**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**786

# World Academy of Science, Engineering and Technology

## [Physical and Mathematical Sciences]

### Online ISSN : 1307-6892

##### 786 Localising Gauss's Law and the Electric Charge Induction on a Conducting Sphere

**Authors:**
Sirapat Lookrak,
Anol Paisal

**Abstract:**

Space debris has numerous manifestations including ferro-metalize and non-ferrous. The electric field will induce negative charges to split from positive charges inside the space debris. In this research, we focus only on conducting materials. The assumption is that the electric charge density of a conducting surface is proportional to the electric field on that surface due to Gauss's law. We are trying to find the induced charge density from an external electric field perpendicular to a conducting spherical surface. An object is a sphere on which the external electric field is not uniform. The electric field is, therefore, considered locally. The localised spherical surface is a tangent plane so the Gaussian surface is a very small cylinder and every point on a spherical surface has its own cylinder. The electric field from a circular electrode has been calculated in near-field and far-field approximation and shown Explanation Touchless manoeuvring space debris orbit properties. The electric charge density calculation from a near-field and far-field approximation is done.

**Keywords:**
Near-field approximation,
far-field approximation,
localized Gauss’s law,
electric charge density.

##### 785 Approximated Solutions of Two-Point Nonlinear Boundary Problem by a Combination of Taylor Series Expansion and Newton Raphson Method

**Authors:**
Chinwendu. B. Eleje,
Udechukwu P. Egbuhuzor

**Abstract:**

One of the difficulties encountered in solving nonlinear Boundary Value Problems (BVP) by many researchers is finding approximated solutions with minimum deviations from the exact solutions without so much rigor and complications. In this paper, we propose an approach to solve a two point BVP which involves a combination of Taylor series expansion method and Newton Raphson method. Furthermore, the fourth and sixth order approximated solutions are obtained and we compare their relative error and rate of convergence to the exact solution. Finally, some numerical simulations are presented to show the behavior of the solution and its derivatives.

**Keywords:**
Newton Raphson method,
non-linear boundary value problem,
Taylor series approximation,
Michaelis-Menten equation.

##### 784 Investigation of the Effect of Pressure Changes on the Gas Proportional Detector

**Authors:**
S. M. Golgoun,
S. M. Taheri

**Abstract:**

Investigation of radioactive contamination of personnel working in radiation centers to identify radioactive materials and then measure the potential contamination and eliminate it has always been considered. Various ways have been proposed to detect radiation so far and different detectors have been designed. A gas sealed proportional counter is one of these detectors which has special working conditions. In this research, a gas sealed detector of proportional counter type was made and then its various parameters were investigated. Some parameters are influential on their working conditions and one of these most important parameters is the internal pressure of the proportional gas-filled detector. In this experimental research, we produced software for examination and altering high voltage, registering data, and calculating efficiency of the detector. By this, we investigated different gas pressure effects on detector efficiency and proposed optimizing working conditions of this detector. After reviewing the results, we suggested a range between 20-30 mbar pressure for this gas sealed detector.

**Keywords:**
Gas sealed detector,
proportional detector,
gas pressure measurement,
counter.

##### 783 Appraisal of Relativistic Effects on GNSS Receiver Positioning

**Authors:**
I. Yakubu,
Y. Y. Ziggah,
E. A. Gyamera

**Abstract:**

The Global Navigation Satellite System (GNSS) started with the launch of the United State Department of Defense Global Positioning System (GPS). GNSS systems has grown over the years to include: GLONASS (Russia); Galileo (European Union); BeiDou (China). Any GNSS architecture consists of three major segments: Space, Control and User Segments. Errors such as; multipath, ionospheric and tropospheric effects, satellite clocks, receiver noise and orbit errors (relativity effect) have significant effects on GNSS positioning. To obtain centimeter level accuracy, the impacts of the relative motion of the satellites and earth need to be taken into account. This paper discusses the relevance of the theory of relativity as a source of error for GNSS receivers for position fix based on available relevant literature. Review of relevant literature reveals that due to relativity; Time dilation, Gravitational frequency shift and Sagnac effect cause significant influence on the use of GNSS receivers for positioning by an error range of ± 2.5 m based on pseudo-range computation.

