

Abstract—We report on the development of a model to

understand why the range of experience with respect to HIV
infection is so diverse, especially with respect to the latency period.
To investigate this, an agent-based approach is used to extract high-
level behaviour which cannot be described analytically from the set
of interaction rules at the cellular level. A network of independent
matrices mimics the chain of lymph nodes. Dealing with massively
multi-agent systems requires major computational effort. However,
parallelisation methods are a natural consequence and advantage of
the multi-agent approach and, using the MPI library, are here
implemented, tested and optimized. Our current focus is on the
various implementations of the data transfer across the network.
Three communications strategies are proposed and tested, showing
that the most efficient approach is communication based on the
natural lymph-network connectivity.

Keywords—HIV, Immune modelling, MPI, Parallelisation.

I. INTRODUCTION
HE objective of this study is to understand why the range
of experience with respect to HIV infection is so diverse.

In particular, the work aims to address questions relating to
variation in length in individual latency period. This may be
very long (for relatively low success of antipathetic mutation)
in one individual, compared to another with much higher
mutation levels.

The indications are that the observed variation lies in the
priming and initial level of fitness of the immune response of
the individual, together with the various factors influencing
this [1]. If such “priming patterns” can be recognised, or even
predicted, then in the long term we may have a way of
“typing” an individual and targeting intervention
appropriately. Unfortunately, understanding how the immune
system is primed by experience of antigenic invasion and
diversity is non-trivial [1].

The challenge is to determine what assumptions can be
made about the nature of the experience, can be modelled,
tested against clinical data and hence argued plausibly. The
aim is to understand how the cell interactions lead to the
observed endpoints.

The immune response is dynamic and includes growth and
replenishment of cells and in-built adaptability, through

Manuscript received August 28, 2006. This work was supported in part by

the Irish Research Council for Science, Engineering and Technology (Embark
Initiative).

All authors are with Dublin City University, School of Computing.
Dimitri Perrin (corresponding author, phone: +353-1-700-8449; fax: +353-

1-700-5442; e-mail: dperrin@computing.dcu.ie).

mutation of its defences to meet new threats. It also includes
aspects of cell mobility, which may be captured, by means of
rules governing movement and affinity of cell-types in a
defined spatial framework. In particular, this enables study of
variation in viral load and the way in which host response may
lead to degradation of protection.

To investigate these questions, an “agent-based” approach
is chosen, as a means of inferring high-level behaviour from a
small set of interaction rules at the cellular level. Such
behaviour cannot be extracted analytically from the set of
rules [1], but emerges as a result of stochastic events, which
play an important part in the immune response [2].

The initial model consists of functional units, called agents,
with designated properties which mimic the operation of a
single lymph node. This test-case prototype, however,
includes all known interactions contributing to cell-mediated
immunity and the local evolution of the virions. The antibody-
mediated response has not been considered initially, because
the cellmediated arm plays a dominant role in repelling the
attack.

The agents implemented represent Th (helper, or CD4) and
Tc (cytotoxic, or CD8) lymphocytes, Antigen Presenting
Cells, and virions. The computational structure of the
numerical experiments is based on inheritance from a common
C++ class, designed to deal with features such as the mobility,
and inclusion of attributes and methods to implement specific
properties of each cell type. The lymph node itself is modelled
as a matrix, in which each element represents the physical
neighbourhood of a cell type, (in terms of its agent
neighbours). The frequency with which an infected cell will
produce a new virion is used as the simulation timestep.

At each time step, agents can move from one matrix
element to another, and interact with the other agents present
in their physical neighbourhood (i.e. with cell types in the
same neighbourhood). The implementation of the
neighbourhood will be discussed in section III-A.

Lymph nodes involve millions of agents and require major
computational effort and parallelisation methods. These are,
however, a natural complement to the multi-agent approach
[3]. Our current objective is to implement an efficient data
transfer across our network of nodes, in order to facilitate the
long-term aim to extend the size and complexity of the
systems modelled to something approaching realism.

