Fuzzy T-Neighborhood Groups Acting on Sets

Hazem. A. Khorshed, Mostafa A. El Gendy, and Amer. Abd El-Razik

Abstract

In this paper, The T-G-action topology on a set acted on by a fuzzy T-neighborhood (T-neighborhood, for short) group is defined as a final T-neighborhood topology with respect to a set of maps. We mainly prove that this topology is a T-regular Tneighborhood topology.

Keywords—Fuzzy set, Fuzzy topology, Triangular norm, Separation axioms.

I. Introduction

AT-neighborhood topology on a set can be defined by several method e.g., via closures, interiors, filters, etc. Sometimes a T-neighborhood topology constructed out of given T-neighborhood topologies may be useful. In the classical theory of topological groups, when a topological group G acts on a set X, it confers a topology on X, called the G-action topology on X. In this paper we develop a fuzzy extension of that notion, in the case G is a T-neighborhood group. Varity of useful characterizations of this Tneighborhood topology are considered. We show that the T-Gaction topology τ_{X}^{T-G} coincides with the final T neighborhood topology τ_{f} introduced on X by a set of functions $\{\hat{g}\}$;

$$
\hat{g}: G \rightarrow X
$$

II. Definition and Preliminaries

Definition 2.1. [8] A topological group G acts on a nonempty set X, if to each $g \in G$ and each $x \in X$ there corresponds a unique element $g x$ such that
$g_{2}\left(g_{1} x\right)=\left(g_{2} g_{1}\right) x \quad \forall x \in X$ and $g_{1}, g_{2} \in G$

$$
e x=x
$$

When G acts on a set X, two families of functions can be defined as follows:
To each $g \in G$, we define $\hat{g}: X \rightarrow X$,

$$
g(x)=g x
$$

To each $x \in X$, we define $x: G \rightarrow X$,

$$
x(g)=g x
$$

[^0]We will use two important theorems which introduced in [7]. The first gives necessary and sufficient conditions for a group structure and Tneighborhood system to be compatible, and the second gives necessary and sufficient conditions for a filter to be the T-neighborhood filter of e in a T-neighbourhood group.

Theorem 2.1 [7] Let (G, .) be a group and β a Tneighborhood base on G. Then $(G, ., t(\beta))$ is a Tneighborhood group if and only if the following are fulfilled:
(a) For every $\mathrm{a} \in G$ we have

$$
\begin{gathered}
\beta(a)=\left\{\zeta_{a}(\mu) / \mu \in \beta(e)\right\} \\
\left(\mathrm{res} . \beta(a)=\left\{R_{a}(\mu) / \mu \in \beta(e)\right\}\right. \text { and }
\end{gathered}
$$

$\beta(a)=\left\{\zeta_{a}(\mu) / \mu \in \beta(e)\right\}$ is a T-neighborhood base at a.
(b) For all $\mu \in \beta(e)$ and for all $\varepsilon \in I_{0}$ there exists
$v \in \beta$ (e) such that $v-\varepsilon \leq \mu^{-1}$, i.e., r is continuous at e.
(c) For all $\mu \in \beta$ (e) and for all $\varepsilon \in I_{0}$ there exists $v \in \beta$ (e) such that $v . v-\varepsilon \leq \mu$, i.e., m is continuous at (e, e).
(d) For all $\mu \in \beta$ (e), for all $\varepsilon \in I_{0}$ and for all $x \in G$ there exist $v \in \beta$ (e) such that $l_{x} \cdot v .1_{x}^{-1}-\varepsilon \leq \mu$, i.e., int $_{x}$ is continuous at e.
Where $\zeta_{x}: G \rightarrow G: z \mapsto x z \quad$ (resp. $R_{x}: G \rightarrow G: z$ $\mapsto z x$) is the left (resp. right) translation.