**Keywords:**
GNSS,
relativistic effects,
pseudo-range,
accuracy.

##### 782 Simulation of the Asphaltene Deposition Rate in a Wellbore Blockage via Computational Fluid Dynamics

**Authors:**
Xiaodong Gao,
Pingchuan Dong,
Qichao Gao

**Abstract:**

This work attempts to predict the deposition rate of asphaltene particles in blockage tube through CFD simulation. The Euler-Lagrange equation has been applied during the flow of crude oil and asphaltene particles. The net gravitational force, virtual mass, pressure gradient, Saffman lift, and drag forces are incorporated in the simulations process. Validation of CFD simulation results is compared to the benchmark experiments from the previous literature. Furthermore, the effects of blockage location, blockage length, and blockage thickness on deposition rate are also analyzed. The simulation results indicate that the maximum deposition rate of asphaltene occurs in the blocked tube section, and the greater the deposition thickness, the greater the deposition rate. Moreover, the deposition amount and maximum deposition rate along the length of the tube have the same trend. Results of this study are in the ability to better understand the deposition of asphaltene particles in production and help achieve to deal with the asphaltene challenges.

**Keywords:**
Asphaltene deposition rate,
blockage length,
blockage thickness,
blockage diameter,
transient condition.

##### 781 Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range

**Authors:**
A. Mínguez-Martínez,
J. de Vicente

**Abstract:**

Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. In this paper, we propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments, by applying minor changes.

**Keywords:**
Industrial environment,
confocal microscope,
optical measuring instrument,
traceability.

##### 780 Dynamic Fast Tracing and Smoothing Technique for Geiger-Muller Dosimeter

**Authors:**
M. Ebrahimi Shohani,
S. M. Taheri,
S. M. Golgoun

**Abstract:**

Environmental radiation dosimeter is a kind of detector that measures the dose of the radiation area. Dosimeter registers the radiation and converts it to the dose according to the calibration parameters. The limit of a dose is different at each radiation area and this limit should be notified and reported to the user and health physics department. The stochastic nature of radiation is the reason for the fluctuation of any gamma detector dosimetry. In this research we investigated Geiger-Muller type of dosimeter and tried to improve the dose measurement. Geiger-Muller dosimeter is a counter that converts registered radiation to the dose. Therefore, for better data analysis, it is necessary to apply an algorithm to smooth statistical variations of registered radiation. We proposed a method to smooth these fluctuations much more and also proposed a dynamic way to trace rapid changes of radiations. Results show that our method is fast and reliable method in comparison the traditional method.

**Keywords:**
Geiger-Muller,
radiation detection,
smoothing algorithms,
dosimeter,
dose calculation.

##### 779 Modelling an Investment Portfolio with Mandatory and Voluntary Contributions under M-CEV Model

**Authors:**
Amadi Ugwulo Chinyere,
Lewis D. Gbarayorks,
Emem N. H. Inamete

**Abstract:**

In this paper, the mandatory contribution, additional voluntary contribution (AVC) and administrative charges are merged together to determine the optimal investment strategy (OIS) for a pension plan member (PPM) in a defined contribution (DC) pension scheme under the modified constant elasticity of variance (M-CEV) model. We assume that the voluntary contribution is a stochastic process and a portfolio consisting of one risk free asset and one risky asset modeled by the M-CEV model is considered. Also, a stochastic differential equation consisting of PPM’s monthly contributions, voluntary contributions and administrative charges is obtained. More so, an optimization problem in the form of Hamilton Jacobi Bellman equation which is a nonlinear partial differential equation is obtained. Using power transformation and change of variables method, an explicit solution of the OIS and the value function are obtained under constant absolute risk averse (CARA). Furthermore, numerical simulations on the impact of some sensitive parameters on OIS were discussed extensively. Finally, our result generalizes some existing result in the literature.