HIV Modelling - Parallel Implementation
Strategies

Dimitri Perrin, Heather J. Ruskin, and Martin Crane

T

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:4, 2008

295International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
97

.p
df

Fig. 1 Cell-level interactions

II. THE BIOLOGICAL BACKGROUND

A. The Immune Response against a Viral Attack
Immunity can be defined as a function of all mechanisms

which permit the body to recognise entities belonging to its
system (which consequently it tolerates), and those that do not
(which it fights). The immune system is complex and involves
various types of cells. When a foreign element is recognised,
it can be dealt with in two different ways (the immune
response can be non-specific or specific). A non-specific
response is based upon the fact that the foreign element does
not show, at its surface, the antigens characterising the cells
belonging to the body. This is the response that has to be
diminished when e.g. transplants are carried out. In contrast,
the specific response is based on the accurate recognition of
foreign antigens.

This response can be cell-mediated or antibody-mediated.
The latter one, also known as humoral response, is carried out
by B lymphocytes and mainly targeted at bacterial attacks.
The cell-mediated response is targeted more specifically at
viral attacks and takes place in lymph nodes. Brief details
follow. Full discussion on the immune system can be found in
specialised journals, texts and web-based materials see e.g.
[4]. The effector cell, in the cell-mediated response, is the Tc
lymphocyte. However, it cannot act on its own, needing a
chain reaction to achieve activation. The first step is carried
out by Antigen Presenting Cells which recognise foreign
biological entities and start presenting these antigens at their
surface. These will then encounter Th lymphocytes. If a Th
cell encounters an APC presenting an antigen, which it has
been specifically designed to recognise, it activates itself. The
Th cells main function is then to coordinate the immune
response by activating specific Tc cells. These cell
interactions are shown in Fig. 1.

B. The Lymph Network
When facing a viral attack, the most significant part of the

cell-mediated response is located within small organs called
lymph nodes. These organs are distributed throughout the
body and, in humans, number about a thousand, which act as
small defence units. These are thus loci for Tc lymphocytes
activation, multiplication and attack on the virions. To provide
an efficient scanning and filtering mechanism for the body,
the lymph nodes are linked through a network. The cell
mobility along that network is expected to have a strong
influence on the immune response, and modelling it is,

therefore, an important objective of our study.

C. The HIV Expansion Strategy
HIV virions use the Th cells, described above, as hosts to

multiply themselves, as detailed in [5] and shown in Fig. 1.
The gp120 glycoprotein of the virion envelope first attaches

itself to the CD4 receptor, characteristic of these immune
cells. Then, the virion fuses with the lymphocyte using gp41
and the viral RNA is freed into the cell. The viral reverse
transcriptase copies the RNA into DNA and integrates it into
the cellular DNA. To be successful, this integration has to take
place in activated cells. (A detailed description of this process
can be found in [6]. An important aspect is the high rate of
mutation: on average there is a transcription error every
10,000 nucleotides. Since the HIV genome contains about
10,000 nucleotides, this implies a single difference on average
between two “brother virions”. Most mutations result, for
instance, in the suppression of an enzyme, and are
unsuccessful. On the other hand, a successful mutation may
e.g. modify the envelope glycoprotein, thus allowing the new
virion to temporarily escape the immune system defences.

The macroscopic evolution of the disease is divided into
three phases. The first one corresponds to the typical immune
response against a viral attack. The production of lymphocytes
specific to the viral strains is launched, and within a few
weeks, all the original strains are eradicated. The mutation rate
is critical. It can facilitate the appearance of new strains,
which have not been detected by the organism yet, and can
therefore develop freely. As soon as a strain becomes too
intrusive, its detection probability increases and it is
eradicated. During this second phase, there are no symptoms.
This is known as the latency period, and can last up to ten
years. The immune system is heavily loaded, and the
destruction of each strain also implies the destruction of the
infected cell. A time comes when the immune system cannot
cope with the ever increasing number of strains or remain
viable, given the large decrease in the number of the Th cells.
During this last phase, known as AIDS (acquired
immunodeficiency syndrome), the whole immune system is
diminished and opportunistic diseases start appearing, leading
to the death of the patient.

