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Abstract—Feature selection is an important step in many pattern

classification problems. It is applied to select a subset of features,

from a much larger set, such that the selected subset is sufficient to

perform the classification task. Due to its importance, the problem of

feature selection has been investigated by many researchers. In this

paper, a novel feature subset search procedure that utilizes the Ant

Colony Optimization (ACO) is presented. The ACO is a

metaheuristic inspired by the behavior of real ants in their search for 

the shortest paths to food sources. It looks for optimal solutions by

considering both local heuristics and previous knowledge. When 

applied to two different classification problems, the proposed 

algorithm achieved very promising results. 

Keywords—Ant Colony Optimization, ant systems, feature 

selection, pattern recognition.

I. INTRODUCTION

HE problem of feature selection has been widely

investigating due to its importance to a number of

disciplines  such as pattern recognition and knowledge

discovery. Feature selection allows the reduction of feature

space, which is crucial in reducing the training time and 

improving the prediction accuracy. This is achieved by

removing irrelevant, redundant, and noisy features (i.e.,

selecting the subset of features that can achieve the best 

performance in terms of accuracy and computational time).

As described in their paper, Blum and Langley [1] argued

that most existing feature selection algorithms consist of the

following four components:

Starting point in the feature space. The search for feature

subsets could start with (i) no features, (ii) all features, or 

(iii) random subset of features. In the first case, the search

proceeds by adding features successively, while in the 

second case, features are successively removed. When

starting with a random subset, features could be

successively added/removed, or reproduced by a certain

procedure.

Search procedure. Ideally, the best subset of features can 

be found by evaluating all the possible subsets, which is

known as exhaustive search. However, this becomes

prohibitive as the number of features increases, where

there are 2N possible combinations for N features. 

Accordingly, several search procedures have been 

developed that are more practical to implement, but they 

are not guaranteed to find the optimal subset of features.

These search procedures differ in their computational cost

and the optimality of the subsets they find.
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Evaluation function. An important component of any

feature selection method is the evaluation of feature

subsets. Evaluation functions measure how good a 

specific subset can be in discriminating between classes,

and can be divided into two main groups: filters and

wrappers. Filters operate independently of any learning

algorithm, where undesirable features are filtered out of

the data before learning begins [2]. On the other hand,

performance of classification algorithms is used to select 

features for wrapper methods [3, 4].

Criterion for stopping the search. Feature selection 

methods must decide when to stop searching through the

space of feature subsets. Some of the methods ask the 

user to predefine the number of selected features. Other

methods are based on the evaluation function, like

whether addition/deletion of any feature does not produce 

a better subset, or an optimal subset according to some

evaluation strategy is obtained.

In this paper, we will mainly be concerned with the second 

component, which is the search procedure. In the next section,

we give a brief description of some of the available search 

procedure algorithms and their limitations. An explanation of

the Ant Colony Optimization (ACO) is presented in section

three. Section four describes the proposed search procedure 

algorithm. Experimental results are presented in section five

and a conclusion is given in section six.

II. THE AVAILABLE SEARCH PROCEDURES

A number of search procedure methods have been proposed 

in the literature. Some of the most famous ones are the

stepwise, branch-and-bound, and Genetic Algorithms (GA). 

The stepwise search adds/removes a single feature to/from

the current subset [5]. It considers local changes to the current 

feature subset. Often, a local change is simply the addition or 

deletion of a single feature from the subset. The stepwise, 

which is also called the Sequential Forward Selection (SFS)/ 

Sequential Backward Selection (SBS) is probably the simplest

search procedure and is generally sub-optimal and suffers

from the so-called “nesting effect”. It means that the features 

that were once selected/deleted cannot be later discarded/re-
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selected. To overcome this problem, Pudil et al. [6] proposed

a method to flexibly add and remove features, which they

called “floating search”. 

