Fuzzy T-Neighborhood Groups Acting on Sets

Hazem. A. Khorshed, Mostafa A. El Gendy, and Amer. Abd El-Razik

Abstract—In this paper, The T-G-action topology on a set acted on by a fuzzy T-neighborhood (T-neighborhood, for short) group is defined as a final T-neighborhood topology with respect to a set of maps. We mainly prove that this topology is a T-regular T-neighborhood topology.

Keywords—Fuzzy set, Fuzzy topology, Triangular norm, Separation axioms.

I. INTRODUCTION

A T-neighborhood topology on a set can be defined by several method e.g., via closures, interiors, filters, etc. Sometimes a T-neighborhood topology constructed out of given T-neighborhood topologies may be useful. In the classical theory of topological groups, when a topological group G acts on a set X, it confers a topology on X, called the G-action topology on X. In this paper we develop a fuzzy extension of that notion, in the case G is a T-neighborhood group. Varity of useful characterizations of this T-neighborhood topology are considered. We show that the T-G-action topology τ_X^{T-G} coincides with the final T-neighborhood topology τ_f introduced on X by a set of

functions
$$\left\{ \stackrel{\circ}{g} \right\}$$
;

$$g : G \to X$$
.

II. DEFINITION AND PRELIMINARIES

Definition 2.1. [8] A topological group G acts on a nonempty set X, if to each $g \in G$ and each $x \in X$ there corresponds a unique element gx such that

$$g_2(g_1x) = (g_2g_1)x \quad \forall x \in X \text{ and } g_1, g_2 \in G$$

 $ex = x$

When G acts on a set X, two families of functions can be defined as follows:

To each $g \in G$, we define $g : X \to X$,

$$\stackrel{\wedge}{g}(x) = gx$$

To each $x \in X$, we define $x : G \to X$,

$$\stackrel{\wedge}{x}(g)=gx.$$

Authors are with Physics and Mathematics Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt.

We will use two important theorems which introduced in [7]. The first gives necessary and sufficient conditions for a group structure and T-neighborhood system to be compatible, and the second gives necessary and sufficient conditions for a filter to be the T-neighborhood filter of e in a T-neighborhood group.

Theorem 2.1 [7] Let (G, .) be a group and β a Tneighborhood base on G. Then $(G, ., t(\beta))$ is a Tneighborhood group if and only if the following are fulfilled:

(a) For every $a \in G$ we have

$$\beta (a) = \{ \zeta_a(\mu) / \mu \in \beta(e) \}$$
(res. $\beta (a) = \{ R_a(\mu) / \mu \in \beta(e) \}$ and

 $\beta(a) = \{ \zeta_a(\mu) \mid \mu \in \beta(e) \}$ is a T-neighborhood base at a.

- (b) For all $\mu \in \beta$ (e) and for all $\varepsilon \in I_0$ there exists
- $v \in \beta$ (e) such that $v \varepsilon \le \mu^{-1}$, i.e., r is continuous at e.
- (c) For all $\mu \in \beta$ (e) and for all $\varepsilon \in I_0$ there exists $v \in \beta$ (e) such that $v. v \varepsilon \le \mu$, i.e., m is continuous at (e, e).
- (d) For all $\mu \in \beta$ (e), for all $\varepsilon \in I_0$ and for all $x \in G$ there exist $v \in \beta$ (e) such that I_x . $v.I_x^{-1}$ $\varepsilon \le \mu$, i.e., int_x is continuous at e.

Where $\zeta_x : G \to G : z \mapsto x z$ (resp. $R_x : G \to G : z \mapsto z x$) is the left (resp. right) translation.