III. THE MODELLING STRATEGY

A. The Agent-Based Approach
There is no unique definition of what an agent is. However,

Wooldridge and Jennings proposed in [7] a definition which is
widely accepted and specifies characteristics that an agent
must have. An agent has to be autonomous: it can act without
any intervention and has some control over its actions and its
internal state. It has a social behaviour: it can interact with
other agents thanks to a specific language. It can also react:
the agent has the ability to scan part of its environment and
change its behaviour to take advantage of it. The agent is
proactive: it not only reacts to its environment but also acts
and takes initiatives so as to satisfy goals. Building on this

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:4, 2008

296International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
97

.p
df

definition an agent-based model is a model in which the key
abstraction elements are agents.

Obviously, each agent has only a limited knowledge of the
world in which it evolves, and communication between agents
is therefore an important aspect of this approach. This
communication is sometimes referred to as linguistic actions,
as opposed to non-linguistic actions which are modifications
of the environment. Interaction between agents is not limited
to communication: they have to share their environment. This
implies that agents’ actions have to be coordinated. Of course
coordination does not mean cooperation: a good competitor
maximizes his advantage by coordinating his actions
according to the opponents’ decisions. It also does not imply
reciprocity of action: a car driver can go past another and
coordinate this safely without involvement of the second
driver. The key factor when choosing a coordination strategy
is the size of the agent population. If every agent can interact
with every other one, the number of interaction pairs increases
quadratically with the population size. If interaction can occur
between several agents instead of pairs, the coordination
overhead increases exponentially and can easily exceed
computing facilities available [8]. Developing a coordination
strategy is therefore both essential and difficult. In many
cases, managing to avoid conflicts and blocks is itself a
significant achievement.

The approach is generic, and has been used in various
fields, including aerial traffic planning [9], vehicle monitoring
[10] and even management of chirurgical intensive care units
[11]. It has also been extensively used in the Natural Sciences,
as it provides a very intuitive way to model systems:
biological entities are implemented as agents, and interactions
between them are dealt with through linguistic and non-
linguistic actions among the agent population. In particular,
the immune system itself is a discrete system in which the
individual behaviour of every cell is aggregated to create
high-level behaviour of the whole system. A simple set of
local rules can therefore provide an accurate model of this
complex system. This is the approach we have chosen to take.

With respect to the immune response to HIV, most activity
(as noted earlier) takes place in the lymph nodes. The world is
thus a network of such nodes. The communication inside the
network will be discussed later, (section III-C). Each node is
implemented as a matrix. Each element of the matrix
corresponds to a physical neighbourhood. All the interactions
between the agents therefore happen inside this local element
and there is no need to consider surrounding matrix elements,
which would be required if using Moore or Von Neumann
neighbourhoods [12].

B. The Implemented Features
There are several platforms supporting generic agent-based

environments, such as Swarm [13]. However, due to the high
number of agents in the system modelled, it is more efficient
to have an approach fully dedicated to our particular
environment, and therefore optimized. The very detailed
knowledge of the cell interactions dictates a bottom-up

approach: we first specify in detail the individual parts of the
system (the agents), then link them together to form layer
components (the lymph node), which, in turn, are linked until
a complete system is formed (the lymph network).

In focusing on cell-mediated response, we need to
implement three types of host cells, corresponding in the code
to three types of agents: Th and Tc lymphocytes, and Antigen
Presenting Cells (APC). A fourth type of agent is used to
model the virions. Each type is implemented into the code
using a specific C++ class. Despite cell types having totally
different roles, the common feature to take into account is
their mobility. This is implemented by an additional class,
inherited by the four types described above. It also
implements other basic properties such as the age of the
agents and permits the four agent classes to contain only
specific features; (an advantage of object-oriented
programming).

