Ultrafast Transistor Laser Containing Graded Index Separate Confinement Heterostructure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33087
Ultrafast Transistor Laser Containing Graded Index Separate Confinement Heterostructure

Authors: Mohammad Hosseini

Abstract:

Ultrafast transistor laser investigated here has the graded index separate confinement heterostructure (GRIN-SCH) in its base region. Resonance-free optical frequency response with -3 dB bandwidth of more than 26 GHz has been achieved for a single quantum well transistor laser by using graded index layers of AlξGa1-ξAs (ξ: 0.1→0) in the left side of quantum well and AlξGa1-ξAs (ξ: 0.05→0) in the right side of quantum well. All required parameters, including quantum well and base transit time, optical confinement factor and spontaneous recombination lifetime, have been calculated using a self-consistent charge control model.

Keywords: Transistor laser, ultrafast, GRIN-SCH, -3db optical bandwidth, AlξGa1-ξAs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171

References:


[1] M. Feng, N. Holonyak, Jr., W. Hafez, “Light-emitting transistor: light emission from InGaP/GaAs heterojunction bipolar transistors”. Appl. Phys. Lett. 84(1), 151 (2004)
[2] Walter, G., Holonyak, N. Jr., Feng, M., Chan, M.: Laser operation of a heterojunction bipolar light-emitting transistor. Appl. Phys. Lett. 85(20), 4768 (2004).
[3] Feng, M., Holonyak, N. Jr., Walter, G., Chan, R.: Room temperature continuous wave operation of a heterojunction bipolar transistor laser. Appl. Phys. Lett. 87, 131103 (2005)
[4] Kaatuzian, H.: Photonics, vol. 2, 2’ nd edition. Amirkabir University (AKU) Press, Tehran (2009)
[5] Iliadis, A.A, Zahurak, J.K, Tabatabaei, S.A, "Application specific devices: transport and performance of the Quasi-MODFET and the graded base heterojunction bipolar transistor, “in Semiconductor Conference, 1996. International, vol.2, no., pp.479-488 vol.2, 9-12 Oct 1996 al of Luminescence, 157 (2015) 235.
[6] W. Liu, “Fundamentals of III-V Devices HBTs, MESFETs and HFETs/HEMTs”, 1999, John Wiley& Sons, New York.
[7] I. Taghavi, H. Kaatuzian and J. P. Leburton, "Performance Optimization of Multiple Quantum Well Transistor Laser," IEEE J. Quantum Electron, vol. 49, no. 4, pp. 426-435, April 2013.
[8] Nagarajan, R., Fukushima, T., Corzine, S. W., Bowers, J. E.: Effects of carrier transport on high-speed quantum well lasers. Appl. Phys. Lett., vol. 59, no. 15, pp. 1835–1837, Jul. 1991.
[9] M. Hosseini, H. Kaatuzian, and I. Taghavi, "Graded index separate confinement heterostructure transistor laser: analysis of various confinement structures," Chin. Opt. Lett. 15, 062501- (2017)
[10] M. Hosseini, H. Kaatuzian and I. Taghavi, "Design and analysis of GRIN-SCH-SQW transistor laser," 2016 24th Iranian Conference on Electrical Engineering (ICEE), Shiraz, 2016, pp. 617-620.
[11] M. Feng, N. Holonyak, Jr., H. W. Then, and G. Walter, “Charge control analysis of transistor laser operation, Appl.Phys.Lett. 91, 053501 (2007).
[12] Feng, M., Then, H. W., Holonyak, N. Jr, Walter, G., James, A.: Resonance-free frequency response of a semiconductor laser. Appl. Phys. Lett. 95, 033509 (2009)
[13] M. Hosseini, H. Kaatuzian and I. Taghavi, "Investigation of confining layers effects on optoelectronic performances of transistor laser," 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, 2017, pp. 417-419.