restarts in 40.1 seconds. LGMRES(29,1) converges steadily
but rather more slowly, and the minimal residual norm
reaches 3.4e-6 within 300 restarts.

TABLE VII
NUMERICAL RESULTS FOR “SHERMAN1” AND “SHERMAN4”

sherman1 sherman4
algorithms iter time iter time

LGMRES-E(17,2,1) 35 0.71 10 0.45
GMRES-E(17,3) 77 1.46 11 0.61
LGMRES(19,1) 36 0.72 21 0.95

GMRES(20) 230 2.28 40 1.10
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Figure 1. Convergence history of the algorithms; matrix sherman5
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GMRES−E−E(27,2,1)

Fig. 1. The convergence curves of matrix sherman5.
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Figure 2. Convergence history of three algorithms for cavity05

LGMRES(24,1)
GMRES−E(22,3)
GMRES−E−E(22,2,1)

Fig. 2. The convergence curves of matrix cavity05.

Example 2.
We consider two matrices “cavity5” and “cavity10” from
[22] arising from finite element modeling. Both matrices
are real nonsymmetric with a relative small eigenvalue in
magnitude as shown in Table V. The normalized right hand
side corresponding to each matrix is used. The convergence
results are reported in Figure 2 and Figure 3. It is obvious
to see that LGMRES-E exhibits superlinear convergence
and always converges faster than the other two methods.
LGMRES presents a pattern of alternating between local slow
and local steep decrease in the residual norms. As far as CPU
timings in seconds are concerned, LGMRES, GMRES-E and
LGMRES-E spend 14.1s, 5.5s, 4.2s on “cavity05”, and 62.6s,
57.5s, 16.8s on “cavity10”, respectively.

Example 3.
The 3D oil reservoir simulation matrix “saylr4” from Harwell-
Boeing collection [12] is tested in this example. It is a real
symmetric matrix. Without preconditioning, this problem is
very difficult for GMRES-E. The minimal relative residual
norm of GMRES-E(21,4) and GMRES-E(27,3) are 7.8×10−4

and 6.2 × 10−8 within 500 restarts. The tested results of
LGMRES and LGMRES-E are listed in Table VIII. We can
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Firgure 3. Convergence history of three algorithms for matrix cavity10

LGMRES(24,1)
GMRES−E(22,3)
GMRES−E−E(22,2,1)

Fig. 3. The convergence curves of matrix cavity10.

see that that LGMRES-E is more efficient, in terms of both
the number of restarts and CPU timings.

TABLE VIII
COMPARISON OF LGMRES-E WITH LGMRES

Algorithm iter time res
LGMRES-E(12,2,1) 347 41.1 9.9× 10−9

LGMRES(14,1) 473 87.7 9.8× 10−9

LGMRES-E(17,2,1) 223 44.3 9.6× 10−9

LGMRES(19,1) 297 78.9 9.6× 10−9

LGMRES-E(22,2,1) 164 48.7 9.4× 10−9

LGMRES(24,1) 220 83.9 9.6× 10−9

LGMRES-E(27,2,1) 136 56.5 8.9× 10−9

LGMRES(29,1) 176 92.7 9.4× 10−9

Example 4.
In this example, we tested a relatively large matrix “wang4”
from the University of Florida Sparse Matrix Collection [7].
This matrix is of order 26080 generated from semiconductor
device problem. The right hand side b is set to be A ∗
ones(n, 1) such that the exact solution be ones(n, 1). Taking
sparse incomplete LU factorization of A with droptol = 0.1
as a preconditioner [25], i.e., the preconditioner luinc(A, 0.1)
in MATLAB. In Figure 4 we display the convergence curves of
three preconditioned methods. In this example the new method
exhibits faster convergence behavior with preconditioning. It
can be calculated using eigs that the three smallest eigen-
values of the preconditioned system is about 0.0023, 0.0029
and 0.003. So the LGMRES-E and GMRES-E benefit from
preconditioning. However, if there are no small eigenvalues
close to zero, then augmenting approximate eigenvectors may
not be helpful, while adding error approximations can still
produce active effect, as is shown by the next example.

Example 5.
Two real nonsymmetric matrices “memplus” and “orsreg1”
used in this example are taken from [12]. Figure 5 and Figure 6
illustrate the convergence curves of the three methods. From
the two figures we can see that compared with LGMRES
and LGMRES-E, the GMRES-E has the worst convergence
behavior. LGMRES works best and these results show the
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Fig. 4. The convergence curves of matrix wang4.
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Fig. 5. The convergence curves of matrix memplus.
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Fig. 6. The convergence curves of matrix orsreg1.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:6, No:8, 2012 

863International Scholarly and Scientific Research & Innovation 6(8) 2012 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:6
, N

o:
8,

 2
01

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
47

2.
pd

f



effect of using error approximations. In this case, LGMRES-
E works slightly worse than LGMRES, but much better
than GMRES-E. The explanation for this phenomena is that
augmenting approximate eigenvectors does not produce active
effect on improving the convergence rate, whereas adding
error approximations does. We can see from Table V that
the smallest eigenvalues are not well separated for matrix
memplus, and there are no the small eigenvalues near zero
for matrix “orsreg1”.

V. CONCLUSIONS

In this paper we have proposed a combined augmented
restarted GMRES method: LGMES-E. The new method can be
viewed as an accelerated GMRES-E by using the accelerating
technique of LGMRES. With a combined accelerating strategy,
the new method can not only effectively deflate the smallest
eigenvalues by augmenting harmonic Ritz vectors, but also
has the property of recovering global optimality of the full
GMRES method by augmenting error approximations. Numer-
ical examples have shown that the new method is efficient on
problems with well separated with small eigenvalues.
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