An agent coding a virion has only one specific attribute in
our model, namely its viral strain. In order to prevent the code
from allocating too much memory for each agent, the viral
strain is coded as an integer, which links to the corresponding
strain in an array containing all the useful properties of the
strain, (e.g. lymphocytes which recognize it, immunogenicity,
etc.). The typical behaviour of a virion in the model can be
given as the following triptych, repeated until a lymphocyte is
infected: the agent moves, scans its environment looking for a
Th cell, and, if possible, infects the immune cell.

A Th agent has three specific attributes in the model: an
integer coding its surface antigens, another integer coding its
“activation state” and a third integer coding its “infection
state”.

• If the agent is neither activated nor infected, its objective
is only to be ready to respond to attack. There is, therefore, no
particular action, apart from moving.

• The objective of an activated agent is to activate Tc cells.
Its “activation state” is set to the value coding the viral strains
which activated it, so that it can communicate on the threat.

• If the agent is infected, it produces new virions belonging
to the strain coded in its “infected state”, or to a new one if
there is a mutation.

A Tc agent has four specific attributes: its surface antigens,
its “activation state”, its “expansion state” and its “memory
state”, all implemented as integers. When activated, an agent
multiplies itself during an expansion phase, corresponding to a
non-zero “expansion state”. After primary immune response, a
small amount of the Tc agents will become memory cells:
their “memory state” will keep track of the strain they fought,
the reactivation will be easier, and if reactivated, the
expansion phase will be more productive.

An APC agent only has one specific attribute, its
“presenting state”, coded as an integer. As long as the agent is
not presenting any antigen at its surface, the agent’s behaviour
is focused on moving and looking for “foreign” entities in its
physical neighbourhood, in order to get antigens to present.
Then, the “presenting state” codes the strain corresponding to
the antigens and the agents start looking for appropriate Th

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:4, 2008

297International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
97

.p
df

agents in order to activate them, if primed to recognise this
particular antigen.

Another aspect of the implementation presented is the
allocation of the agents. Memory allocations are among the
slowest operations on a computer. Here, we have a model in
which thousands of agents are created and destroyed every
iteration. Dynamic allocations would make the program too
slow. The approach chosen is to have, in each matrix element,
a set of integers, one for each potential agent located there. An
array, for which the size is fixed to the maximum number of
agents we want to implement, is statically allocated, and each
integer represents an offset used to find the agent in the array.
Then, an agent moving from one element to another is coded
as the alteration of only two integers, one in each element, and
the creation/destruction of an agent alters only one local
attribute.

C. Interactions between the Lymph Nodes
The immune system is organised so that every lymph node

is a small defense unit, which mounts a unilateral immune
response. Not all nodes need to be engaged in the response at
any one time; our model is thus a network of independent
matrices; (with the emphasis on the local model of the node).

The only physical exchange between lymph nodes happens
through the recirculation and the mobility of cells which go
from one node to another. Each node in the model therefore
needs an entry point and an exit point. If, when moving inside
the node, an agent reaches the exit point, it is removed from
the node and put into a transfer list. The list is dealt with at the
end of the iteration. In the meantime, other agents move and
interactions take place over time (equivalent to the time taken
for the agent in real-life to commute between two nodes).

The way in which agents are transferred between the nodes
mimics the transfer between matrix elements: we consider
only attributes, rather than the agent itself. Thus, an entry in
the transfer list contains the type of the agent, its attributes,
and its destination. At the end of the iteration, all lists are put
together and the moving agents are transferred to the entry
point of their destination node.

IV. PARALLELISATION EFFORTS

A. What kind of Parallelisation?
When the program is running at full scale, each node

contains hundreds of thousands of agents. Matching the real-
body count of a thousand lymph nodes is a long-term
objective and may not be achievable, but even for fifty nodes,
we deal with millions of agents. The time-step of the program
is about fifty seconds, so about six million iterations are
needed for a 10-year simulation. Running such a program on a
single computer would take months, and the memory needed
to initialize all the matrices might not even be available. If we
also consider the fact that we have to run several simulations
to statistically assess the role of each parameter such as the
mutation rate, the need for a parallel approach is clear.

The immune system is mimicked in our model by

permitting each lymph node experience to be computed by a
different computer (called computing node) on a cluster. As
the lymph nodes are effectively independent from each other,
this is the best way to take advantage of the parallel option.