**Keywords:**
DC pension fund,
modified constant elasticity of variance,
optimal investment strategies,
voluntary contribution,
administrative charges.

##### 778 An Axisymmetric Finite Element Method for Compressible Swirling Flow

**Authors:**
Raphael Zanella,
Todd A. Oliver,
Karl W. Schulz

**Abstract:**

This work deals with the finite element approximation of axisymmetric compressible flows with swirl velocity. We are interested in problems where the flow, while weakly dependent on the azimuthal coordinate, may have a strong azimuthal velocity component. We describe the approximation of the compressible Navier-Stokes equations with H1-conformal spaces of axisymmetric functions. The weak formulation is implemented in a C++ solver with explicit time marching. The code is first verified with a convergence test on a manufactured solution. The verification is completed by comparing the numerical and analytical solutions in a Poiseuille flow case and a Taylor-Couette flow case. The code is finally applied to the problem of a swirling subsonic air flow in a plasma torch geometry.

**Keywords:**
Axisymmetric problem,
compressible Navier-
Stokes equations,
continuous finite elements,
swirling flow.

##### 777 Finite Element Approximation of the Heat Equation under Axisymmetry Assumption

**Authors:**
Raphael Zanella

**Abstract:**

This works deals with the finite element approximation of axisymmetric problems. The weak formulation of the heat equation under axisymmetry assumption is established for continuous finite elements. The weak formulation is implemented in a C++ solver with implicit time marching. The code is verified by space and time convergence tests using a manufactured solution. An example problem is solved with an axisymmetric formulation and with a 3D formulation. Both formulations lead to the same result but the code based on the axisymmetric formulation is mush faster due to the lower number of degrees of freedom. This confirms the correctness of our approach and the interest of using an axisymmetric formulation when it is possible.

**Keywords:**
Axisymmetric problem,
continuous finite elements,
heat equation,
weak formulation.

##### 776 The Proof of Analogous Results for Martingales and Partial Differential Equations Options Price Valuation Formulas Using Stochastic Differential Equation Models in Finance

**Authors:**
H. D. Ibrahim,
H. C. Chinwenyi,
A. H. Usman

**Abstract:**

Valuing derivatives (options, futures, swaps, forwards, etc.) is one uneasy task in financial mathematics. The two ways this problem can be effectively resolved in finance is by the use of two methods (Martingales and Partial Differential Equations (PDEs)) to obtain their respective options price valuation formulas. This research paper examined two different stochastic financial models which are Constant Elasticity of Variance (CEV) model and Black-Karasinski term structure model. Assuming their respective option price valuation formulas, we proved the analogous of the Martingales and PDEs options price valuation formulas for the two different Stochastic Differential Equation (SDE) models. This was accomplished by using the applications of Girsanov theorem for defining an Equivalent Martingale Measure (EMM) and the Feynman-Kac theorem. The results obtained show the systematic proof for analogous of the two (Martingales and PDEs) options price valuation formulas beginning with the Martingales option price formula and arriving back at the Black-Scholes parabolic PDEs and vice versa.

**Keywords:**
Option price valuation,
Martingales,
Partial Differential Equations,
PDEs,
Equivalent Martingale Measure,
Girsanov Theorem,
Feyman-Kac Theorem,
European Put Option.

##### 775 Effect of the Tidal Charge Parameter on Temperature Anisotropies of the Cosmic Microwave Background Radiation

**Authors:**
Evariste Norbert Boj,
Jan Schee

**Abstract:**

We present the calculations of the temperature anisotropy of the cosmic microwave background radiation (CMBR) caused by an inhomogeneous region (the clump) within the Friedmann-Lemaitre-Robertson-Walker (FLRW) model of the Universe build in the framework of the Randall-Sundrum one brane model. We present two spherically symmetrical and statical models of the clump, the braneworld Reissner-Nordstrom black hole (bRNBH) and the perfect fluid sphere of uniform density matched to the FLRW spacetime via an external bRNBH. The boundary of the vacuum region expands, which induces an additional frequency shift to a photon of the CMBR passing through this inhomogeneity in comparison to the case of a photon propagating through a pure FLRW spacetime. This frequency shift is associated with an effective change of temperature of the CMBR in the corresponding direction. We give estimates on the changes of the effective temperature of the CMBR’s photon with the change of parameters describing the brane and the induced tidal forces from the bulk.