Theorem 2.2 [7] Let (G, .) be a group and \mathfrak{J} a family of fuzzy subset of G such that the following hold:
(a) \mathfrak{I} is a filterbasis, such that $\mu(e)=1$ for all $\mu \in \mathfrak{I}$.
(b) For all $\mu \in \mathfrak{I}$ and for all $\varepsilon \in I_{0}$ there exists $v \in \mathfrak{I}$ such that $v-\varepsilon \leq \mu^{-1}$.
(c) For all $\mu \in \mathfrak{I}$ and for all $\varepsilon \in \mathrm{I}_{0}$ there exists $v \in \mathfrak{I}$ such that $v . v-\varepsilon \leq \mu$.
(d) For all $\mu \in \mathfrak{J}$, for all $\varepsilon \in I_{0}$ and for all $x \in G$ there exists $v \in \mathfrak{J}$ such that l_{x}.v. $1_{x-1}-\varepsilon \leq \mu$.
Then there exists a unique T -neighborhood system β such that \mathfrak{J} is T -neighborhood basis for the T -neighbourhood system at $e, \beta(e)$ and β is compatible with the group structure. This T-neighbourhood system is given by $\beta(x)=\left\{l_{x} \cdot \mu / \mu \in \mathfrak{J}\right\}^{-1}=\left\{\mu .1_{x} / \mu \in \mathfrak{J}^{-1}, x \in G\right.$.

III. T-Neighborhood Topologies Induced by TNeighborhood Group Actions on Set

Definition 3.1. Let (G, .) be a group acting on a set X, then for all $\Gamma \in I^{G}, \mu \in I^{X}, g \in G$ and $x \in X$ we define for all $y \in X$

$$
\begin{equation*}
\Gamma \mu(y)=\sup \{\Gamma(g) T \mu(x):(g, x) \in G \times X \text { and } g x=y\} \tag{1}
\end{equation*}
$$

Proposition 3.1. Let (G, .) be a group acting on a set X and $\Psi, \Gamma \in I^{G}, \mu \in I^{X}$. Then
(a) $\Psi(\Gamma \mu) \leq(\Psi . \Gamma) \mu \quad$ In particular $\Psi(\Gamma \mu)(y) \leq(\Psi . \Gamma) \mu(y)$
(b) $\Gamma 1_{\mathrm{M}}=\underset{x \in M}{\vee} \Gamma 1_{\mathrm{x}}$
(c) $\Gamma 1_{M}(y)=\sup \left\{\Gamma(g): g \in G\right.$ and $\left.g^{-1} y \in M\right\}$
(d) $\Gamma 1_{x}(y)=\sup \{\Gamma(g): g \in G$ and $g x=y\}$
(e) $l_{g} \mu(y)=\sup \{\mu(x): x \in X$ and $g x=y\}$
$=\mu\left(g^{-1} y\right)$
Proof: (b)-(e) follow immediately from Definition 3.1.
(a) For any $y \in X$:

$$
\begin{gathered}
\Psi(\Gamma \mu)(y)=\sup \{\Psi(g) T \Gamma \mu(x):(g, x) \in G \times X, g x=y\} \\
=\sup \{\Psi(g) T \sup \{\Gamma(h) T \mu(z): h z=x\}: g x=y\} \\
=\sup \{\Psi(g) T \Gamma(h) T \mu(z): g h z=y\} \\
\left(\Psi \odot_{T} \Gamma\right) \mu(y)=\sup \left\{\left(\Psi \odot_{T} \Gamma(k) T \mu(z): k z=y\right\}\right. \\
=\sup \{\sup \{\Psi(g) T \Gamma(h): g h=k\} T \mu(z): \\
k z=y\} \\
=\sup \{\Psi(g) T \Gamma(h) T \mu(z):(g, h, z) \\
\in G \times G \times X \text { and } g h z=y\}
\end{gathered}
$$

Hence $\Psi(\Gamma \mu)(y)=\left(\Psi \odot_{T} \Gamma\right) \mu(y) \leq(\Psi . \Gamma) \mu(y)$.
If both Γ, μ are crisp, then $\Gamma \mu$ is also crisp and is given by
$\Gamma \mu=\{g x: g \in \Gamma$ and $x \in \mu\}$.
Note that $\Gamma \mu, \Gamma 1_{x}, 1_{g} \mu \in I^{X}$ and $\Gamma 1_{x}(y)=0$ if $y \notin$ orbit of x.
Theorem 3.1. Let G be a T-neighborhood group acting on a set X, and let \mathfrak{R} be a fundamental system of G at e. For each $x \in X$, let $\beta_{x}=\left\{\Gamma 1_{x}: \Gamma \in \mathfrak{R}\right\} \in I^{X}$. Then $\left\{\beta_{x}\right\}_{x \in X}$ is a T-neighborhood basis on X. The resulting Tneighborhood space is denoted by $\tau_{X}{ }^{T-G}$. Its fuzzy closure operator ${ }^{-}: I^{X} \rightarrow I^{X}$ is given by: For all η $\in I^{X}, x \in X:$

$$
\begin{equation*}
\bar{\eta}(x)=\inf _{\Gamma \in \mathfrak{R}} \sup _{g \in G} \Gamma(g) T \eta(g x) \tag{2}
\end{equation*}
$$