Moreover, the local model is already known to run on a
single computer so approximate expectations on performances
are also known. This type of spatial parallelisation has been
studied, for Monte-Carlo simulations [14], with the main
disadvantage being the communication overload. Here, most
of the communication taking place on the cluster is the
transfer of agents from one node to another. Using the list
process described above, we keep this to a minimum. This
parallel approach is implemented using the Message-Passing
Interface (MPI) [15], [16]. It was validated on a cluster
composed of a Dell PowerEdge 1750 acting as the master
node and sixteen of these machines acting as slaves. Larger
clusters will also be used for full-scale runs.

B. A List to Transfer the Agents
Even when kept to a minimum, communication between

computing nodes is always a bottle-neck on this type of
model. As the system size increases, a bad communication
strategy could have devastating effects on the computation
time; e.g stochastic aspects of our model, such as mutations,
require several simulations for each set of parameter, and
cannot afford inefficiency. The aim is to transfer information
optimally about the agents leaving the nodes.

A first solution is to have one single list, containing the
agents’ attributes and their type. This leads to a list containing
blocks of eight integers, one block for each agent. For most
agents, i.e. all but those coding Tc cells, a part of the block
will stay empty. A further solution is to have a different list
for each type of agent. Since the need to specify the agent type
is eliminated, and since the number of attributes of each agent
in the list is now fixed, the block size is now seven for the Tc
list, six for the Th list, and only four for the virion and APC
lists. However, this solution also implies sending information
four times as often as for a single list, and the “latency” of the
physical network may result in a slower communication.

These two solutions were tested on the cluster described
above, for various numbers of nodes and agents. It appears
that, as the number of nodes increases, it becomes more
efficient to use a single list. This is explained by the network
latency and the way MPI works. Before sending anything, the
sender and the receiver must both know the size of what is
transferred. Thus, when a list has to be sent, the first step is to
send the size of the list (always an integer). Thus for our
implementation, an integer i is sent, and, for i 6= 0, a list of
integers follows. If the list is in fact empty, some time is
wasted due to the latency.

With only one list, an empty one is unusual, but with four,
it becomes a regular feature of the iterations. For instance, a
non-infected lymph node will always send a zero for the size
of its virion list. The more nodes we have, the more often this
happens, and the gain in the amount of transferred data is
outweighed by the wasted time. For this reason, we have

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:4, 2008

298International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
97

.p
df

opted for a single list.
A further consideration is the frequency of sending lists

across the network. More efficient communication implies
sending non-empty lists. Obviously, the longer we wait before
sending a list, the bigger this list gets. In Table I, computation
times are shown for 20,000 iterations, when we send at the
end of every or every other time-step. The program appears
slightly faster when we communicate data less often. However
the gain is not significant for very low agent count: the few
agents are scattered in the lymph node and are less likely to
reach the exit point. The improvement is highest for medium
agent count: for a high count, it is likely that at least one agent
will reach the exit point, and iterations leading to an empty list
are less common, but do occur. We observe an improvement
when sending only every other iteration; this pattern is
confirmed if we wait three, four, or five iterations before
sending the lists. There are, however, two limitations.

The first is a memory concern, since an ever bigger list is
resource-consuming. More importantly, there are biological
considerations involved. A time-step is equivalent to fifty
seconds, and the number of iterations must therefore be kept
close to the actual time estimated for a cell to commute from
one node to another. Separating the communication phases by
more than five iterations is thus less realistic and should be
avoided.

C. Different Implementations of the Lymph Network
The final part of the implementation seeks to optimize the

sending method. There are many different solutions: we focus
on three and their potential improvements.

1) Every agent can “physically” go from a given node to
any other, with a function in the model deciding where each
individual agent will actually go. Since every node can send
agents to any other one, one solution might be for each to
share its list with all other nodes at the same time. Using MPI,
this is made possible by the broadcast function (MPI Bcast).
On a 16-node simulation, a communication phase will start
with sixteen successive broadcasts. Then, each node has the
list of all the agents leaving any node, so we need only look
through this to find those arriving at the current node. The
main drawback of this approach is that destination nodes
receive more data than they actually need, since they receive
information about all the agents which left their host node.

