Publications | Mathematical and Computational Sciences
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1705

World Academy of Science, Engineering and Technology

[Mathematical and Computational Sciences]

Online ISSN : 1307-6892

115 Feature Subset Selection Using Ant Colony Optimization

Authors: Ahmed Al-Ani

Abstract:

Feature selection is an important step in many pattern classification problems. It is applied to select a subset of features, from a much larger set, such that the selected subset is sufficient to perform the classification task. Due to its importance, the problem of feature selection has been investigated by many researchers. In this paper, a novel feature subset search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.

Keywords: Ant Colony Optimization, ant systems, feature selection, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
114 Approximation of Sturm-Liouville Problems by Exponentially Weighted Legendre-Gauss Tau Method

Authors: Mohamed K. El Daou

Abstract:

We construct an exponentially weighted Legendre- Gauss Tau method for solving differential equations with oscillatory solutions. The proposed method is applied to Sturm-Liouville problems. Numerical examples illustrating the efficiency and the high accuracy of our results are presented.

Keywords: Oscillatory functions, Sturm-Liouville problems, legendre polynomial, gauss points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
113 Parallel Direct Integration Variable Step Block Method for Solving Large System of Higher Order Ordinary Differential Equations

Authors: Zanariah Abdul Majid, Mohamed Suleiman

Abstract:

The aim of this paper is to investigate the performance of the developed two point block method designed for two processors for solving directly non stiff large systems of higher order ordinary differential equations (ODEs). The method calculates the numerical solution at two points simultaneously and produces two new equally spaced solution values within a block and it is possible to assign the computational tasks at each time step to a single processor. The algorithm of the method was developed in C language and the parallel computation was done on a parallel shared memory environment. Numerical results are given to compare the efficiency of the developed method to the sequential timing. For large problems, the parallel implementation produced 1.95 speed-up and 98% efficiency for the two processors.

Keywords: Numerical methods, parallel method, block method, higher order ODEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
112 Relationship between Sums of Squares in Linear Regression and Semi-parametric Regression

Authors: Dursun Aydın, Bilgin Senel

Abstract:

In this paper, the sum of squares in linear regression is reduced to sum of squares in semi-parametric regression. We indicated that different sums of squares in the linear regression are similar to various deviance statements in semi-parametric regression. In addition to, coefficient of the determination derived in linear regression model is easily generalized to coefficient of the determination of the semi-parametric regression model. Then, it is made an application in order to support the theory of the linear regression and semi-parametric regression. In this way, study is supported with a simulated data example.

Keywords: Semi-parametric regression, Penalized LeastSquares, Residuals, Deviance, Smoothing Spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
111 Local Error Control in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe an effective local error control algorithm for RK5GL3, which uses local extrapolation with an eighth-order Runge-Kutta method in tandem with RK5GL3, and a Hermite interpolating polynomial for solution estimation at the Gauss-Legendre quadrature nodes.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, Hermite interpolating polynomial, initial value problem, local error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
110 Error Propagation in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe the propagation of local errors in this method, and show that the global order of RK5GL3 is expected to be six, one better than the underlying Runge- Kutta method.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, order, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
109 HIV Modelling - Parallel Implementation Strategies

Authors: Dimitri Perrin, Heather J. Ruskin, Martin Crane

Abstract:

We report on the development of a model to understand why the range of experience with respect to HIV infection is so diverse, especially with respect to the latency period. To investigate this, an agent-based approach is used to extract highlevel behaviour which cannot be described analytically from the set of interaction rules at the cellular level. A network of independent matrices mimics the chain of lymph nodes. Dealing with massively multi-agent systems requires major computational effort. However, parallelisation methods are a natural consequence and advantage of the multi-agent approach and, using the MPI library, are here implemented, tested and optimized. Our current focus is on the various implementations of the data transfer across the network. Three communications strategies are proposed and tested, showing that the most efficient approach is communication based on the natural lymph-network connectivity.

Keywords: HIV, Immune modelling, MPI, Parallelisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
108 Group Similarity Transformation of a Time Dependent Chemical Convective Process

Authors: M. M. Kassem, A. S. Rashed

Abstract:

The time dependent progress of a chemical reaction over a flat horizontal plate is here considered. The problem is solved through the group similarity transformation method which reduces the number of independent by one and leads to a set of nonlinear ordinary differential equation. The problem shows a singularity at the chemical reaction order n=1 and is analytically solved through the perturbation method. The behavior of the process is then numerically investigated for n≠1 and different Schmidt numbers. Graphical results for the velocity and concentration of chemicals based on the analytical and numerical solutions are presented and discussed.