**Keywords:**
Braneworld,
CMBR,
Randall-Sundrum model,
Rees-Sciama effect,
Reissner-Nordstrom black hole.

##### 774 JEWEL: A Cosmological Model Due to the Geometrical Displacement of Galactic Object Like Black, White and Worm Holes

**Authors:**
Francesco Pia

**Abstract:**

Stellar objects such as black, white and worm holes can be the subject of speculative reasoning if represented in a simplified and geometric form in order to be able to move them; and the cosmological model is one of the most important contents in relation to speculations that can then open the way to other aspects that are not strictly speculative but practical, precisely in the Universe represented by us. In this work, thanks to the hypothesis of a very large number of black, white and worm holes present in our Universe, we imagine that they can be moved; it was therefore thought to align them on a plane and following a redistribution, and the boundaries of this plane were ideally joined, giving rise to a sphere that has the stellar objects examined radially distributed. Thanks to geometrical displacements of these stellar objects that do not make each one of them lose their functionality in the region in which they are located, at the end of the speculative process it is possible to highlight a spherical layer that allows a flow from the outside and inside this spherical shell allowing to relate to other external and internal spherical layers; this aspect that seems useful to describe the universe we live in, for example inside one of the spherical shells just described. The name "Jewel" was chosen because, imagining the speculative process present in this work at the end of steps, the cosmological model tends to be "luminous". This cosmological model includes, for each internal part of a generic layer, different and numerous moments of our universe thanks to an eternal flow inward. There are many aspects to explore, one of these is the connection between the outermost and the inside of the spherical layers.

**Keywords:**
Black hole,
cosmological model,
cosmology,
white hole.

##### 773 Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector

**Authors:**
I-Huan Chiu,
Kazuhiko Ninomiya,
Shin’ichiro Takeda,
Meito Kajino,
Miho Katsuragawa,
Shunsaku Nagasawa,
Atsushi Shinohara,
Tadayuki Takahashi,
Ryota Tomaru,
Shin Watanabe,
Goro Yabu

**Abstract:**

In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have a higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of a polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical obervation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the nondestructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research.

**Keywords:**
DSSD,
muon,
muonic X-ray,
imaging,
non-destructive analysis

##### 772 Bound State Solutions of the Schrödinger Equation for Hulthen-Yukawa Potential in D-Dimensions

**Authors:**
I. Otete,
A. I. Ejere,
I. S. Okunzuwa

**Abstract:**

In this work, we used the Hulthen-Yukawa potential to obtain the bound state energy eigenvalues of the Schrödinger equation in D-dimensions within the frame work of the Nikiforov-Uvarov (NU) method. We demonstrated the graphical behaviour of the Hulthen and the Yukawa potential and investigated how the screening parameter and the potential depth affected the structure and the nature of the bound state eigenvalues. The results we obtained showed that increasing the screening parameter lowers the energy eigenvalues. Also, the eigenvalues acted as an inverse function of the potential depth. That is, increasing the potential depth reduces the energy eigenvalues.

**Keywords:**
Schrödinger's equation,
bound state,
Hulthen-Yukawa potential,
Nikiforov-Uvarov,
D-dimensions

##### 771 Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing using Radial Basis Functions

**Authors:**
D. Kriebel,
J. E. Mehner

**Abstract:**

The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retain high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurate by using traditional arbitrary shape functions.