Proof. First, we verify that $\left\{\beta_{x}\right\}_{x \in X}$ is a Tneighborhood basis in X. Let $x \in X, \Gamma$,
$\Psi \in \mathfrak{R}, \mu=\Gamma 1_{x} \in \beta_{x}, \lambda=\Psi 1_{x} \in \beta_{x}$
(i) $\mu(x)=\Gamma 1_{x}(x)=\sup \{\Gamma(g): g \in G$ and $g x=x\}$

$$
\geq \Gamma(e)=1 \quad(\text { Because } e x=x)
$$

(ii) There exists $\Lambda \in \mathfrak{R}: \Gamma \wedge \Psi \geq \Lambda$. Hence
$\mu \wedge \lambda=\Gamma 1_{x} \wedge \Psi 1_{x} \geq \Lambda 1_{x}$,
which is in β_{x}.
(iii) T-kernel condition:

Recall that $\left\{\mathfrak{R} 1_{g}\right\}_{g \in G}$ is a T-neighborhood basis of the T-neighborhood group G Theorem 2.2 . Let, as before, $\mu=\Gamma 1_{x} \in \beta_{x}$. By the T-kernel condition for
$\Gamma \in \mathfrak{R}$, for all $\varepsilon \in I_{0}$ there exists a family $\left\{\Gamma_{g} l_{g} \in \mathfrak{R}_{g}\right\}_{g \in G}$ such that for all $g, k \in G$

$$
\begin{equation*}
\Gamma_{e}(k) T\left(\Gamma_{k} l_{k}\right)(g) \leq \Gamma(g)+\varepsilon \tag{3}
\end{equation*}
$$

We take $v_{x}=\Gamma_{e} l_{x}$. For each $y \in X$, if $y \notin$ orbit of x, take for v_{y} any element of $\beta_{y}=\mathfrak{R}_{y}$.
If $y \in$ orbit of x, choose some $h \in G$ such that $y=h x$, and

$$
\begin{equation*}
\delta+\Gamma_{e}(h) \geq \sup \left\{\Gamma_{e}(k): k x=y\right\} \tag{4}
\end{equation*}
$$

where $\delta \in I_{0}$ is a real number that satisfies

$$
(b+\delta) T(c+\delta) \leq(b T c)+\varepsilon
$$

for all $b, c \in I$. Such δ exists by the uniform continuity of T. Take $v_{y}=\Gamma_{h} l_{y} \in \beta_{y}$. Then, if $y \notin$ orbit of x, we find for all $z \in X$ that

$$
2 \varepsilon+\mu(z) \geq v_{x}(y) T v_{y}(z)
$$

because then $v_{x}(y)=\left(\Gamma_{e} 1_{x}\right)(y)=0$. And when $y \in$ orbit of x, we find for all $z \in X$:
$2 \varepsilon+\mu(z)=2 \varepsilon+\left(\Gamma 1_{x}\right)(z)$

$$
\begin{aligned}
& =\varepsilon+\sup \{\varepsilon+\Gamma(g): g x=z\} \\
& \geq \varepsilon+\sup \left\{\Gamma_{e}(h) T\left(\Gamma_{h} l_{h}\right)(g): g x=z\right\} \text { by }(3) \\
& \geq\left(\Gamma_{e}(h)+\delta\right) T \sup \left\{\left(\Gamma_{h} l_{h}\right)(g): g x=z\right\} \\
& \geq \sup \left\{\Gamma_{e}(k): k x=y\right\} T \sup \left\{\left(\Gamma_{h}\right)\left(g h^{-1}\right):\left(g h^{-1}\right)(h x)=z\right\}
\end{aligned}
$$

by (4) Since $h x=y$, then

$$
\begin{aligned}
2 \varepsilon & +\mu(z) \geq\left(\Gamma_{e} 1_{x}\right)(y) T \sup \left\{\left(\Gamma_{h}\right)(t): t y=z\right\} \\
& =\left(\Gamma_{e} 1_{x}\right)(y) T\left(\Gamma_{h} 1_{y}\right)(z) \\
& =v_{x}(y) T v_{y}(z) .
\end{aligned}
$$