Keywords: Time dependent, chemical convection, grouptransformation method, perturbation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
107 Parallel Block Backward Differentiation Formulas for Solving Ordinary Differential Equations

Authors: Khairil Iskandar Othman, Zarina Bibi Ibrahim, Mohamed Suleiman

Abstract:

A parallel block method based on Backward Differentiation Formulas (BDF) is developed for the parallel solution of stiff Ordinary Differential Equations (ODEs). Most common methods for solving stiff systems of ODEs are based on implicit formulae and solved using Newton iteration which requires repeated solution of systems of linear equations with coefficient matrix, I - hβJ . Here, J is the Jacobian matrix of the problem. In this paper, the matrix operations is paralleled in order to reduce the cost of the iterations. Numerical results are given to compare the speedup and efficiency of parallel algorithm and that of sequential algorithm.

Keywords: Backward Differentiation Formula, block, ordinarydifferential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
106 On Diffusion Approximation of Discrete Markov Dynamical Systems

Authors: Jevgenijs Carkovs

Abstract:

The paper is devoted to stochastic analysis of finite dimensional difference equation with dependent on ergodic Markov chain increments, which are proportional to small parameter ". A point-form solution of this difference equation may be represented as vertexes of a time-dependent continuous broken line given on the segment [0,1] with "-dependent scaling of intervals between vertexes. Tending " to zero one may apply stochastic averaging and diffusion approximation procedures and construct continuous approximation of the initial stochastic iterations as an ordinary or stochastic Ito differential equation. The paper proves that for sufficiently small " these equations may be successfully applied not only to approximate finite number of iterations but also for asymptotic analysis of iterations, when number of iterations tends to infinity.

Keywords: Markov dynamical system, diffusion approximation, equilibrium stochastic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
105 The Riemann Barycenter Computation and Means of Several Matrices

Authors: Miklos Palfia

Abstract:

An iterative definition of any n variable mean function is given in this article, which iteratively uses the two-variable form of the corresponding two-variable mean function. This extension method omits recursivity which is an important improvement compared with certain recursive formulas given before by Ando-Li-Mathias, Petz- Temesi. Furthermore it is conjectured here that this iterative algorithm coincides with the solution of the Riemann centroid minimization problem. Certain simulations are given here to compare the convergence rate of the different algorithms given in the literature. These algorithms will be the gradient and the Newton mehod for the Riemann centroid computation.

Keywords: Means, matrix means, operator means, geometric mean, Riemannian center of mass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
104 Direct Block Backward Differentiation Formulas for Solving Second Order Ordinary Differential Equations

Authors: Zarina Bibi Ibrahim, Mohamed Suleiman, Khairil Iskandar Othman

Abstract:

In this paper, a direct method based on variable step size Block Backward Differentiation Formula which is referred as BBDF2 for solving second order Ordinary Differential Equations (ODEs) is developed. The advantages of the BBDF2 method over the corresponding sequential variable step variable order Backward Differentiation Formula (BDFVS) when used to solve the same problem as a first order system are pointed out. Numerical results are given to validate the method.

Keywords: Backward Differentiation Formula, block, secondorder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
103 Architecture, Implementation and Application of Tools for Experimental Analysis

Authors: Tom Dowling, Adam Duffy

Abstract:

This paper presents an architecture to assist in the development of tools to perform experimental analysis. Existing implementations of tools based on this architecture are also described in this paper. These tools are applied to the real world problem of fault attack emulation and detection in cryptographic algorithms.

Keywords: Software Architectures and Design, Software Componentsand Reuse, Engineering Secure Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
102 Reflection of Plane Waves at Free Surface of an Initially Stressed Dissipative Medium

Authors: M. M. Selim

Abstract:

The paper discuses the effect of initial stresses on the reflection coefficients of plane waves in a dissipative medium. Basic governing equations are formulated in context of Biot's incremental deformation theory. These governing equations are solved analytically to obtain the dimensional phase velocities of plane waves propagating in plane of symmetry. Closed-form expressions for the reflection coefficients of P and SV waves- incident at the free surface of an initially stressed dissipative medium are obtained. Numerical computations, using these expressions, are carried out for a particular model. Computations made with the results predicted in presence and absence of the initial stresses and the results have been shown graphically. The study shows that the presence of compressive initial stresses increases the velocity of longitudinal wave (P-wave) but diminishes that of transverse wave (SV-wave). Also the numerical results presented indicate that initial stresses and dissipation might affect the reflection coefficients significantly.