**Keywords:**
electromechanical,
electric field,
transducer,
simulation,
modeling,
finite-element,
mesh morphing,
radial basis function

##### 770 De Broglie Wavelength Defined by the Rest Energy E0 and Its Velocity

**Authors:**
K. Orozović,
B. Balon

**Abstract:**

In this paper, we take a different approach to de Broglie wavelength, as we relate it to relativistic physics. The quantum energy of the photon radiated by a body with de Broglie wavelength, as it moves with velocity v, can be defined within relativistic physics by rest energy E₀. In this way, we can show the connection between the quantum of radiation energy of the body and the rest of energy E₀ and thus combine what has been incompatible so far, namely relativistic and quantum physics. So, here we discuss the unification of relativistic and quantum physics by introducing the factor k that is analog to the Lorentz factor in Einstein's theory of relativity.

**Keywords:**
de Brogli wavelength,
relativistic physics,
rest energy,
quantum physics.

##### 769 Multiple Approaches for Ultrasonic Cavitation Monitoring of Oxygen-Loaded Nanodroplets

**Authors:**
Simone Galati,
Adriano Troia

**Abstract:**

**Keywords:**
Cavitation,
Drug Delivery,
Nanodroplets,
Ultrasound.

##### 768 Pension Plan Member’s Investment Strategies with Transaction Cost and Couple Risky Assets Modelled by the O-U Process

**Authors:**
Udeme O. Ini,
Edikan E. Akpanibah

**Abstract:**

This paper studies the optimal investment strategies for a plan member (PM) in a defined contribution (DC) pension scheme with transaction cost, taxes on invested funds and couple risky assets (stocks) under the Ornstein-Uhlenbeck (O-U) process. The PM’s portfolio is assumed to consist of a risk-free asset and two risky assets where the two risky assets are driven by the O-U process. The Legendre transformation and dual theory is use to transform the resultant optimal control problem which is a nonlinear partial differential equation (PDE) into linear PDE and the resultant linear PDE is then solved for the explicit solutions of the optimal investment strategies for PM exhibiting constant absolute risk aversion (CARA) using change of variable technique. Furthermore, theoretical analysis is used to study the influences of some sensitive parameters on the optimal investment strategies with observations that the optimal investment strategies for the two risky assets increase with increase in the dividend and decreases with increase in tax on the invested funds, risk averse coefficient, initial fund size and the transaction cost.

**Keywords:**
Ornstein-Uhlenbeck process,
portfolio management,
Legendre transforms,
CARA utility.

##### 767 Einstein’s General Equation of the Gravitational Field

**Authors:**
A. Benzian

**Abstract:**

The generalization of relativistic theory of gravity based essentially on the principle of equivalence stipulates that for all bodies, the grave mass is equal to the inert mass which leads us to believe that gravitation is not a property of the bodies themselves, but of space, and the conclusion that the gravitational field must curved space-time what allows the abandonment of Minkowski space (because Minkowski space-time being nonetheless null curvature) to adopt Riemannian geometry as a mathematical framework in order to determine the curvature. Therefore the work presented in this paper begins with the evolution of the concept of gravity then tensor field which manifests by Riemannian geometry to formulate the general equation of the gravitational field.

**Keywords:**
Inertia,
principle of equivalence,
tensors,
Riemannian geometry.

##### 766 Application of Differential Transformation Method for Solving Dynamical Transmission of Lassa Fever Model

**Authors:**
M. A. Omoloye,
M. I. Yusuff,
O. K. S. Emiola

**Abstract:**

The use of mathematical models for solving biological problems varies from simple to complex analyses, depending on the nature of the research problems and applicability of the models. The method is more common nowadays. Many complex models become impractical when transmitted analytically. However, alternative approach such as numerical method can be employed. It appropriateness in solving linear and non-linear model equation in Differential Transformation Method (DTM) which depends on Taylor series make it applicable. Hence this study investigates the application of DTM to solve dynamic transmission of Lassa fever model in a population. The mathematical model was formulated using first order differential equation. Firstly, existence and uniqueness of the solution was determined to establish that the model is mathematically well posed for the application of DTM. Numerically, simulations were conducted to compare the results obtained by DTM and that of fourth-order Runge-Kutta method. As shown, DTM is very effective in predicting the solution of epidemics of Lassa fever model.