2) To avoid unnecessary data transfer, we cannot use
broadcast and must opt for direct communication. However,
direct transfer between every couple of nodes would, on many
occasions, lead to sending information about an empty list,
thus slowing the program down, (as found for the four-list

solution). For this approach to be efficient, we need a third
node to act as the middle-man, with all the nodes sending their
list to this one. Here, the agents are sorted according to their
destination, and, to every node, a list is sent, containing only
the agents which are relevant. The main drawback for this one
is that a node can only receive from (or send to) one other
node at a time. It implies that in the meantime, the others are
idle.

a) Dedicating one node on the cluster only to this role of
middle-man ensures it is always ready to send and receive,
rather than in the middle of iteration.

b) Inclusion of an iteration between the sending of the first
list, (agents leaving a node) and the reception of the second
list, (agents arriving at that same node), prevents “computing
nodes” from being idle, and gives time for the “middle-man
node” to finish receiving every list and sorting the agents.

c) Creation of subnetworks. As the number of nodes
increases, so does the time one given node has to wait before
being able to send/receive. An alternative is to create more
“middle-man nodes”. On a 16-node cluster, we could have
four groups, each formed with three “computing nodes” to
deal with modelling and one used for communication. The
first three would run iteration, send their list, compute
iteration, and receive the new list. The last one receives the
lists, shares information with the other similar nodes, and
sends the new lists. With this configuration, any node has a
maximum of three nodes before it in the queue, and the
program is expected to be faster as a result.
3) The last type of communication is a transcription of the real
lymph network. If it is true that the lymph network is
connected (in the graph theory context), it does not imply that
it is complete, and in fact it is not: if we take two lymph
nodes, it is likely that there will be no direct connections
between them (incomplete), even though there is always a
path from one to the other (connected). These properties can
be used to implement the lymph network. A network can be
created explicitly, rather than by a function as described
above; communication can be physically limited to this
network. Without creating any biological issues, we can also
impose the requirement that nodes have either two (one
incoming and one outgoing) or three connections (two
incoming and one outgoing, or vice versa). This would imply
that for any given node, at any stage of the simulation, there is
a maximum of two nodes in front in the queue.

a) The network can also be designed to satisfy two-
colouring only, thus decreasing the communication load:
during odd iterations, black nodes send data and white ones
receive it, and vice versa during even iterations.

These approaches, shown in Fig. 2, were tested, and results
are shown in Table II. The broadcast approach is clearly to be
avoided due to its inefficiency. It gave useful results only on
very small networks, (four nodes), whereas our aim is to have
as many nodes as possible. The subnetwork approach was
tested on 16 nodes, but since only 12 of them are dealing with
modelling the lymph units, the results are meaningful only if
compared to cases running with 12 lymph nodes. In such

TABLE I
INFLUENCE OF THE FREQUENCY AT WHICH THE LISTS ARE SENT -

COMPUTATION TIME FOR 20,000 ITERATIONS AND 16 NODES

Configuration Communication
every iteration

Communication
every other iteration

Low agent count 377 sec. -1.48%
Medium agent count 982 sec. -34.9%

High agent count 2187 sec. -10.8%

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:4, 2008

299International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
97

.p
df

TABLE II
COMMUNICATION STRATEGIES - COMPUTATION TIME COMPARED TO THAT OF

THE SIMPLE DIRECT COMMUNICATION, FOR 20,000 ITERATIONS AND 16
NODES

Communication strategy Computation time

1 3.18
2 1.00
2.a 0.97
2.b 0.92
2.c N/A
3 0.90
3.a 0.83

Fig. 2 Communications strategies - On 2.a and 2.c, grey nodes are
dedicated to communication

comparisons, the subnetworks do not offer any significant
improvements. For the other approaches, the results confirm
expectations: the most efficient communication strategy is the
natural one i.e. that which mimics the lymph network in its
structure and uses colouring as a way to optimize the data
transfer. The overall improvement is slightly under 20%, but
as communication is only one aspect of the model, it is still an
important gain. For a full ten-year simulation, representing
millions of iterations, this saves hours of computation.