Theorem 2.2 [7] Let (G, .) be a group and \mathfrak{I} a family of fuzzy subset of G such that the following hold:

- (a) \mathfrak{I} is a filterbasis, such that $\mu(e) = 1$ for all $\mu \in \mathfrak{I}$.
- (b) For all $\mu \in \mathcal{F}$ and for all $\varepsilon \in I_0$ there exists $v \in \mathcal{F}$ such that $v \varepsilon \le \mu^{-1}$.
- (c) For all $\mu \in \mathfrak{I}$ and for all $\epsilon \in I_0$ there exists $\nu \in \mathfrak{I}$ such that ν . $\nu \epsilon \leq \mu$.
- (d) For all $\mu \in \mathcal{F}$, for all $\varepsilon \in I_0$ and for all $x \in G$ there exists $v \in \mathcal{F}$ such that I_x . $v.I_{x-l}$ - $\varepsilon \le \mu$.

Then there exists a unique T-neighborhood system β such that \Im is T-neighborhood basis for the T-neighbourhood system at e, $\beta(e)$ and β is compatible with the group structure. This T-neighbourhood system is given by

$$\beta(x) = \{I_x \cdot \mu \mid \mu \in \Im\}^{-1} = \{\mu \cdot I_x \mid \mu \in \Im\}^{-1}, x \in G.$$

III. T-NEIGHBORHOOD TOPOLOGIES INDUCED BY T-NEIGHBORHOOD GROUP ACTIONS ON SET

Definition 3.1. Let (G, .) be a group acting on a set X, then for all $\Gamma \in I^G$, $\mu \in I^X$, $g \in G$ and $x \in X$ we define for all $v \in X$

$$\Gamma \mu(y) = \sup \{ \Gamma(g) T \mu(x) : (g, x) \in G \times X \text{ and } gx = y \}$$
 (1)

Proposition 3.1. Let (G, .) be a group acting on a set X and $\Psi, \Gamma \in I^G$, $\mu \in I^X$. Then

(a) $\Psi(\Gamma\mu) \le (\Psi.\Gamma) \mu$ In particular $\Psi(\Gamma\mu)(y) \le (\Psi.\Gamma) \mu(y)$

(b)
$$\Gamma 1_{\mathbf{M}} = \bigvee_{\mathbf{x} \in M} \Gamma 1_{\mathbf{x}}$$

(c) $\Gamma I_M(y) = \sup \{ \Gamma(g) : g \in G \text{ and } g^{-1}y \in M \}$

(d)
$$\Gamma I_x(y) = \sup \{ \Gamma(g) : g \in G \text{ and } gx = y \}$$

(e)
$$I_g \mu(y) = \sup \{ \mu(x) : x \in X \text{ and } gx = y \}$$

= $\mu(g^{-1}y)$

Proof: (b)-(e) follow immediately from Definition 3.1.

(a) For any $v \in X$:

$$\Psi (\Gamma \mu)(y) = \sup \{ \Psi(g) \ T \ \Gamma \mu(x) \colon (g, x) \in G \times X, \ gx = y \}$$

$$= \sup \{ \Psi(g) \ T \ \sup \{ \Gamma(h) \ T \ \mu(z) \colon hz = x \} \colon gx = y \}$$

$$= \sup \{ \Psi(g) \ T \ \Gamma(h) \ T \ \mu(z) \colon ghz = y \}$$

$$(\Psi \bigcirc_T \Gamma) \mu(y) = \sup \{ (\Psi \bigcirc_T \Gamma(k) \ T \ \mu(z) \colon kz = y \}$$

$$= \sup \{ \sup \{ \Psi(g) \ T \ \Gamma(h) \colon gh = k \} \ T \ \mu(z) \colon kz = y \}$$

$$= \sup \{ \Psi(g) \ T \ \Gamma(h) \ T \ \mu(z) \colon (g, h, z)$$

$$\in G \times G \times X \ and \ ghz = y \}$$

Hence $\Psi(\Gamma\mu)(y) = (\Psi \mathcal{O}_T\Gamma)\mu(y) \leq (\Psi \mathcal{F})\mu(y)$.

If both Γ , μ are crisp, then $\Gamma \mu$ is also crisp and is given by $\Gamma \mu = \{gx: g \in \Gamma \text{ and } x \in \mu\}$.

Note that $\Gamma \mu$, ΓI_x , $I_g \mu \in I^X$ and ΓI_x (y) = 0 if $y \notin \text{orbit of } x$.