Keywords: Dissipation medium, initial stress, longitudinal waves, reflection coefficients, reflection of plane waves, transverse waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
101 Laplace Transformation on Ordered Linear Space of Generalized Functions

Authors: K. V. Geetha, N. R. Mangalambal

Abstract:

Aim. We have introduced the notion of order to multinormed spaces and countable union spaces and their duals. The topology of bounded convergence is assigned to the dual spaces. The aim of this paper is to develop the theory of ordered topological linear spaces La,b, L(w, z), the dual spaces of ordered multinormed spaces La,b, ordered countable union spaces L(w, z), with the topology of bounded convergence assigned to the dual spaces. We apply Laplace transformation to the ordered linear space of Laplace transformable generalized functions. We ultimately aim at finding solutions to nonhomogeneous nth order linear differential equations with constant coefficients in terms of generalized functions and comparing different solutions evolved out of different initial conditions. Method. The above aim is achieved by • Defining the spaces La,b, L(w, z). • Assigning an order relation on these spaces by identifying a positive cone on them and studying the properties of the cone. • Defining an order relation on the dual spaces La,b, L(w, z) of La,b, L(w, z) and assigning a topology to these dual spaces which makes the order dual and the topological dual the same. • Defining the adjoint of a continuous map on these spaces and studying its behaviour when the topology of bounded convergence is assigned to the dual spaces. • Applying the two-sided Laplace Transformation on the ordered linear space of generalized functions W and studying some properties of the transformation which are used in solving differential equations. Result. The above techniques are applied to solve non-homogeneous n-th order linear differential equations with constant coefficients in terms of generalized functions and to compare different solutions of the differential equation.

Keywords: Laplace transformable generalized function, positive cone, topology of bounded convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
100 Complexity of Mathematical Expressions in Adaptive Multimodal Multimedia System Ensuring Access to Mathematics for Visually Impaired Users

Authors: Ali Awde, Yacine Bellik, Chakib Tadj

Abstract:

Our adaptive multimodal system aims at correctly presenting a mathematical expression to visually impaired users. Given an interaction context (i.e. combination of user, environment and system resources) as well as the complexity of the expression itself and the user-s preferences, the suitability scores of different presentation format are calculated. Unlike the current state-of-the art solutions, our approach takes into account the user-s situation and not imposes a solution that is not suitable to his context and capacity. In this wok, we present our methodology for calculating the mathematical expression complexity and the results of our experiment. Finally, this paper discusses the concepts and principles applied on our system as well as their validation through cases studies. This work is our original contribution to an ongoing research to make informatics more accessible to handicapped users.

Keywords: Adaptive system, intelligent multi-agent system, mathematics for visually-impaired users.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
99 Mathematical Modeling of Current Harmonics Caused by Personal Computers

Authors: Rana Abdul Jabbar Khan, Muhammad Akmal

Abstract:

Personal computers draw non-sinusoidal current with odd harmonics more significantly. Power Quality of distribution networks is severely affected due to the flow of these generated harmonics during the operation of electronic loads. In this paper, mathematical modeling of odd harmonics in current like 3rd, 5th, 7th and 9th influencing the power quality has been presented. Live signals have been captured with the help of power quality analyzer for analysis purpose. The interesting feature is that Total Harmonic Distortion (THD) in current decreases with the increase of nonlinear loads has been verified theoretically. The results obtained using mathematical expressions have been compared with the practical results and exciting results have been found.

Keywords: Harmonic Distortion, Mathematical Modeling, Power Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
98 Creep Transition in a Thin Rotating Disc Having Variable Density with Inclusion

Authors: Pankaj, Sonia R. Bansal

Abstract:

Creep stresses and strain rates have been obtained for a thin rotating disc having variable density with inclusion by using Seth-s transition theory. The density of the disc is assumed to vary radially, i.e. ( ) 0 ¤ü ¤ü r/b m - = ; ¤ü 0 and m being real positive constants. It has been observed that a disc, whose density increases radially, rotates at higher angular speed, thus decreasing the possibility of a fracture at the bore, whereas for a disc whose density decreases radially, the possibility of a fracture at the bore increases.