Thus, the kernel condition holds for $\mu \in \beta_{x}$ in both cases of y. Finally, for all $\eta \in I^{X}$

$$
\begin{aligned}
\bar{\eta}(x) & =\inf _{\mu \in \beta} \sup _{y \in X} \mu(y) T \eta(y) \\
& =\inf _{\Gamma \in \mathfrak{R}} \sup _{y \in X} \eta(y) T(\Gamma 1 x)(y) \\
& =\inf _{\Gamma \in \mathfrak{R}} \sup _{y \in o r b i t e x} \eta(y) T \sup \{\Gamma(g): g \in G \text { and } g x=y\} .
\end{aligned}
$$

Because if $y \notin$ orbit x, then $\left(\Gamma l_{x}\right)(y)=0$. Thus,

$$
\bar{\eta}(x)=\inf _{\Gamma \in \mathfrak{\Re}} \sup _{g \in G} \eta(g x) T \Gamma(g),
$$

Rendering (2).
Proposition 3.2. Let $\Gamma \in I^{G}, \curvearrowright \subset I^{G}, g \in G, x \in X$ then
$\left(\Gamma .1_{g}\right) 1_{x}=\left(\Gamma 1_{g x}\right) \in I^{X}$, and hence $(\wp .1 \mathrm{~g}\}) 1_{\mathrm{x}}=\wp 1_{\mathrm{gx}} \subset I^{X}$.

Proof:

$\left(\left(\Gamma .1_{g}\right) 1_{x}\right)(y)=\sup \left\{\left(\Gamma .1_{g}\right)(k): k \in G\right.$ and $\left.k x=y\right\}$

$$
=\sup \left\{\Gamma\left(\mathrm{kg}^{-1}\right): k \in G \text { and } k g^{-1} g x=y\right\}
$$

$$
=\sup \{\Gamma(t): t \in G \text { and } \operatorname{tg} x=y\}
$$

$$
=\left(\Gamma 1_{g x}\right)(y) .
$$

This completes the proof.
Proposition 3.3. For each filterbasis F in I^{G} and for $x \in X$.

$$
\begin{equation*}
\left\{\Gamma 1_{x}: \Gamma \in \mathrm{F}^{\sim}\right\} \subset\left\{\Psi 1_{x}: \Psi \in \mathrm{F}\right\}^{\sim} \subset I^{X} \tag{5}
\end{equation*}
$$

Proof: Let $\Gamma \in . \mathrm{F}^{\sim}$ Then for all $\varepsilon>0$ there exists Γ_{ε} $\in \mathrm{F}$ such that $\Gamma+\varepsilon \geq \Gamma_{\varepsilon}$. Then for all $y \in X$ we have
$\varepsilon+\left(\Gamma 1_{x}\right)(y)=\varepsilon+\sup \{\Gamma(g): g x=y\}$

$$
=\sup \{\varepsilon+\Gamma(g): g x=y\}
$$

$$
\begin{aligned}
& \geq \sup \left\{\Gamma_{\varepsilon}(g): g x=y\right\} \\
& =\left(\Gamma_{\varepsilon} 1_{x}\right)(y) .
\end{aligned}
$$

Thus, $\varepsilon+\Gamma 1_{x} \geq \Gamma_{\varepsilon} 1_{x} \in\left\{\Psi 1_{x}: \Psi \in \mathrm{F}\right\}$. Hence $\Gamma 1_{x} \in\left\{\Psi 1_{x}\right.$: $\Psi \in \mathrm{F} \xi^{\sim}$. This proves (5).

Proposition 3.4. The fuzzy closure operator on X defined in (2) does not depend on the particular choice of a fundamental system \mathfrak{R} of e.