Theorem 3.1. Let G be a T-neighborhood group acting on a set X, and let \Re be a fundamental system of G at e. For each $x \in X$, let $\beta_x = \{\Gamma I_x \colon \Gamma \in \Re \} \in I^X$. Then $\{\beta_x\}_{x \in X}$ is a T-neighborhood basis on X. The resulting T-neighborhood space is denoted by τ_X^{T-G} . Its fuzzy closure operator $\colon I^X \to I^X$ is given by: For all $\eta \in I^X$, $x \in X$:

$$\bar{\eta}(x) = \inf_{\Gamma \in \mathfrak{R}} \sup_{g \in G} \Gamma(g) T \eta(gx)$$
 (2)

Proof. First, we verify that $\{\beta_x\}_{x \in X}$ is a T-neighborhood basis in X. Let $x \in X$, Γ ,

$$\Psi \in \Re$$
 , $\mu = \Gamma I_x \in \beta_x$, $\lambda = \Psi I_x \in \beta_x$

(i)
$$\mu(x) = \Gamma I_x(x) = \sup \{ \Gamma(g) : g \in G \text{ and } gx = x \}$$

 $\geq \Gamma(e) = I \text{ (Because } ex = x \text{)}.$

(ii) There exists $\Lambda \in \Re : \Gamma \land \Psi \ge \Lambda$. Hence $\mu \land \lambda = \Gamma I_x \land \Psi I_x \ge \Lambda I_x$,

which is in β_x .

(iii) T-kernel condition:

Recall that $\{\Re \ 1_g\}_{g\in G}$ is a T-neighborhood basis of the T-neighborhood group G Theorem 2.2 . Let, as before, $\mu=\Gamma I_x\in \beta_x$. By the T-kernel condition for

 $\Gamma \in \Re$, for all $\varepsilon \in I_0$ there exists a family $\{\Gamma_g I_g \in \Re_g\}_{g \in G}$ such that for all $g, k \in G$

$$\Gamma_e(k) T (\Gamma_k I_k)(g) \le \Gamma(g) + \varepsilon$$
 (3)

We take $v_x = \Gamma_e I_x$. For each $y \in X$, if $y \notin$ orbit of x, take for v_y any element of $\beta_v = \Re_v$.

If $y \in \text{orbit of } x$, choose some $h \in G$ such that y = hx, and $\delta + \Gamma_e(h) \ge \sup \{\Gamma_e(k) : kx = y\}$ (4

where $\delta \in I_0$ is a real number that satisfies

$$(b + \delta) T (c + \delta) \leq (b T c) + \varepsilon$$

for all b, $c \in I$. Such δ exists by the uniform continuity of T. Take $v_y = \Gamma_h I_y \in \beta_y$. Then, if $y \notin \text{orbit of } x$, we find for all $z \in X$ that

$$2\varepsilon + \mu(z) \ge v_x(y) T v_y(z)$$

because then $v_x(y) = (\Gamma_e I_x)(y) = 0$. And when $y \in \text{orbit of } x$, we find for all $z \in X$:

$$2\varepsilon + \mu(z) = 2\varepsilon + (\Gamma I_x)(z)$$

$$= \varepsilon + \sup \{\varepsilon + \Gamma(g) : gx = z\}$$

$$\geq \varepsilon + \sup \{\Gamma_e(h) \ T \ (\Gamma_h I_h)(g) : gx = z\} \text{ by } (3)$$

$$\geq (\Gamma_e(h) + \delta) \ T \ \sup \{(\Gamma_h I_h)(g) : gx = z\}$$

$$\geq \sup \{\Gamma_e(k) : kx = y\} \ T \ \sup \{(\Gamma_h)(gh^{-1}) : (gh^{-1})(hx) = z\}$$
by (4) Since $hx = y$, then
$$2\varepsilon + \mu(z) \geq (\Gamma_e I_x)(y) \ T \ \sup \{(\Gamma_h)(t) : ty = z\}$$