Keywords: Elastic-Plastic, Inclusion, Rotating disc, Stress, Strain rates, Transition, variable density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
97 Modeling of Kepler-Poinsot Solid Using Isomorphic Polyhedral Graph

Authors: Hidetoshi Nonaka

Abstract:

This paper presents an interactive modeling system of uniform polyhedra using the isomorphic graphs. Especially, Kepler-Poinsot solids are formed by modifications of dodecahedron and icosahedron.

Keywords: Kepler-Poinsot solid, Shape modeling, Polyhedralgraph, Graph drawing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
96 Enhanced Traveling Salesman Problem Solving by Genetic Algorithm Technique (TSPGA)

Authors: Buthainah Fahran Al-Dulaimi, Hamza A. Ali

Abstract:

The well known NP-complete problem of the Traveling Salesman Problem (TSP) is coded in genetic form. A software system is proposed to determine the optimum route for a Traveling Salesman Problem using Genetic Algorithm technique. The system starts from a matrix of the calculated Euclidean distances between the cities to be visited by the traveling salesman and a randomly chosen city order as the initial population. Then new generations are then created repeatedly until the proper path is reached upon reaching a stopping criterion. This search is guided by a solution evaluation function.

Keywords: Genetic algorithms, traveling salesman problem solving, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
95 Embedded Singly Diagonally Implicit Runge-Kutta –Nystrom Method Order 5(4) for the Integration of Special Second Order ODEs

Authors: Fudziah Ismail

Abstract:

In this paper a new embedded Singly Diagonally Implicit Runge-Kutta Nystrom fourth order in fifth order method for solving special second order initial value problems is derived. A standard set of test problems are tested upon and comparisons on the numerical results are made when the same set of test problems are reduced to first order systems and solved using the existing embedded diagonally implicit Runge-Kutta method. The results suggests the superiority of the new method.

Keywords: Runge-Kutta Nystrom, Special second orderproblems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
94 Solving Bus Terminal Location Problem Using Genetic Algorithm

Authors: S. Babaie-Kafaki, R. Ghanbari, S.H. Nasseri, E. Ardil

Abstract:

Bus networks design is an important problem in public transportation. The main step to this design, is determining the number of required terminals and their locations. This is an especial type of facility location problem, a large scale combinatorial optimization problem that requires a long time to be solved. The genetic algorithm (GA) is a search and optimization technique which works based on evolutionary principle of natural chromosomes. Specifically, the evolution of chromosomes due to the action of crossover, mutation and natural selection of chromosomes based on Darwin's survival-of-the-fittest principle, are all artificially simulated to constitute a robust search and optimization procedure. In this paper, we first state the problem as a mixed integer programming (MIP) problem. Then we design a new crossover and mutation for bus terminal location problem (BTLP). We tested the different parameters of genetic algorithm (for a sample problem) and obtained the optimal parameters for solving BTLP with numerical try and error.

Keywords: Bus networks, Genetic algorithm (GA), Locationproblem, Mixed integer programming (MIP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
93 Block Sorting: A New Characterization and a New Heuristic

Authors: Swapnoneel Roy, Ashok Kumar Thakur, Minhazur Rahman

Abstract:

The Block Sorting problem is to sort a given permutation moving blocks. A block is defined as a substring of the given permutation, which is also a substring of the identity permutation. Block Sorting has been proved to be NP-Hard. Until now two different 2-Approximation algorithms have been presented for block sorting. These are the best known algorithms for Block Sorting till date. In this work we present a different characterization of Block Sorting in terms of a transposition cycle graph. Then we suggest a heuristic, which we show to exhibit a 2-approximation performance guarantee for most permutations.

Keywords: Block Sorting, Optical Character Recognition, Genome Rearrangements, Sorting Primitives, ApproximationAlgorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
92 Differential Sandwich Theorems with Generalised Derivative Operator

Authors: Maslina Darus, Khalifa Al-Shaqsi

Abstract:

In this paper, a generalized derivatives operator n λ,βf introduced by the authors will be discussed. Some subordination and superordination results involving this operator for certain normalized analytic functions in the open unit disk will be investigated. Our results extend corresponding previously known results.