Proof: All fundamental systems \mathfrak{R} of G at e have the same saturation \mathfrak{R}^{\sim}. Also, for each $x \in X$

$$
\begin{aligned}
\beta_{x} & =\left\{\Gamma 1_{x}: \Gamma \in \mathfrak{R}\right\} \\
& \subset\left\{\Gamma 1_{x}: \Gamma \in \mathfrak{R}^{\sim}\right\} \\
& \subset\left\{\Gamma 1_{x}: \Gamma \in \mathfrak{R}\right\}^{\sim}=\beta_{x}^{\sim} .
\end{aligned}
$$

As $\left\{\beta_{x}\right\},\left\{\beta_{x}^{\sim}\right\}$ induce the same fuzzy closure operator on X, then the fuzzy closure operator defined in (2) is also given by

$$
\begin{equation*}
\bar{\eta}(x)=\inf _{\Gamma \in \tilde{\Re}} \sup _{g \in G} \Gamma(g) T \eta(g x) \tag{6}
\end{equation*}
$$

Which is independent of the particular choice of a fundamental system \mathfrak{R} of e.

The following definition is well phrased by virtue of Theorem 3.1, and Proposition 3.4;

Definition 3.2. Let G be a T-neighborhood group acting on a set X. A T-G-action-topology on X denoted by τ_{X}^{T-G} is introduced through its closure operator defined in (2).

Proposition 3.5. Let \mathfrak{R} be a fundamental system at e of $G, \mu \in \mathfrak{R}$. Then

$$
\begin{equation*}
1_{g} \cdot \mathfrak{R} \cdot 1_{g^{\prime}} \subset \mathfrak{R}^{\sim} \tag{7}
\end{equation*}
$$

Proof: From condition (d) in Theorem 2.1, for all >0 there exists $v_{\varepsilon} \in \mathfrak{R}$ such that

$$
v_{\varepsilon}-\varepsilon \leq 1_{g} \cdot \mu .1_{g_{-}-1}
$$

This proves that $l_{g} \cdot \mu \cdot l_{g^{-}} \in \mathfrak{R}^{\sim}$
Notion: In T-G-action topology
(1) We denote the T-neighborhood system at $x \in X$ by $\boldsymbol{N}(x)$.
(2) Let \mathfrak{R} be the T -neighborhood system of G at $e, x \in$ X. We denote $\mathfrak{R} 1_{\mathrm{x}}$ by $C \zeta(x)$. Recall that $C^{\sim}=\kappa$; i.e $C \zeta(x)$ is a T-neighborhood basis at x for this space.

Definition 3.3. Let $(X, ., t(\beta))$ be a T-neighborhood space, M be a non-empty set in X. Then $\mu \in I^{X}$ is said to be a T-neighborhood of M if μ is a T-neighborhood of all points x in M. It follows that the set of all T neighborhoods of M (called the T-neighborhood system of M) is the set $\underset{x \in M}{\wedge} \mathfrak{N}(x)$.

Proposition 3.6. Let $\Gamma \in I^{G}, g \in G, z \in X$ then
$l_{g}^{-1}\left(\Gamma 1_{z}\right)=\left(1_{g}{ }^{-1} \cdot \Gamma\right) 1_{z}$

Proof:

$$
\begin{aligned}
& 1_{g_{-}(}\left(\Gamma 1_{z}\right)(y)=\left(\Gamma 1_{z}\right)(g y) \\
& \quad=\sup \{\Gamma(h): h \in G, h z=g y\} \\
& \quad=\sup \{\Gamma(g k): k \in G, k z=y\} \\
& \left(l_{g^{-1}} \cdot \Gamma\right) 1_{z}(y)=\sup \left\{\left(l_{g^{-} \cdot} \Gamma\right)(k): k z=y\right\} \\
& \quad=\sup \{\Gamma(g k): k \in G, k z=y\}
\end{aligned}
$$

Then

$$
1_{g^{-}}\left(\Gamma 1_{z}\right)=\left(1_{g^{-} \cdot t} \cdot \Gamma\right) 1_{z}
$$

Theorem 3.2. Under this T-neighborhood topology the functions $\{\hat{g}\}$ are homeomorphisms on X.