**Keywords:**
Differential Transform Method,
Existence and uniqueness,
Lassa fever,
Runge-Kutta Method.

##### 765 The Explanation for Dark Matter and Dark Energy

**Authors:**
Richard Lewis

**Abstract:**

The following assumptions of the Big Bang theory are challenged and found to be false: the cosmological principle, the assumption that all matter formed at the same time and the assumption regarding the cause of the cosmic microwave background radiation. The evolution of the universe is described based on the conclusion that the universe is finite with a space boundary. This conclusion is reached by ruling out the possibility of an infinite universe or a universe which is finite with no boundary. In a finite universe, the centre of the universe can be located with reference to our home galaxy (The Milky Way) using the speed relative to the Cosmic Microwave Background (CMB) rest frame and Hubble's law. This places our home galaxy at a distance of approximately 26 million light years from the centre of the universe. Because we are making observations from a point relatively close to the centre of the universe, the universe appears to be isotropic and homogeneous but this is not the case. The CMB is coming from a source located within the event horizon of the universe. There is sufficient mass in the universe to create an event horizon at the Schwarzschild radius. Galaxies form over time due to the energy released by the expansion of space. Conservation of energy must consider total energy which is mass (+ve) plus energy (+ve) plus spacetime curvature (-ve) so that the total energy of the universe is always zero. The predominant position of galaxy formation moves over time from the centre of the universe towards the boundary so that today the majority of new galaxy formation is taking place beyond our horizon of observation at 14 billion light years.

**Keywords:**
Cosmic microwave background,
dark energy,
dark matter,
evolution of the universe.

##### 764 Validity of Universe Structure Conception as Nested Vortexes

**Authors:**
Khaled M. Nabil

**Abstract:**

This paper introduces the Nested Vortexes conception of the universe structure and interprets all the physical phenomena according this conception. The paper first reviews recent physics theories, either in microscopic scale or macroscopic scale, to collect evidence that the space is not empty. But, these theories describe the property of the space medium without determining its structure. Determining the structure of space medium is essential to understand the mechanism that leads to its properties. Without determining the space medium structure, many phenomena; such as electric and magnetic fields, gravity, or wave-particle duality remain uninterpreted. Thus, this paper introduces a conception about the structure of the universe. It assumes that the universe is a medium of ultra-tiny homogeneous particles which are still undiscovered. Like any medium with certain movements, possibly because of a great asymmetric explosion, vortexes have occurred. A vortex condenses the ultra-tiny particles in its center forming a bigger particle, the bigger particles, in turn, could be trapped in a bigger vortex and condense in its center forming a much bigger particle and so on. This conception describes galaxies, stars, protons as particles at different levels. Existing of the particle’s vortexes make the consistency of the speed of light postulate is not true. This conception shows that the vortex motion dynamic agrees with the motion of all the universe particles at any level. An experiment has been carried out to detect the orbiting effect of aggregated vortexes of aligned atoms of a permanent magnet. Based on the described particle’s structure, the gravity force of a particle and attraction between particles as well as charge, electric and magnetic fields and quantum mechanics characteristics are interpreted. All augmented physics phenomena are solved.

**Keywords:**
Astrophysics,
cosmology,
particles’ structure model,
particles’ forces,
vortex dynamics.

##### 763 Weyl Type Theorem and the Fuglede Property

**Authors:**
M. H. M. Rashid

**Abstract:**

**Keywords:**
Fuglede Property,
Weyl’s theorem,
generalized
derivation,
Aluthge Transformation.

##### 762 Competitors’ Influence Analysis of a Retailer by Using Customer Value and Huff’s Gravity Model

**Authors:**
Yepeng Cheng,
Yasuhiko Morimoto

**Abstract:**

**Keywords:**
Customer value,
Huff's Gravity Model,
POS,
retailer.

##### 761 Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach

**Authors:**
Saowaluck Ukrisdawithid

**Abstract:**

The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment.

