
 

 

  
Abstract—In this paper, the sum of squares in linear regression is 

reduced to sum of squares in semi-parametric regression. We 
indicated that different sums of squares in the linear regression are 
similar to various deviance statements in semi-parametric regression. 
In addition to, coefficient of the determination derived in linear 
regression model is easily generalized to coefficient of the 
determination of the semi-parametric regression model. Then, it is 
made an application in order to support the theory of the linear 
regression and semi-parametric regression. In this way, study is 
supported with a simulated data example.    
 

Keywords—Semi-parametric regression, Penalized Least 
Squares, Residuals, Deviance, Smoothing Spline.  

I. INTRODUCTION 
EGRESSION analysis is a technique used for the 
modeling and analysis of numerical data consisting of 

values of a dependent variable { }1 2, ,..., T
ny y yy =  and 

independent variables  1 2, ,..., kz z z . Generally, regression 
models can be used for prediction (including forecasting of 
time-series data), inference, hypothesis testing, and modeling 
of causal relationships [1]; [2]. It is frequently encounter to 
these models in many application areas. Most used models can 
be given in the following way: 

Linear regression model (LRM): Linear regression model 
attempts to model the relationship among a dependent 
variable, and k  explanatory variables. LRM is given as 
following:  

0
1

, 1,2,...,
k

i j ij i
j

y z i nβ β ε
=

= + + =∑                  (1) 

where { }0 1, ,..., kβ β β=β is a vector of unknown regression 

coefficients and { }1 2, ,..., T
nε ε εε =  is a vector of random 

errors, assumed to follow normal distributed with zero mean 
and constant variance 2σ .  

Generalized linear regression model (GLRM): Generalized 
linear models extend the concept of the widely used linear 
regression model. GLRM is assumed to have the form:  

0
1

( ) , 1, 2,...,
k

i j ij i
j

g y z i nβ β ε
=

= + + =∑                  (2) 
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where (.)g is called a link function, and ε  is a vector of 
random error with a suit distribution. 

Semi-parametric regression model (SPRM): A semi-
parametric regression model (SPRM) is consists of two 
additive components, a linear parametric and a nonparametric 
part:  

0
1

( ) ( ) , 1,2,...,
k

i j ij i i
j

y z f x i nβ β ε
=

= + + + =∑           (3) 

where β  is a vector of finite dimensional parameter (or the 
vector of unknown regression coefficients), and (.)f  is a 
smooth function of explanatory variable x , and ε  is denote 
an error term with zero mean and common variance 2σ . 

Generalized semi-parametric regression model (GSPRM): 
Introducing a link (.)g  for a semi-parametric model in (3) 
yields the generalized semi-parametric regression model: 

0
1

( ) ( ) ( ) , 1,2,...,
k

i j ij i i
j

g y z f x i nβ β ε
=

= + + + =∑               (4) 

g  denotes a known link function as in generalized additive 
model, and ε  is  a vector of random error with a suit 
distribution, and with zero mean and common variance 2σ . In 
the case of an identity link function g  given in Eq. (4), 
GSPRM reduces to SPRM. [3] 

In the section II, least square estimation of the linear 
regression model and analysis of variability in response are 
discussed. Section III reviews smoothing spline estimation of 
the semi-parametric regression model. Section IV discusses an 
application on simulated data set, while conclusions and 
discussion are offered in the section V. 

II. LEAST SQUARES ESTIMATION OF THE LRM 
One important goal of a regression analysis is to estimate 

the vector of unknown regression coefficients in model Eq. 
(1). The method of least squares is used more extensively than 
any other estimation procedure for building regression 
models. The method of least squares is designed to provide 
estimator β̂  of the β  in Eq (1). Not that there are 1p k= +  
regression coefficients. (1). It is suitable at this point to 
reintroduce the model Eq. (1) in matrix notation. The model 
can be written as: 

εZy += β                                (5)  
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In general, y  is a ( 1)n ×  vector of the observations, Z  is an 

( )1p ×  matrix of the levels of the independent variables, β  is 

a ( )1p ×  vector of the regression coefficients, and ε  is an 
( 1)n × vector of the random errors.  