The branch and bound algorithm [7] requires monotonic

evaluation functions and is based on discarding subsets that do 

not meet a specified bound. When the size of feature set is

moderate, the branch and bound algorithm may find a 

practicable solution. However, this method becomes

impracticable for feature selection problems involving a large

number of features, especially because it may need to search 

the entire feasible region to find the optimal solution. Also, it

may not be possible to use the branch and bound algorithm in

wrapper methods because of the monotonic constraint of the 

evaluation function, where the classification accuracy is not 

guaranteed to increase by including more features.

Another search procedure is based on the Genetic

Algorithm (GA), which is a combinatorial search technique

based on both random and probabilistic measures. Subsets of 

features are evaluated using a fitness function and then

combined via cross-over and mutation operators to produce 

the next generation of subsets [8]. The GA employ a

population of competing solutions, evolved over time, to

converge to an optimal solution. Effectively, the solution

space is searched in parallel, which helps in avoiding local 

optima. A GA-based feature selection solution would typically

be a fixed length binary string representing a feature subset,

where the value of each position in the string represents the 

presence or absence of a particular feature. According to 

[9,10], the GA was able to achieve better performance than 

other conventional methods.

We propose in this paper a subset search procedure that

utilizes the ant colony optimization algorithm and aims at 

achieving similar or better results than GA-based feature

selection.

III. ANT COLONY OPTIMIZATION

In real ant colonies, a pheromone, which is an odorous

substance, is used as an indirect communication medium.

When a source of food is found, ants lay some pheromone to

mark the path. The quantity of the laid pheromone depends

upon the distance, quantity and quality of the food source. 

While an isolated ant that moves at random detects a laid

pheromone, it is very likely that it will decide to follow its

path. This ant will itself lay a certain amount of pheromone,

and hence enforce the pheromone trail of that specific path.

Accordingly, the path that has been used by more ants will be

more attractive to follow. In other words, the probability with

which an ant chooses a path increases with the number of ants

that previously chose that path. This process is hence

characterized by a positive feedback loop [11]. 

Dorigo et. al. [12] adopted this concept and proposed an 

artificial colony of ants algorithm, which was called the Ant

Colony Optimization (ACO) metaheuristic, to solve hard

combinatorial optimization problems. The ACO was 

originally applied to solve the classical traveling salesman

problem [11], where it was shown to be an effective tool in

finding good solutions. The ACO has also been successfully 

applied to other optimization problems including data mining,

telecommunications networks, vehicle routing, etc [13, 14,

15].

In order to solve an optimization problem, a number of 

artificial ants are used to iteratively construct solutions. In

each iteration, an ant would deposit a certain amount of 

pheromone proportional to the quality of the solution. At each 

step, every ant computes a set of feasible expansions to its 

current partial solution and selects one of these depending on

two factors: local heuristics and prior knowledge.

For the classical Traveling Salesman Problem (TSP) [11],

each artificial ant represents a simple “agent”. Each agent 

explores the surrounding space and builds a partial solution

based on local heuristics, i.e., distances to neighboring cities, 

and on information from previous attempts of other agents,

i.e., pheromone trail or the usage of paths from previous

attempts by the rest of the agents. In the first iteration,

solutions of the various agents are only based on local

heuristics. At the end of the iteration, “artificial pheromone”

will be laid. The pheromone intensity on the various paths will

be proportional to the optimality of the solutions. As the

number of iterations increases, the pheromone trail will have a

greater effect on the agents’ solutions. 

It is worth mentioning that ACO makes probabilistic

decision in terms of the artificial pheromone trails and the

local heuristic information. This allows ACO to explore larger

number of solutions than greedy heuristics. Another

characteristic of the ACO algorithm is the pheromone trail

evaporation, which is a process that leads to decreasing the 

pheromone trail intensity over time. According to [12],

pheromone evaporation helps in avoiding rapid convergence 

of the algorithm towards a sub-optimal region.