**Keywords:**
Single laboratory validation approach,
within-laboratory reproducibility,
method and laboratory bias,
certified reference material.

##### 760 Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain

**Authors:**
K. Khelil,
H. Ammar,
K. Saouchi

**Abstract:**

Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings.

**Keywords:**
Bragg wavelength,
coupled mode theory,
optical fiber,
temperature measurement.

##### 759 Effective Charge Coupling in Low Dimensional Doped Quantum Antiferromagnets

**Authors:**
Suraka Bhattacharjee,
Ranjan Chaudhury

**Abstract:**

**Keywords:**
Generalized charge stiffness constant,
charge coupling,
effective Coulomb interaction,
t-J-like models,
momentum-space
pairing.

##### 758 Retail Strategy to Reduce Waste Keeping High Profit Utilizing Taylor's Law in Point-of-Sales Data

**Authors:**
Gen Sakoda,
Hideki Takayasu,
Misako Takayasu

**Abstract:**

Waste reduction is a fundamental problem for sustainability. Methods for waste reduction with point-of-sales (POS) data are proposed, utilizing the knowledge of a recent econophysics study on a statistical property of POS data. Concretely, the non-stationary time series analysis method based on the Particle Filter is developed, which considers abnormal fluctuation scaling known as Taylor's law. This method is extended for handling incomplete sales data because of stock-outs by introducing maximum likelihood estimation for censored data. The way for optimal stock determination with pricing the cost of waste reduction is also proposed. This study focuses on the examination of the methods for large sales numbers where Taylor's law is obvious. Numerical analysis using aggregated POS data shows the effectiveness of the methods to reduce food waste maintaining a high profit for large sales numbers. Moreover, the way of pricing the cost of waste reduction reveals that a small profit loss realizes substantial waste reduction, especially in the case that the proportionality constant of Taylor’s law is small. Specifically, around 1% profit loss realizes half disposal at =0.12, which is the actual value of processed food items used in this research. The methods provide practical and effective solutions for waste reduction keeping a high profit, especially with large sales numbers.

**Keywords:**
Food waste reduction,
particle filter,
point of sales,
sustainable development goals,
Taylor's Law,
time series analysis.

##### 757 Creation of GaxCo1-xZnSe0.4 (x = 0.1, 0.3, 0.5) Nanoparticles Using Pulse Laser Ablation Method

**Authors:**
Yong Pan,
Li Wang,
Xue Qiong Su,
Dong Wen Gao

**Abstract:**

To date, nanomaterials have received extensive attention over the years because of their wide application. Various nanomaterials such as nanoparticles, nanowire, nanoring, nanostars and other nanostructures have begun to be systematically studied. The preparation of these materials by chemical methods is not only costly, but also has a long cycle and high toxicity. At the same time, preparation of nanoparticles of multi-doped composites has been limited due to the special structure of the materials. In order to prepare multi-doped composites with the same structure as macro-materials and simplify the preparation method, the Ga_{x}Co_{1-x}ZnSe_{0.4} (x = 0.1, 0.3, 0.5) nanoparticles are prepared by Pulse Laser Ablation (PLA) method. The particle component and structure are systematically investigated by X-ray diffraction (XRD) and Raman spectra, which show that the success of our preparation and the same concentration between nanoparticles (NPs) and target. Morphology of the NPs characterized by Transmission Electron Microscopy (TEM) indicates the circular-shaped particles in preparation. Fluorescence properties are reflected by PL spectra, which demonstrate the best performance in concentration of Ga_{0.3}Co_{0.3}ZnSe_{0.4}. Therefore, all the results suggest that PLA is promising to prepare the multi-NPs since it can modulate performance of NPs.

**Keywords:**
PLA,
physics,
nanoparticles,
multi-doped.