V. CONCLUSION
The objective application of this study is to understand why

the range of experience with respect to HIV infection is so
diverse, addressing in particular questions relating to variation
in length in individual latency period. To investigate these

questions, an “agent-based” approach is chosen, as a means of
inferring high-level behaviour from a small set of interaction
rules at the cellular level including stochastic events.

Due to the size and complexity of the model, parallels
methods are implemented, using MPI. Every lymph node is
coded as an independent matrix and allocated to a different
computer on a 16-processor cluster. Our current focus is on
optimization of the data transfer across the network of
matrices.

Three strategies were proposed, along with several ways to
improve them. Tests run on the local cluster showed that the
most efficient approach is to create a network between the
lymph nodes, similar to that found in a body, and to colour
this network so as to balance the data transfer between the
nodes. Full-length simulations are now starting on the
smallscale cluster, before moving to a more powerful one of
64 computing nodes.

REFERENCES
[1] J. Burns. Emergent networks in immune system shape space. PhD thesis,

Dublin City University, School of Computing, 2005.
[2] R.N. Germain. The art of the probable: System control in the adaptive

immune system. Science, 293(5528):240–245, 2001.
[3] N. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent

research and development. Autonomous agents and multi-agents
systems, 1(1):7–38, 1998.

[4] J.C. Lemahieu. Le syst`eme immunitaire. Immunology courses [French]
(available online at
http://anne.decoster.free.fr/immuno/orgcelri/orgcelmo.htm), accessed on
December 14th, 2005.

[5] D. Klatzmann, E. Champagne, S. Chamaret, J. Gruest, D. Guetard, T.
Hercend, J.C. Gluckman, and L. Montagnier. T-lymphocyte T4 molecule
behaves as the receptor for human retrovirus LAV. Nature,
312(5996):767–768, 1984.

[6] A. Decoster and J.C. Lemahieu. Les r´etrovirus. Virology courses
[French] (available online at
http://anne.decoster.free.fr/d1viro/vretrov0.html), accessed on December
14th, 2005.

[7] M. Wooldridge and N. Jennings. Intelligent agents: Theory and practice.
The Knowledge Engineering Review, 2(10):115–152, 1995.

[8] E.H. Durfee. Scaling up agent coordination strategies. Computer,
34(7):39–46, 2001.

[9] S. Cammarata, D. McArthur, and R. Steeb. Strategies of cooperation in
distributed problem solving. In Proceedings of the Eighth International
Joint Conference on Artificial Intelligence (IJCAI-83), Karlsruhe,
Germany, 1983.

[10] E.H. Durfee. Coordination of distributed problem solvers. Kluwer
Academic Publishers, 1998.

[11] B. Hayes-Roth, M. Hewett, R. Washington, R. Hewett, and A. Seiver.
Distributing intelligence within an individual. In L. Gasser and M.
Huhns, editors, Distributed Artificial Intelligence Volume II, pages 385–
412. Pitman Publishing and Morgan Kaufmann, 1989.

[12] J. Kari. Theory of cellular automata: A survey. Theoretical Computer
Science, 334(2005):3–35, 2005.

[13] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm
simulation system: A toolkit for building multi-agent simulations.
Working Paper 96-06-042, Santa Fe Institute, 1996.

[14] D. Hecquet, H.J. Ruskin, and M. Crane. Optimisation and parallelisation
strategies for monte carlo simulation of HIV infection. To appear in
Computers in Biology and Medicine, 2006.

[15] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel
Programming With the Message-Passing Interface, second edition. MIT
Press, 1999.

[16] W. Gropp, E. Lusk, and A. Skjellum. Using MPI-2: Advanced Features
of the Message Passing Interface. MIT Press, 1999.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:4, 2008

300International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
97

.p
df