$$= (\Gamma_e I_x)(y) \ T \ (\Gamma_h I_y)(z)$$

$$= v_x(y) \ T \ v_y(z).$$

Thus, the kernel condition holds for $\mu \in \beta_x$ in both cases of y. Finally, for all $\eta \in I^X$

$$\frac{-}{\eta}(x) = \inf_{\mu \in \beta} \sup_{y \in X} \mu(y) \ T \ \eta(y)$$

$$= \inf_{\Gamma \in \Re} \sup_{y \in X} \eta(y) \ T \ (\Gamma 1x)(y)$$

$$= \inf_{\Gamma \in \Re} \sup_{y \in \text{orbites}} \eta(y) \ T \ \text{sup } \{\Gamma(g) : g \in G \ \text{and} \ gx = y\}.$$

Because if $y \notin \text{orbit } x$, then $(\Gamma I_x)(y) = 0$. Thus,

$$\bar{\eta}(x) = \inf_{\Gamma \in \Re} \sup_{g \in G} \eta(gx) \ T \Gamma(g),$$

Rendering (2).

Proposition 3.2. Let $\Gamma \in I^G$, $\varphi \subset I^G$, $g \in G$, $x \in X$ then

$$(\Gamma.I_g)I_x = (\Gamma I_{gx}) \in I^X$$
, and hence $(\varnothing.1_g\})1_x = \varnothing 1_{gx} \subset I^X$.

Proof:

$$((\Gamma.1_g)1_x)(y) = \sup \{(\Gamma.1_g)(k): k \in G \text{ and } kx = y\}$$

$$= \sup \{\Gamma(kg^{-1}): k \in G \text{ and } kg^{-1}gx = y\}$$

$$= \sup \{\Gamma(t): t \in G \text{ and } tgx = y\}$$

$$= (\Gamma 1_{gx})(y).$$

This completes the proof.

Proposition 3.3. For each filterbasis F in I^G and for $x \in X$.

$$\{\Gamma I_x : \Gamma \in F^{\sim}\} \subset \{\Psi I_x : \Psi \in F\}^{\sim} \subset I^X$$
 (5)

Proof: Let $\Gamma \in F^{\sim}$ Then for all $\varepsilon > 0$ there exists $\Gamma_{\varepsilon} \in F$ such that $\Gamma + \varepsilon \ge \Gamma_{\varepsilon}$. Then for all $y \in X$ we have $\varepsilon + (\Gamma I_x)(y) = \varepsilon + \sup \{\Gamma(g): gx = y\}$ $= \sup \{\varepsilon + \Gamma(g): gx = y\}$

World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences Vol:2, No:2, 2008

$$\geq \sup \{\Gamma_{\varepsilon}(g) : gx = y\}$$

= $(\Gamma_{\varepsilon}I_x)(y)$.

Thus, $\varepsilon + \Gamma l_x \ge \Gamma_\varepsilon l_x \in \{\Psi l_x : \Psi \in F\}$. Hence $\Gamma l_x \in \{\Psi l_x : \Psi \in F\}^{\sim}$. This proves (5).

Proposition 3.4. The fuzzy closure operator on X defined in (2) does not depend on the particular choice of a fundamental system \mathfrak{R} of e.

Proof: All fundamental systems \Re of G at e have the same saturation \Re . Also, for each $x \in X$

$$\beta_{x} = \{ \Gamma I_{x} : \Gamma \in \Re \}$$

$$\subset \{ \Gamma I_{x} : \Gamma \in \Re^{\sim} \}$$

$$\subset \{ \Gamma I_{x} : \Gamma \in \Re \}^{\sim} = \beta_{x}^{\sim} .$$

As $\{\beta_x\}$, $\{\beta_x^{\sim}\}$ induce the same fuzzy closure operator on X, then the fuzzy closure operator defined in (2) is also given by

$$\bar{\eta}(x) = \inf_{\Gamma \in \widetilde{\mathfrak{R}}} \sup_{g \in G} \Gamma(g) T \eta(gx)$$
 (6)

Which is independent of the particular choice of a fundamental system \Re of e.