Please note that searching the feature space in the problem

of feature selection is quite different from the other

optimization problems that researchers attempted to solve

using ACO. In the next section, we present our proposed ACO

algorithm, and explain how it is used for searching the feature

space and selecting an “appropriate” subset of features.

IV. THE PROPOSED SEARCH PROCEDURE

For a given classification task, the problem of feature

selection can be stated as follows: given the original set, F, of 

n features, find subset S, which consists of m features (m < n,

S F), such that the classification accuracy is maximized.

The feature selection representation exploited by artificial 

ants includes the following:

n features that constitute the original set, F = {f1, …, fn}.

A number of artificial ants to search through the feature

space (na ants). 

Ti, the intensity of pheromone trail associated with feature

fi, which reflects the previous knowledge about the

importance of fi.

For each ant j, a list that contains the selected feature 
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subset, Sj = {s1, …, sm}.

We propose to use a hybrid evaluation measure that is able

to estimate the overall performance of subsets as well as the 

local importance of features. A classification algorithm is used 

to estimate the performance of subsets (i.e., wrapper 

evaluation function). On the other hand, the local importance

of a given feature is measured using the Mutual Information

Evaluation Function (MIEF) [16], which is a filter evaluation

function.

In the first iteration, each ant will randomly choose a 

feature subset of m features. Only the best k subsets, k < na,

will be used to update the pheromone trial and influence the

feature subsets of the next iteration. In the second and 

following iterations, each ant will start with m – p features that 

are randomly chosen from the previously selected k-best

subsets, where p is an integer that ranges between 1 and m – 1. 

In this way, the features that constitute the best k subsets will 

have more chance to be present in the subsets of the next

iteration. However, it will still be possible for each ant to 

consider other features as well. For a given ant j, those

features are the ones that achieve the best compromise

between pheromone trails and local importance with respect to

Sj, where Sj is the subset that consists of the features that have

already been selected by ant j. The Updated Selection

Measure (USM) is used for this purpose and defined as:

Otherwise0

if j

g

gg
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i

i
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T

T
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where LIi
Sj is the local importance of feature fi given the subset

Sj. The parameters  and control the effect of pheromone

trail intensity and local feature importance respectively. LIi
Sj is 

measured using the MIEF measure and defined as:

1
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(3)

the parameters , , and  are constants, H(fi) is the entropy of

fi, I(fi; fs) is the mutual information between fi and fs, I(C; fi) is 

the mutual information between the “class labels” and fi, and 

|Sj| is the cardinal of Sj. For detailed explanation of the MIEF

measure, the reader is referred to [16]. 

Below are the steps of the algorithm:

1. Initialization:

Set Ti = cc and Ti = 0, (i = 1, …, n), where cc is a 

constant and Ti is the amount of change of 

pheromone trial quantity for feature fi.

Define the maximum number of iterations.

Define k, where the k-best subsets will influence the

subsets of the next iteration.

Define p, where m – p is the number of features each 

ant will start with in the second and following

iterations.

2. If in the first iteration,

For j = 1 to na,

o Randomly assign a subset of m features to Sj.

Goto step 4. 

3. Select the remaining p features for each ant: 

For mm = m – p + 1 to m,

o For j = 1 to na,

Given subset Sj, Choose feature fi that

maximizes USMi
Sj.

Sj = Sj  {fi}.

Replace the duplicated subsets, if any, with randomly

chosen subsets.

4. Evaluate the selected subset of each ant using a chosen 

classification algorithm:

For j = 1 to na,

o Estimate the Mean Square Error (MSEj) of the 

classification results obtained by classifying the

features of Sj.

Sort the subsets according to their MSE. Update the

minimum MSE (if achieved by any ant in this

iteration), and store the corresponding subset of 

features.

5. Using the feature subsets of the best k ants, update the

pheromone trail intensity and initialize the subsets for

next iteration:

For j = 1 to k,          /* update the pheromone trails */

Otherwise0

if

)(maxmax

)(max

:1:1

:1

ji

hg
kgkh

jg
kg

i

f

MSEMSE

MSEMSE

S

T  (4) 

iii TTT . (5)

where is a constant such that (1 - ) represents the 

evaporation of pheromone trails.