Proof: Without loss of generality, we take \mathfrak{R} the whole T-neighborhood system at e. Then from Proposition 3.5, $1_{g} . \mathfrak{R} .1_{g-l} \subset \mathfrak{R}$. Given $x \in X$,
$g \in G, \mathfrak{R} l_{g x}$ is a T-neighborhood basis at $\hat{g} x$. Let μ $\in \mathfrak{R} l_{g x}$ we have $\hat{g}^{-1}(\mu)(y)=\mu(g y)=I_{g-1} \mu(y)$, then $\hat{g}^{-1}(\mu)=I_{g-1} \mu \in I_{g}^{-1} \mathfrak{R} I_{g x}$, and from Proposition 3.6
$1_{g}^{-1}\left(\mathfrak{R} l_{g x}\right)=\left(1_{g}^{-1} \cdot \mathfrak{R}\right) 1_{g x}$,
$=\left(1_{g}^{-1} . \mathfrak{R} .1_{g}\right) 1_{x}$ by Proposition 3.2
$\subset \mathfrak{R}^{\sim} 1_{x} \quad$ by Proposition 3.5 $\subset \mathfrak{N}(x)$.
i.e., $\hat{g}^{-1}(\mu)$ is a T- neighborhood of x. So by Theorem 5.1 in [5] \hat{g} is continuous at x for all x, and hence it is continuous. Since $\left(g^{-1}\right)^{\wedge}=(\hat{g})^{-1}$. Then $(\hat{g})^{-1}$ is also continuous. Thus \hat{g} is a homeomorphism.

Proposition 3.7. For any symmetric T-neighborhood Δ of e, and any $\mathrm{M} \subset \mathrm{X} ; \mathrm{x}, \mathrm{z} \in \mathrm{X}$

$$
\begin{aligned}
& \left(\Delta 1_{\mathrm{x}}\right)(\mathrm{z})=\left(\Delta 1_{\mathrm{z}}\right)(\mathrm{x}) \\
& \left(\Delta 1_{\mathrm{M}}\right)(\mathrm{x})=\sup _{y \in X} 1_{\mathrm{M}}(\mathrm{y}) \mathrm{T}\left(\Delta 1_{\mathrm{x}}\right)(\mathrm{y})
\end{aligned}
$$

Proposition 3.8. For any subset M of X and any Tneighborhood Γ of $e, \Gamma 1_{M}$ is a T-neighborhood of M, and

$$
\begin{equation*}
\left(1_{M}\right)^{-} \leq \Gamma 1_{M} \in I^{X} \tag{8}
\end{equation*}
$$

Proof: Since $\Gamma 1_{M}=\underset{x \in M}{\vee} \Gamma 1_{x}$, then $\Gamma 1_{M}$ is a T-neighborhood of all points of M, hence $\Gamma 1_{M}$ is a T neighborhood of M.

Next, let Γ be a T-neighborhood of e. Then Γ contains a symmetric T-neighborhood Δ of e. For any $x \in X$

$$
\begin{aligned}
\left(1_{M}\right)^{-}(x)= & \inf _{\lambda \in C} \sup _{y \in X} I_{M}(y) T \lambda(y) \\
& \leq \sup _{y \in X} 1_{M}(y) T \Delta I_{x}(y) \\
& =\sup _{y \in M} \Delta I_{x}(y) \\
& =\sup _{y \in M} \Delta I_{y}(x) \quad \text { by Proposition } 3.7 \\
& =\left(\Delta I_{M}\right)(x) \\
& \leq\left(\Gamma I_{M}\right)(x) . \text { This proves }(8) .
\end{aligned}
$$

Proposition 3.9. Let \mathfrak{R} be a fundamental system of T-

$$
\left(1_{M}\right)^{-}=\widehat{\Gamma \in \mathfrak{R}} \Gamma 1_{M}
$$

Proof: From Proposition 3.8, $\left(1_{M}\right)^{-} \leq \Gamma 1_{M}$ for every $\Gamma \in \mathfrak{R}$.Then

$$
\left(1_{M}\right)^{-} \leq \widehat{\Gamma \in O}_{\wedge} \Gamma 1_{M} .
$$

Next we prove that

$$
\widehat{\Gamma \in \mathfrak{R}}_{\wedge}^{\Gamma 1_{M}}={\widehat{\Gamma \in \mathfrak{R}^{\sim}}} \Gamma 1_{M} .
$$

Since $\mathfrak{R} \subset \mathfrak{R}^{\sim}$, then

$$
\widehat{\Gamma \in \mathfrak{R}}_{\wedge}^{\Gamma l_{M} \geq}{\widehat{\Gamma \in \mathfrak{R}^{\sim}}} \Gamma l_{M}
$$

Also, let $\Gamma \in \mathfrak{R}^{\sim}$, for all $\varepsilon>0$ there exists $\Gamma_{\varepsilon} \in \mathfrak{R}$ such that $\varepsilon+\Gamma \geq \Gamma_{\delta}$,

$$
\varepsilon+\Gamma 1_{M} \geq(\varepsilon+\Gamma) 1_{M} \geq \Gamma_{\varepsilon} 1_{M} \geq \underbrace{}_{\Gamma \in \mathfrak{R}} \Gamma 1_{M}
$$