In the method of least squares, we wish to find the vector of 
least squares estimators, β̂ , minimize the sum of squares of 

the residuals: ( ) ( )2

=1
i

n
T

i
ε = − −∑ y Z y Zβ β . The least squares 

estimators that provide this minimum, defined as follows: 

( )-1ˆ T T= Z Z Z yβ                                (6) 
 

A.  Analysis of Variability in the Response 

The fitted values and the residuals in Eq. (5) are defined as 
β̂ˆ Zy =  and ˆy - yε =  respectively. In any regression 

problem, it will be observed that variation in response 
variable. Of course, it is wanted that fitted values follow the 
real values closely. It is natural to consider the sources of 
variation, the total sum of squares, and the regression sum of 
squares: 

( ) ( ) ( )2 2 2

1 1 1

ˆ ˆ
n n n

i i i i
i i i

y y y y y y
= = =

− = − + −∑ ∑ ∑           (7) 

Thus, as indicated in Equations (7), the total sum of squares 
TSS  is partitioned into a regression sum of squares RSS  and 

a residual sum of squares ResSS :   

T R ResSS = SS + SS  

It can be arranged analysis of variance (ANOVA) table 
used for testing the significant of the model in Eq. (1) via 
these important sums of squares. ANOVA is defined as Table 
I. 

 
 

TABLE I 
ANALYSIS OF VARIANCE 

Source of 
Variation 

Degrees of 
Freedom ( )DF  

Sum of Squares 
( )SS  

Mean Square 
( )MS  

 
statisticF -  

Regression k  2ˆ T T n=RSS Z y - yβ  / 1k= −R RMS SS  R

Res

MS
MS

 
Residual 1n - k -  ˆT T T=ResSS y y - Z yβ  / 1n k= − −Res ResMS SS  

Total 1n -  2T n=TSS y y - y  
 

Here statisticF -  may be viewed as ratio that states 
variance explained by the model divided by variance due to 
model error. As a result, large values of statisticF -  are state 
the signification of model. The coefficient of determination 
denoted as 2R  is represent the proportion of variation in the 
response data that is explained by model. 2R  is denoted as  

2 1R = = − ResR

T T

SSSS
SS SS

                            (8) 

Another way to represent the proportion of variation in the 
response is adjusted 2R , denoted as 2

.AdjR  Some analyst prefer 

to use an adjusted 2R  statistic, defined as: 

2
. 1 1AdjR = − = −Res Res Res

T T T

MS SS / (DF )
MS SS / (DF )

.                (9) 

III. SMOOTHING SPLINE ESTIMATION OF THE SPRM 
We consider the estimation of the SPRM in (3). In the 

matrix notation, Eq. (3) can be written as following way:  

= + +y Z fβ ε                            (10) 

where Z  is the ( )n n×  matrix, ( )1,..., T
kβ β=β , 

( )1,..., T
ny y=y , ( )1( ),..., ( ) T

nf x f x=f , and ( )1 2, , ..., T
nε ε ε=ε . 

Estimation of the parameters of interest in equation (10) can 
be performed using smoothing spline. Mentioned here the 
vector parameter β  and the values of function f  at sample 

points 1 2, ,..., kx x x  are estimated by minimizing the 
penalized residual sum of squares:  

{ } ( )
1

2 2( )

1 0

( , ) ( ) ( )
n

T m
i i i

i
PSS y z f x f x dxλ

=

= − − +∑ ∫fβ β          (11) 

Here, 2[0,1]f C∈  and iz  is the ith  row of the matrix Z . 
When the 0=β , resulting estimator has the form 

( )1 n
ˆ ˆˆ ( ),..., ( )f x f x Sλ=f = y , where Sλ  a known positive-

definite smoother matrix that depends on λ called as 
smoothing parameter, and the knots 1,..., nx x  (see, 
[4];[5];[6];[7]).  