The following definition is well phrased by virtue of Theorem 3.1, and Proposition 3.4;

Definition 3.2. Let G be a T-neighborhood group acting on a set X. A T-G-action-topology on X denoted by τ_X^{T-G} is introduced through its closure operator , defined in (2).

Proposition 3.5. Let \Re be a fundamental system at e of $G, \mu \in \Re$. Then

$$I_{g} \cdot \mathfrak{R} \cdot I_{g^{-l}} \subset \mathfrak{R}^{\sim}$$
 (7)

Proof: From condition (d) in Theorem 2.1, for all > 0 there exists $v_{\varepsilon} \in \Re$ such that

$$v_{\varepsilon} - \varepsilon \leq I_g \cdot \mu \cdot I_{g^{-1}}$$
.

This proves that I_g . μ . $I_{g^{-1}} \in \mathfrak{R}^{\sim}$

Notion: In T-G-action topology

- (1) We denote the T-neighborhood system at $x \in X$ by $\mathcal{N}(x)$.
- (2) Let \Re be the T-neighborhood system of G at e, $x \in X$. We denote $\Re 1_x$ by C(x). Recall that $C = \Re$, i.e C(x) is a T-neighborhood basis at C for this space.

Definition 3.3. Let $(X, ..., t(\beta))$ be a T-neighborhood space, M be a non-empty set in X. Then $\mu \in I^X$ is said to be a T-neighborhood of M if μ is a T-neighborhood of all points x in M. It follows that the set of all T-neighborhoods of M (called the T-neighborhood system of M) is the set $\bigwedge_{x \in M} \mathcal{N}(x)$.

Proposition 3.6. Let $\Gamma \in I^G$, $g \in G$, $z \in X$ then $I_g^{-1}(\Gamma I_z) = (I_g^{-1}, \Gamma)I_z$

Proof:

$$I_{g^{-1}}(\Gamma I_z)(y) = (\Gamma I_z)(gy)$$

= $\sup \{\Gamma(h): h \in G, hz = gy\}$
= $\sup \{\Gamma(gk): k \in G, kz = y\}$
 $(I_{g^{-1}}, \Gamma)I_z(y) = \sup \{(I_{g^{-1}}, \Gamma)(k): kz = y\}$
= $\sup \{\Gamma(gk): k \in G, kz = y\}$

Then

$$I_{g-1}(\Gamma I_z) = (I_{g-1}, \Gamma)I_z$$

Theorem 3.2. Under this T-neighborhood topology the functions $\{g\}$ are homeomorphisms on X.

Proof: Without loss of generality, we take \Re the whole T-neighborhood system at e. Then from Proposition 3.5, I_g . \Re . $I_{g-1} \subset \Re$. Given $x \in X$,

 $g \in G$, $\Re I_{gx}$ is a T-neighborhood basis at $g \times g$. Let $\mu \in \Re I_{gx}$ we have $g^{-1}(\mu)(y) = \mu(gy) = I_{g-1} \mu(y)$, then $g^{-1}(\mu) = I_{g-1} \mu \in I_g^{-1} \Re I_{gx}$ and from Proposition 3.6

$$I_g^{-1}(\mathfrak{R} I_{gx}) = (I_g^{-1} \cdot \mathfrak{R})I_{gx}$$

= $(I_g^{-1} \cdot \mathfrak{R} \cdot I_g)I_x$ by Proposition 3.2
 $\subset \mathfrak{R}^{\sim} I_x$ by Proposition 3.5
 $\subset \mathfrak{K}(x)$.

i.e., $g^{-1}(\mu)$ is a T- neighborhood of x. So by Theorem 5.1 in [5] g is continuous at x for all x, and hence it is continuous. Since $(g^{-1})^{\hat{}} = (g^{-1})^{-1}$. Then $(g^{\hat{}})^{-1}$ is also continuous. Thus g is a homeomorphism.