For j = 1 to na,

o From the features of the best k ants, randomly

produce m – p feature subset for ant j, to be used 

in the next iteration, and store it in Sj.

6. If the number of iterations is less than the maximum

number of iterations, or the desired MSE has not been 

achieved, goto step 3. 

It is worth mentioning that there is little difference between

the computational cost of the proposed algorithm and the GA-

based search procedure. This is due to the fact that both of

them evaluate the selected subsets using a “wrapper

approach”, which requires far more computational cost than

the “filter approach” used in the proposed algorithm to 

evaluate the local importance of features. 
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V. EXPERIMENTAL RESULTS

A. Classification of Speech Segments 

We conducted an experiment to classify speech segments

according to their manner of articulation. Six classes were 

considered: vowel, nasal, fricative, stop, glide, and silence.

We used speech signals from the TIMIT database, which has

predefined segment boundaries.

Three different vectors of features were extracted from each 

speech frame: 16 log mel-filter bank (MFB), 12 linear 

predictive reflection coefficients (LPR), and 10 wavelet

energy bands (WVT). A context dependent approach was

adopted to perform the classification. So, the features used to

represent each speech segment Segn were the average frame

features over the first and second halves of segment Segn and 

the average frame features of the previous and following

segments (Segn-1 and Segn+1 respectively). Hence, the baseline

feature vectors based on MFB, LPR, and WVT consist of 64, 

48 and 40 features respectively.

An Artificial Neural Network (ANN) was used to classify

the features of each baseline vector into one of the six 

manner-of-articulation classes. Segments from 152 speakers

(56456 segments) were used to train the ANNs, and from 52 

speakers (19228 segments) to test them. The obtained

classification accuracy for MFB, LPR and WVT were 

87.13%, 76.86% and 84.57% respectively. It is clear that MFB

achieved the best performance among the three baseline

vectors; however, it used more features. The LPR on the other

hand was outperformed by WVT despite the fact that it used

more features. 

The three baseline feature vectors were concatenated to 

form a new set of 152 features. The GA and the proposed

ACO algorithms are used to select from these features. The 

GA-based selection is performed using the following

parameter settings: population size = 30, number of

generations = 20, probability of crossover = 0.8, and

probability of mutation = 0.05. The obtained strings are 

constrained to have the number of ‘1’s matching a predefined

number of desired features. The MSE of an ANN trained with

randomly chosen 2000 segments is used as the fitness

function.

The parameters of the ACO algorithms described in the

previous section are assigned the following values:

 =  = 1, which basically makes the trail intensity and

local measure equally important.

 = 0.3,   = 1.65 and  = 3, are found to be an 

appropriate choice for this and other classification tasks.

The number of ants, na = 30, and the maximum number

of iterations is 20. These values are chosen to justify the

comparison with GA. 

k = 10. Thus, only the best na/3 ants are used to update

the pheromone trails and affect the feature subsets of the

next iteration.

m – p = max(m – 5, round(0.65 m)), where p is the

number of the remaining features that need to be selected 

in each iteration. It can be seen that p will be equal to 5 if 

m  13. The rational behind this is that evaluating the

importance of features locally becomes less reliable as the 

number of selected features increases. In addition, this

will reduce the computational cost especially for large

values of m.

The initial value of trail intensity cc = 1, and the trail 

evaporation is 0.25, i.e.,  = 0.75. 

Similar to the GA-based feature selection, the MSE of an 

ANN trained with randomly chosen 2000 segments is

used to evaluate the performance of the selected subsets

in each iteration. 

The selected features of each method are classified using 

ANNs, and the obtained classification accuracies of the testing 

segments are shown in Fig. 1. The following points can be

deduced:

Both feature selection methods were able to achieve

classification accuracy similar to that of the LPR baseline

feature vector with far less number of features (|Sj| < 15 

features for GA, and |Sj| < 10 features for ACO).