For a pre-specified value of λ  the corresponding 
estimators for andf β  based on Eq. (11) can be obtained as 

follows [4]: Given a smoother matrix Sλ , depending on a 

smoothing parameter λ , construct ( )I Sλ= −Z Z . Then, by 
using penalized least squares, mentioned here estimator are 
given by:  

      ( ) 1ˆ T T−
= Z Z Z yβ                        (12) 
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 ( )ˆ ˆS λ= −f y Z β                      (13) 

A.  Relationship between Deviance and Sum of Squares 

The deviance plays the role of the residual sum of squares 
for generalized models, and can be used for assessing 
goodness of fit and comparing models. The deviance or 
likelihood ratio statistic of a fitted model is defined as 

{ }max
ˆ ˆ2 ( ) ( )D l l= − Φβ β                    (14) 

 Where max
ˆ( )l β  denotes the maximized likelihood of the 

saturated model that have one parameter per data point. maxβ̂  is 

parameter value of β  which maximizes ˆ( )l β , and ˆ( )l β  is a 
log-likelihood function of a sample n  observation (i.e., 

1

ˆ( ) log ( )
n

i
i

l f y
=

= ∑β ), and Φ  is a dispersion parameter [8]; [9]. 

In the Gaussian family of distributions (for example, in 
SPRM), Φ  is just standard variance 2σ  and the residual 
deviance reduces to the residual sum of squares. The 
residual deviance is the deviance of fitted model, while the 
deviance for a model which includes the offset and possible an 
intercept term is called as null deviance. In this case, the null 
deviance reduces to the total sum of squares. Then, 
analogously to the equations (7), regression deviance for 
SPRM is defined as  

Regression Dev. = Null Dev.- Res.Dev.              (15) 

These can be combined to give the proportion deviance 
explained, a generalization of the 2R  value given in Eq. (8), 
as following way: 

( )

2 Regresion Deviance=
Null Deviance

Null Deviance - Residual Deviance
=

( Null Deviance )

SPRMR
         (16)   

Similarly, we can generalize adjusted coefficient of 
determination given in Eq. (9), as follow: 

( )2 Mean NullDev.-MeanRes. Dev.
=

(Mean NullDev.)

NullDev. Res.Dev.-
DFNull Dev. DF Res. Dev.

=
NullDev.

DF Null Dev.

Adj SPRMR −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

            (17) 

For assessment of the SPRM, it is necessary to perform test 
on both the parametric and the nonparametric component. For 
the parametric component of the SPRM, we can generalize 
such as  F statistic−  given Table I. The F statistic− can be 
defined as: 

( )
( )

( )
( )
( )

( )

.

Regression Deviance
DFRegression Deviance

Residual Deviance
DFResidual Deviance

Mean Regression Deviance
=

Mean Residual Deviance

ParF =
                (18) 

By considering the deviances in SPRM and residual sum of 
squares in LRM, it can be performed by an approximate 
F statistic−  whether the nonparametric component of model 
is linear or whether SPRM provides a significantly better fit. 
The test is based on the differences of residual deviances and 
residual sum of squares for SPRM and LRM respectively. The 

- statisticF  can be given by 

( )

( )
( )

Res

Res
.

SS - Residual Deviance
DFSS - DFResidual Deviance

Residual Deviance
DFResidual Deviance

NonpF =             (19) 

IV.  HELPFUL HINTS 
A semi-parametric regression model is basically a multiple 

linear regression model in which some of the linear predictors 
are replaced with additive smooth functions. It is used that S-
plus and R programs based on penalized least square to 
estimate the semi-parametric regression model. These 
programs use “gam package” for estimation [10]. To estimate 
unknown functions f , S-plus and R programs use mainly 
smoothing splines denoted by s(.). It is considered here 
only smoothing spline. The gam package provides model 
fitting for different family types (Normal, Poisson, Binomial, 
Gamma and inverse Gaussian) with the suitable link 
functions. Here it is only used identity link function. 
Analogously to analysis of variance table which provides 
summary statistics in an ordinary regression analysis, the gam 
package provides an analysis of deviance table.  A simple 
simulated data set used to analysis the relation between sums 
of squares in linear regression and the deviances obtained via 
the SPRM. The variables related with data are defined as 
follows: 
y is a numeric vector with sized 100n =  that made by random  

- the response 
z is a numeric vector with sized 100n =  that made by random  

– predictor  
x is a numeric vector with sized 100n =  that made by random  

- noise predictor. 