Proposition 3.7. For any symmetric T-neighborhood Δ of e, and any $M \subset X$; $x, z \in X$

$$(\Delta 1_x)(z) = (\Delta 1_z)(x)$$

$$(\Delta 1_M)(x) = \sup_{y \in Y} 1_M(y) T (\Delta 1_x)(y).$$

Proposition 3.8. For any subset M of X and any T-neighborhood Γ of e, ΓI_M is a T-neighborhood of M, and

$$\left(1_{M}\right)^{-} \le \Gamma I_{M} \in I^{X}. \tag{8}$$

Proof: Since $\Gamma I_M = \bigvee_{x \in M} \Gamma I_x$, then ΓI_M is a T-neighborhood of all points of M, hence ΓI_M is a T-neighborhood of M.

Next, let Γ be a T-neighborhood of e. Then Γ contains a symmetric T-neighborhood Δ of e. For any $x \in X$

$$(1_{M})^{-}(x) = \inf_{\lambda \in \mathbb{C}} \sup_{y \in X} I_{M}(y) T\lambda(y)$$

$$\leq \sup_{y \in X} I_{M}(y) T \Delta I_{x}(y)$$

$$= \sup_{y \in M} \Delta I_{x}(y)$$

$$= \sup_{y \in M} \Delta I_{y}(x) \quad \text{by Proposition 3.7}$$

$$= (\Delta I_{M})(x)$$

$$\leq (\Gamma I_{M})(x). \text{ This proves (8).}$$

Proposition 3.9. Let \Re be a fundamental system of T-neighborhoods of e. For any subset M of X

$$(I_M)^- = \bigwedge_{\Gamma \in \mathfrak{R}} \Gamma I_M$$

Proof: From Proposition 3.8, $(I_M)^- \leq \Gamma I_M$ for every $\Gamma \in \mathfrak{R}$.Then

$$(I_M)^- \leq \bigwedge_{\Gamma \in O} \Gamma I_M.$$

Next we prove that

$$\bigwedge_{\Gamma \in \mathfrak{R}} \Gamma I_M = \bigwedge_{\Gamma \in \mathfrak{R}^{\sim}} \Gamma I_M.$$

Since $\mathfrak{R} \subset \mathfrak{R}^{\sim}$, then

$$\bigwedge_{\Gamma \in \mathfrak{R}} \Gamma I_M \geq \bigwedge_{\Gamma \in \mathfrak{R}^{\sim}} \Gamma I_M$$

Also, let $\Gamma \in \mathfrak{R}^{\sim}$, for all $\varepsilon > 0$ there exists $\Gamma_{\varepsilon} \in \mathfrak{R}$ such that $\varepsilon + \Gamma \geq \Gamma_{\varepsilon}$

$$\varepsilon + \Gamma I_M \ge (\varepsilon + \Gamma)I_M \ge \Gamma_{\varepsilon}I_M \ge \bigwedge_{\Gamma \in \Re} \Gamma I_M$$

Since this holds for all $\varepsilon > 0$, then

$$\Gamma I_M \geq \bigwedge_{\Gamma \in \mathfrak{R}} \Gamma I_M$$
.

This inequality holds for all $\Gamma \in \mathfrak{R}^{\sim}$.

Consequently,

$$\bigwedge_{\Gamma \in \mathfrak{R}^{\sim}} \Gamma I_M \geq \bigwedge_{\Gamma \in \mathfrak{R}} \Gamma I_M$$

Hence, equality holds.

It is clear that if O is the set of symmetric elements in \mathfrak{R}^{\sim} then.

$$\mathop{\wedge}_{\Gamma \in \mathfrak{R}} \Gamma 1_{\scriptscriptstyle{M}} = \mathop{\wedge}_{\Gamma \in \mathfrak{R}^{\sim}} \Gamma 1_{\scriptscriptstyle{M}} \leq \mathop{\wedge}_{\Delta \in O} \Delta 1_{\scriptscriptstyle{M}}$$

Conversely, let O is the set of symmetric elements in \Re^{\sim} . Then O is a fundamental system at e:

$$(\bigwedge_{\Delta \in O} \Delta I_M)(x) = \inf_{\Delta \in O} (\Delta I_M)(x)$$

$$= \inf_{\Delta \in O} \sup_{y \in X} I_M(y) T(\Delta I_X)(y) \text{ by Proposition 3.7}$$

$$= (I_M)^{-}(x)$$

because the set $\{\Delta I_x: \Delta \in O\}$ is a T-neighborhood basis at x.