Since this holds for all $\varepsilon>0$, then

$$
\Gamma 1_{M} \geq \hat{\Gamma \in \mathfrak{R}}^{\Gamma 1_{M} .}
$$

This inequality holds for all $\Gamma \in \mathfrak{R}^{\sim}$.
Consequently,

$$
\wedge_{\Gamma \in \mathfrak{R}^{\sim}} \Gamma 1_{M} \geq \widehat{\Gamma \in \mathfrak{R}}_{\wedge} \Gamma 1_{M}
$$

Hence, equality holds.
It is clear that if O is the set of symmetric elements in \mathfrak{R}^{\sim} then.

$$
\wedge_{\Gamma \in \mathfrak{R}} \Gamma 1_{M}=\wedge_{\Gamma \in \mathfrak{R}^{\sim}}^{\wedge} \Gamma 1_{M} \leq \wedge_{\Delta \in O} \Delta 1_{M}
$$

Conversely, let O is the set of symmetric elements in \mathfrak{R}^{\sim}. Then O is a fundamental system at e :

$$
\begin{aligned}
\left(\widehat{\Delta \in O}_{\left.\Delta l_{M}\right)(x)}\right. & =\inf _{\Delta \in O}\left(\Delta l_{M}\right)(x) \\
& =\inf _{\Delta \in O} \sup _{y \in X} 1_{M}(y) T(\Delta l x)(y) \text { by Proposition } 3.7 \\
& =\left(l_{M}\right)^{-}(x)
\end{aligned}
$$

because the set $\left\{\Delta 1_{x}: \Delta \in O\right\}$ is a T-neighborhood basis at x.

Theorem 3.3. A T-G-action topology on X is a Tregular T-neighborhood topology.

Proof: Let $M \subset X$ and $x \in X$. We establish condition (N^{4}-T-regularity) of Theorem 3.2 in [6], which is equivalent to the T-regularity of X. For all
$M \subset X, x \in X$ such that
Inf hgt ($\left.\rho T v: \rho \in C ̧(M), v \in O 1_{x}\right)$

$$
\begin{aligned}
& \leq \inf _{\Delta \in O} \operatorname{hgt}\left(\Delta 1_{M} T \Delta 1_{x}\right) \\
& \leq \inf _{\Delta \in O} \sup \left\{\left(\left(\Delta 1_{M}\right) \wedge \Delta 1_{x}\right)(y): y \in X\right\}
\end{aligned}
$$

$$
=\inf _{\Delta \in O} \sup \left\{\left(\left(\Delta 1_{M}\right)(y) \wedge\left(\Delta I_{x}\right)(y)\right): y \in X\right\}
$$

$$
=\inf _{\Delta \in O} \sup \{\sup \{\Delta(h): h \in G, h y \in M\}
$$

$$
\wedge \sup \{\Delta(k): k \in G, y=k x\}: y \in X\}
$$

$$
=\inf _{\Delta \in O} \sup \{\sup \{\Delta(h): h \in G, h y \in M\} \wedge
$$

$$
\sup \{\Delta(k): k \in G, y=k x\}: y \in \text { orbit } x\}
$$

So. (call $y \in k x$)
Inf hgt ($\left.\rho T v: \rho \in C ̧(M), v \in O 1_{x}\right)$

$$
\begin{aligned}
& \leq \inf _{\Delta \in O} \sup \{\sup \{\Delta(h): h k x \in M\} \wedge \Delta(k): k \in G\} \\
& =\inf _{\Delta \in O} \sup \{\Delta(h) \wedge \Delta(k): h, k \in G \text { and } h k x \in M\} \\
& =\inf _{\Delta \in O} \sup \{(\Delta \Delta)(g): g \in G \text { and } g x \in M\} \\
& =\inf _{\Delta \in O} \sup \left((\Delta \Delta)\left(1_{M}\right)\right)(x)
\end{aligned}
$$