A.  Empirical Results 
According to the variables in above, the SPRM in gam 

package is appeared as follows: 
Call: gam(formula = y ~ s(x) + z, data = 
gam.data) 

Deviance Residuals: 
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Min 1Q Median 3Q Max 
-0.681  -0.214   0.029   0.245   0.531 

(Dispersion Parameter for gaussian family 
taken to be 0.0841) 
 
Null Deviance: 57.7496 on 99 degrees of 

freedom 

Residual Deviance: 7.9077 on 94 degrees of 

freedom 

The summary of the results obtained by SPRM is given as 
follows:  

TABLE II 
DF FOR TERMS AND F-VALUES FOR NONPARAMETRIC EFFECTS AND T-VALUES FOR PARAMETRIC PART 

 Nonparametric Part Parametric part 
Variable

s 
Df Npar Df Npar F Pr(F) Estimat

e 
Std.Erro

r 
t-val Pr(> t ) 

(Const.) 1    1.987 0.087 23.05 1.85e-
40 

s(x) 1 3 45.485 2.2e-
16 

    

z 1    -0.125 0.108 -1.121 2.65e-
01 

 Response: y 
 

A partial linear additive model relates y called as response 
or dependent variable to the independents variables given in 
previous section. As shown Table II, the parametric 
coefficients of the SPRM appear, while nonparametric 
coefficient doesn’t appear. It can be only displayed 
graphically because it can’t be expressed as parametric.    

Fig. 1 shows the estimates (solid) and the 95% confidence 
intervals (dashed) for SPRM using smoothing spline. The 
plotted curve is a contribution of a term to the additive 
predictor. The effects of x called as noise predictor is very 
strong on the response variable. Firstly, as x is increasing, y is 
increasing too. Then, as x is again increasing, y is 
decreasing.  

By using the variables in above, the LRM in gam package 
is appeared as follows: 

Call:lm(formula = y ~ x + z, data = 
gam.data) 

The summary of the results obtained by LRM is giving 
following way:  
Residuals: 

Min 1Q Median 3Q Max
-
1.571 

-
0.283 

-
0.0213  

0.29
7   

0.83
4  
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Fig. 1 Estimates (solid) and the 95 % confidence intervals (dashed) 

of the nonparametric components for SPRM 
 

B. Comparison of the Performances of the LRM and SPRM 
To compare performances of the SPRM and LRM, it is 

performed an analysis of deviance table by using formula 
given in section 3.A. In summary, these results are given in 
the Table V. The residual deviance (9.9077) in Table V is 
smaller than residual sum of squares (19.387) in Table IV. 
Similarly both coefficient of determination and adjusted 
coefficient of determination given in the Table V are bigger 
than those of the Table IV.  It can be said that SMPR provides 
a better fit than LRM.  However, the difference between the 
adjusted coefficients of determination for SPRM and LRM are 
smaller than the difference between non-adjusted coefficients 
of determination. Thus, it can be said that adjusted 
coefficients of determination are more realistic in assessing 
the overall model performance. As shown Table V, it can be 
said that all of parametric coefficients are also
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TABLE III 

COEFFICIENTS OF LINEAR REGRESSION

 Estimate Std. Error  t value  Pr(>|t|)  
(Constant) 1.9944      0.1325   15.047    2e-16 
x -2.3278      0.1680 -13.854    2e-16 
z -0.1460      0.1672   -0.873     0.385     