Keywords: Analytic functions, Univalent functions, Derivative operator, Differential subordination, Differential superordination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
91 Moment Generating Functions of Observed Gaps between Hypopnea Using Saddlepoint Approximations

Authors: Nur Zakiah Mohd Saat, Abdul Aziz Jemain

Abstract:

Saddlepoint approximations is one of the tools to obtain an expressions for densities and distribution functions. We approximate the densities of the observed gaps between the hypopnea events using the Huzurbazar saddlepoint approximation. We demonstrate the density of a maximum likelihood estimator in exponential families.

Keywords: Exponential, maximum likehood estimators, observed gap, Saddlepoint approximations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
90 Decision Tree for Competing Risks Survival Probability in Breast Cancer Study

Authors: N. A. Ibrahim, A. Kudus, I. Daud, M. R. Abu Bakar

Abstract:

Competing risks survival data that comprises of more than one type of event has been used in many applications, and one of these is in clinical study (e.g. in breast cancer study). The decision tree method can be extended to competing risks survival data by modifying the split function so as to accommodate two or more risks which might be dependent on each other. Recently, researchers have constructed some decision trees for recurrent survival time data using frailty and marginal modelling. We further extended the method for the case of competing risks. In this paper, we developed the decision tree method for competing risks survival time data based on proportional hazards for subdistribution of competing risks. In particular, we grow a tree by using deviance statistic. The application of breast cancer data is presented. Finally, to investigate the performance of the proposed method, simulation studies on identification of true group of observations were executed.

Keywords: Competing risks, Decision tree, Simulation, Subdistribution Proportional Hazard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
89 Fuzzy T-Neighborhood Groups Acting on Sets

Authors: Hazem. A. Khorshed, Mostafa A. El Gendy, Amer. Abd El-Razik

Abstract:

In this paper, The T-G-action topology on a set acted on by a fuzzy T-neighborhood (T-neighborhood, for short) group is defined as a final T-neighborhood topology with respect to a set of maps. We mainly prove that this topology is a T-regular Tneighborhood topology.

Keywords: Fuzzy set, Fuzzy topology, Triangular norm, Separation axioms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304
88 Elastic-Plastic Transition in a Thin Rotating Disc with Inclusion

Authors: Pankaj, Sonia R. Bansal

Abstract:

Stresses for the elastic-plastic transition and fully plastic state have been derived for a thin rotating disc with inclusion and results have been discussed numerically and depicted graphically. It has been observed that the rotating disc with inclusion and made of compressible material requires lesser angular speed to yield at the internal surface whereas it requires higher percentage increase in angular speed to become fully plastic as compare to disc made of incompressible material.

Keywords: Angular speed, Elastic-Plastic, Inclusion, Rotatingdisc, Stress, Transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
87 Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows

Authors: Imad Chaddad, Andrei A. Kolyshkin

Abstract:

Linear and weakly nonlinear analysis of shallow wake flows is presented in the present paper. The evolution of the most unstable linear mode is described by the complex Ginzburg-Landau equation (CGLE). The coefficients of the CGLE are calculated numerically from the solution of the corresponding linear stability problem for a one-parametric family of shallow wake flows. It is shown that the coefficients of the CGLE are not so sensitive to the variation of the base flow profile.

Keywords: Ginzburg-Landau equation, shallow wake flow, weakly nonlinear theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
86 Boundary Effect on the Onset of Marangoni Convection with Internal Heat Generation

Authors: Norihan Md Arifin, Norfifah Bachok

Abstract:

The onset of Marangoni convection in a horizontal fluid layer with internal heat generation overlying a solid layer heated from below is studied. The upper free surface of a fluid is nondeformable and the bottom boundary are rigid and no-slip. The resulting eigenvalue problem is solved exactly. The critical values of the Marangoni numbers for the onset of Marangoni convection are calculated and the latter is found to be critically dependent on the internal heating, depth ratio and conductivity ratio. The effects of the thermal conductivity and the thickness of the solid plate on the onset of convective instability with internal heating are studied in detail.

Keywords: Linear stability, Marangoni convection, Internal Heatgeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475