The ACO was able to achieve similar classification 

accuracy to that of the WVT baseline feature vector with 

smaller number of features (|Sj| < 35). On the other hand, 

the 40 features selected using GA was not enough to

match the performance of WVT.

When ACO and GA are used to select 64 features, they

both achieved similar or slightly better performance than

that of the MFB baseline feature vector. 

The overall performance of ACO is better than that of

GA, where the average classification accuracy of ACO 

and GA over all the cases are:  84.23% and 83.47% 

respectively.

10 20 30 40 50 60 70

74

76

78

80

82

84

86

88

No. of selected features

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y

ACO

GA

WVT

LPR

MFB

Fig. 1 Performance of ACO and GA (Speech segment classification) 

B. Texture Classification

The second experiment was carried in texture classification.

Nine textures were considered: bark, brick, bubbles, leather,

raffia, water, weave, wood and wool [18]. Gaussian noise,

with different signal-to-noise ratios, has been added to (1024 

1024 pixels) images of each texture class to form the 

training and testing sets. 961 patterns were obtained from each 

image using (64  64) windows with an overlap of 32 pixels.
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Figs. 2 and 3 show the clean and noisy texture images used. 

Four 9 dimensional feature vectors were calculated using

statistics of sum and difference histogram (SDH) of the co-

occurrence matrix with different directions: vertical,

horizontal, and the two diagonals (SDH1, SDH2, SDH3 and 

SDH4). For each direction, nine features were extracted: mean,

variance, energy, correlation, entropy, contrast, homogeneity,

cluster shade, and cluster prominence. The fractal dimension

(FD) has been used to form the tenth feature of each vector. 

The energy contents (E) of texture images have been used to

form another feature vector using 9 different masks, and its

tenth feature was FD.

Each one of these five baseline feature vectors was used as 

input to an ANN. The numbers of training and testing patterns

were 71354 and 23785 respectively. The classification

accuracies obtained were 76.17%, 76.04%, 74.06%, 75.23%, 

and 89.39%.  It is clear that the E vector performed extremely

well compared to the other four vectors, where the ratio

between the error rate of the second best vector (SDH1) and 

that of E is 2.25. It is worth mentioning that the first four 

feature vectors (SDH1, …, SDH4) were found to exhibit a high

degree of correlation.

The five baseline feature vectors were concatenated to form

a feature set of 50 features. Both ACO and GA were applied

to select from those features using the same parameters of the

speech segment experiment. Fig. 4 shows the classification 

accuracy of the selected features. 

Since the objective of feature selection is to improve

classification accuracy, then a good feature selection method

must achieve a similar performance to that of the E baseline

feature vector with smaller number of features. GA was able 

to achieve this target by selecting 6 features. On the other

hand, the 6 features selected by ACO were able to outperform

E, and hence achieve better result compared to their GA

counterparts. This represents a very good improvement when

compared to the baseline feature vectors. 

In addition, Fig. 4 shows that the ACO gives better results

than GA in almost all cases. The performance of the whole 

feature set, which consist of 50 features, is indicated by the

horizontal dash-dotted line in the figure. The ACO achieved

similar performance using 20 features only, while GA could

not match that and it needed more features to achieve such 

performance.

The above two experiments show the superiority of the

proposed ACO algorithm, since it achieved similar or better

performance compared to the baseline feature vectors with a 

lower number of features, and it outperformed the GA in

almost all considered cases.

Fig. 2 256  256 windows of the clean texture images 

Fig. 3 256  256 windows of the noisy texture images 
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Fig. 4 Performance of ACO and GA (texture classification) 

VI. CONCLUSION

In this paper, we presented a novel feature selection search 

procedure based on the Ant Colony Optimization

metaheuristic. The proposed algorithm utilizes both local

importance of features and overall performance of subsets to

search through the feature space for optimal solutions. When

used to select features for speech segment and texture

classification problems, the proposed algorithm outperformed
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GA-based feature selection. The proposed algorithm will be

further studied and applied to other classification problems in

the future.