 
TABLE IV 

ANALYSIS OF VARIANCE TABLE FOR LRM
Source of variation DF Sum Sq Mean Sq 

Regression 2 38.362 19.181 
Residual 97 19.387 0.200 

Total 99 57.749 0.583 
2R  0.664 F-stat: 95.905 

p-value: < 2.2e-16 2
AdjR  0.657 

 
TABLE V 

ANALYSIS OF DEVIANCE TABLE FOR SPRM
Source of variation DF Deviance Mean Deviance 

Regression 5 49.8419 9.96982 
Residual 94 7.9077 0.08412 

Null 99 57.7496 0.58333 
2R  0.8631 F-stat (Parametric) = 118.519 

F-stat (Nonparametric) = 45.485 2
AdjR  0.8558 

 
TABLE VI 

ANALYSIS OF VARIANCE TABLE

Model Res. Df Res.Sum Sq Df Sum Sq F Pr(>F) 
LRM 97 19.3871     

PLAM 94 7.9077 3 11.4794 48.485 2.2e-16 
 
significant to F statistic−  (parametric) that obtain by means 
of the Eq. (18). Furthermore, according to the Npar-F in the 
Table II, the nonparametric component is also able to test that 
significant or not. In addition to, it can perform an 
approximate F test−  whether the nonparametric component 
of model is linear or whether SPRM provides a significantly 
better fit. For this goal, F statistic− (nonparametric) 
computed by using Eq.(19) is given Table V. An equivalent 
computation using gam package in S-plus and R is given in 
Table VI. F statistic− (nonparametric) derived by Eq.(19)  is 
equivalent to F in Table VI. 

According to Table VI, it is said that the nonparametric 
function or component of model is significant curve and 
provide a better fit.   

IV.  CONCLUSION AND DISCUSSION 
In the Gaussian family of distributions, we have 

demonstrated that the residual deviance can be easily reduces 
to the residual sum of squares. Besides, it is shown that the 
null deviance can be also reduces to the total sum of squares.  

Furthermore, coefficient of determination and adjusted 
coefficient of determination play quite important role in 
assessing of the goodness of fit of the regression models. We 
have indicated that these coefficients obtained by using LRM 
can be easily generalized to SPRM. Especially, adjusted 
coefficient of determination in SPRM is very proper for  

 

 
assessment of the model goodness of fit because it detects the 
degrees of complexity of the SPRM.  

REFERENCES   
[1] Mayers, Raymond. H., Classical and Modern Regression with 

Applications, Duxbury Classical Series, United States, 1990. 
[2] Montgomarey, C. Douglas., Peck, A. Elizabeth., Vining, G. Geoffrey., 

Introduction to Linear Regression Analysis, John Wiley&Sons,Inc., 
Toronto, 2001. 

[3] Hardle, Wolfang., Müller, Marlene., Sperlich, Stefan., Weratz, Axel., 
Nonparametric and Semiparametric Models, Springer, Berlin, 2004. 

[4] Eubank, R. L., Nonparametric Regression and Smoothing Spline, Marcel 
Dekker Inc., 1999  

[5] Wahba, G., Spline Model for Observational Data, Siam, Philadelphia 
Pa., 1990. 

[6] Green, P.J. and Silverman, B.W., Nonparametric Regression and 
Generalized Linear Models, Chapman & Hall, 1994. 

[7] Schimek, G. Michael, Estimation and Inference in Partially Linear 
Models with Smoothing Splines, Journal of Statistical Planning and 
Inference, 91, 525-540, 2000. 

[8] Hastie, T.J. and Tibshirani, R.J., Generalized Additive Models, 
Chapman & Hall /CRC, 1999. 

[9] Wood, N. Simon., Generalized Additive Models An Introduction With 
R, Chapman & Hall/CRC, New York, 2006. 

[10] Hastie, T., The gam Package, Generalized Additive Models, R topic 
documented, http://cran.r.project.org/packages/gam.pdf, February 16, 
2008.  

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:4, 2008 

215International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:2
, N

o:
4,

 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
10

34
.p

df