But by Theorem 2.2 in [7], for every $\Delta \in O, \varepsilon \geq 0$ there exists $\Delta_{1} \in \mathrm{O}$ such that $\Delta_{1} \Delta_{1} \leq \Delta+\varepsilon$. Hence,
Inf hgt ($\left.\rho T v: \rho \in C ̧(M), v \in O 1_{x}\right)$

$$
\begin{aligned}
& \leq \inf _{\Delta \in O, \varepsilon>0}\left((\Delta+\varepsilon) 1_{M}\right)(x) \\
= & \inf _{\Delta \in O}\left(\Gamma 1_{M}\right)(x) \\
= & \bigwedge_{\Gamma \in O}\left(\Gamma l_{M}\right)(x)=\left(l_{M}\right)^{-}(x) \quad \text { by Proposition 3.9. }
\end{aligned}
$$

The opposite inequality is always valid.
Theorem 3.4. A T-G-action-topology τ_{X}^{T-G} coincides with the final T-neighborhood topology τ_{f} on X defined by the set of functions

$$
\{\hat{x}: G \rightarrow X: x \in X\}, \hat{x}(g)=g x
$$

Proof: For any $x \in X$, the function
$\hat{x}: G \rightarrow\left(X, \tau_{X}^{T-G}\right)$ is continuous, because for all
$g \in G$ and for each neighborhood $\Gamma\left(1_{g x}\right)$ in the fundamental system $\mathfrak{R} 1_{g x}$ of $\hat{x}(g)=g x$, where $\Gamma \in \mathfrak{R}$, we have

$$
\begin{aligned}
& \hat{x}\left(\Gamma .1_{g}\right)(y)=\sup \left\{\left(\Gamma .1_{g}\right)(h): h \in G, \hat{x}(h)=y\right\} \\
& \quad=\sup \left\{\left(\Gamma .1_{g}\right)(h): h \in G, h x=y\right\} \\
& \quad=\left(\Gamma .1_{g}\right) 1_{x}(y)
\end{aligned}
$$

then $\hat{X}\left(\Gamma .1_{g}\right)=\left(\Gamma .1_{g}\right) 1_{x}=\Gamma 1_{g x}$ and $\Gamma .1_{g}$ is a Tneighborhood of g by Theorem 2.3 in [7]. Therefore

World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences Vol:2, No:2, 2008
$\tau_{X}^{T-G} \subset \tau_{f}$ since τ_{f} is the finest T-neighborhood \wedge
topology making all x continuous.
Next, let $\mathrm{x} \in \mathrm{X}, \mu$ a T-neighborhood of x in τ_{f}. Then $\hat{x}^{-1}(\mu)$ a T-neighborhood of e in G; i.e. $\left(\hat{X}^{-1}(\mu)\right) 1_{x}$ is a T-neighborhood of x in τ_{X}^{T-G}.

$$
\operatorname{But}\left(\hat{x}^{-1}(\mu)\right) 1_{x}=\hat{x}\left(\hat{x}^{-1}(\mu)\right)=\mu \wedge 1_{\text {rangex }} \leq \mu .
$$

This proves that μ is a T-neighborhood of x in τ_{X}^{T-G}.
Then $\tau_{\mathrm{f}} \subset \tau_{X}^{T-G}$. Hence, equality holds.

References

[1] T.M.G. Ahsanullah, On fuzzy neighbourhood groups, J. Math. Anal. Appl. 130 (1988)237-251.
[2] N. Bourbaki, "General Topology Part I," Addision- Wesley, Reading, MA, 1966.
[3] D.H. Foster, Fuzzy topological groups, J. Math. Anal. Appl. 67 (1979) 549-564.
[4] K. A. Hashem and N. N. Morsi, Fuzzy T- neighborhood spaces, Part I: T- proximities, Fuzzy Sets and Systems 127 (2002) 247-264.
[5] K. A. Hashem and N. N. Morsi, Fuzzy T- neighborhood spaces, Part II: T- neighborhood systems, Fuzzy Sets and Systems 127 (2002) 265-280.
[6] K. A. Hashem and N. N. Morsi, Fuzzy T- neighborhood spaces, Part III: T- separation axioms, Fuzzy Sets and Systems 133 (2002) 333-361.
[7] H. A. Khorshed and M. A. El Gendy, On Fuzzy T- neighbourhood groups, $3^{\text {rd }}$ Internationa Conference of Mathematics and Engineering Physics (2006) 24-32.
[8] A. Patronis, Colloq. Math. Soc. Janos Bolyai 23(1978) 939-944.

[^0]: Authors are with Physics and Mathematics Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt.