REFERENCES

[1] A.L. Blum and P. “Langley. Selection of relevant features and examples

in machine learning”. Artificial Intelligence, 97:245–271, 1997.

[2] M.A. Hall. Correlation-based feature selection for machine learning.

PhD thesis, The University of Waikato, 1999.

[3] R. Kohavi. Wrappers for performance enhancement and oblivious

decision graphs. PhD thesis, Stanford University, 1995.

[4] P. Gallinari T. Cibas, F.F. Soulie and S. Raudys. “Variable selection 

with neural networks”. Neurocomputing, 12:223_248, 1996.

[5] J. Kittler. “Feature set search algorithms”. In C. H. Chen, editor, Pattern

Recognition and Signal Processing. Sijhoff and Noordhoff, the 

Netherlands, 1978.

[6] P. Pudil, J. Novovicova, and J. Kittler. “Floating search methods in 

feature selection”. Pattern Recognition Letters, 15:1119-1125, 1994.

[7] P.M. Narendra and K. Fukunaga. “A branh and bound algorithm for 

feature subset selection”. IEEE Transactions on Computers, C-26: 917-

922, 1977.

[8] J. Yang and V. Honavar, “Feature subset selection using a genetic 

algorithm,” IEEE Transactions on Intelligent Systems, 13: 44–49, 1998.

[9] M. Gletsos, S.G. Mougiakakou, G.K. Matsopoulos, K.S. Nikita, A.S.

Nikita, and D. Kelekis. “A Computer-Aided Diagnostic System to

Characterize CT Focal Liver Lesions: Design and Optimization of a 

Neural Network Classifier” IEEE Transactions on Information

Technology in Biomedicine, 7: 153-162, 2003.

[10] I.-S. Oh, J.-S. Lee, and B.-R. Moon, “Hybrid Genetic Algorithms for

Feature Selection” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 26: 1424-1437, 2004.

[11] M. Dorigo, V. Maniezzo, and A. Colorni. “Ant System: Optimization by

a colony of cooperating agents”. IEEE Transactions on Systems, Man,

and Cybernetics – Part B, 26:29–41, 1996.

[12] T. Stützle and M. Dorigo. “The Ant Colony Optimization Metaheuristic: 

Algorithms, Applications, and Advances”. In F. Glover and G.

Kochenberger, editors, Handbook of Metaheuristics, Kluwer Academic

Publishers, Norwell, MA, 2002.

[13] G. Di Caro and M. Dorigo. “AntNet: Distributed stigmergetic control for 

communications networks”. Journal of Artificial Intelligence Research,

9:317–365, 1998.

[14] R.S. Parpinelli; H.S. Lopes; A.A. Freitas, “Data mining with an ant 

colony optimization algorithm”, IEEE Transactions on Evolutionary 

Computation, 6: 321 - 332 2002.

[15] G. Di Caro and M. Dorigo. “AntNet: Distributed stigmergetic control for 

communications networks”. Journal of Artificial Intelligence Research,

9:317–365, 1998.

[16] R. Montemanni, L.M. Gambardella, A.E. Rizzoli and A.V. Donati. “A

new algorithm for a Dynamic Vehicle Routing Problem based on Ant 

Colony System”. Proceedings of ODYSSEUS 2003, 27-30, 2003.

[17] A. Al-Ani, M. Deriche and J. Chebil. “A new mutual information based 

measure for feature selection”, Intelligent Data Analysis, 7: 43-57, 2003.

[18] Signal and Image Processing Institute, USC. USE-SIPI image database,

1981. http://sipi.usc.edu/services/database/. 

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:5, 2008 

327International Scholarly and Scientific Research & Innovation 2(5) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:2
, N

o:
5,

 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
06

6.
pd

f