Theorem 3.3. A T-G-action topology on X is a T-regular T-neighborhood topology.

Proof: Let $M \subset X$ and $x \in X$. We establish condition (N⁴-T-regularity) of Theorem 3.2 in [6], which is equivalent to the T-regularity of X. For all

Equivalent to the 1-legitality of X. For all
$$M \subset X$$
, $x \in X$ such that $Inf \ hgt \ (\rho \ T \ v: \rho \in \zeta(M), \ v \in OI_x)$

$$\leq \inf_{\Delta \in O} \ hgt \ (\Delta I_M T \Delta I_x)$$

$$\leq \inf_{\Delta \in O} \ sup \ \{((\Delta I_M) \land \Delta I_x)(y): \ y \in X\}$$

$$= \inf_{\Delta \in O} \ sup \ \{((\Delta I_M)(y) \land (\Delta I_x)(y)): \ y \in X\}$$

$$= \inf_{\Delta \in O} \ sup \ \{sup \ \{\Delta(h): \ h \in G, \ hy \in M\} \land sup \{\Delta(h): \ h \in G, \$$

$$\sup \{\Delta(k): k \in G, y = kx\}: y \in orbit \ x\}$$
So. (call $y \in kx$)
$$\inf hgt (\rho \ T \ v: \ \rho \in C(M), v \in OI_x)$$

$$\leq \inf_{\Delta \in O} \sup \{sup \{\Delta(h): hkx \in M\} \land \Delta(k): k \in G\}$$

$$= \inf_{\Delta \in O} \sup \{\Delta(h) \land \Delta(k): h, k \in G \text{ and } hkx \in M\}$$

$$= \inf_{\Delta \in O} \sup \{(\Delta \Delta)(g): g \in G \text{ and } gx \in M\}$$

$$= \inf \sup ((\Delta \Delta)(I_M))(x)$$

But by Theorem 2.2 in [7], for every $\Delta \in O$, $\varepsilon \ge 0$ there exists $\Delta_1 \in O$ such that $\Delta_1 \Delta_1 \le \Delta + \varepsilon$. Hence,

Inf hgt
$$(\rho T v: \rho \in C(M), v \in OI_x)$$

 $\leq \inf_{\Delta \in O, \varepsilon > 0} ((\Delta + \varepsilon) I_M)(x)$
 $= \inf_{\Delta \in O} (\Gamma I_M)(x)$
 $= \bigwedge_{\Gamma = O} (\Gamma I_M)(x) = (I_M)^{\Gamma}(x)$ by Proposition 3.9.

The opposite inequality is always valid.

Theorem 3.4. A T-G-action-topology τ_X^{T-G} coincides with the final T-neighborhood topology τ_f on X defined by the set of functions

$$\{\stackrel{\wedge}{x}: G \to X: x \in X\}, \stackrel{\wedge}{x}(g) = gx$$

Proof: For any $x \in X$, the function

 $\hat{x}: G \rightarrow (X, \tau_X^{T-G})$ is continuous, because for all

 $g \in G$ and for each neighborhood $\Gamma(I_{gx})$ in the fundamental system $\Re I_{gx}$ of $\hat{x}(g) = gx$, where $\Gamma \in \Re$, we have

$$\hat{x}$$
 $(\Gamma . I_g)(y) = \sup \{ (\Gamma . I_g)(h) : h \in G, \ \hat{x}(h) = y \}$
= $\sup \{ (\Gamma . I_g)(h) : h \in G, \ hx = y \}$
= $(\Gamma . I_g)I_x(y)$

then \hat{x} $(\Gamma.I_g) = (\Gamma.I_g)I_x = \Gamma I_{gx}$ and $\Gamma.I_g$ is a T-neighborhood of g by Theorem 2.3 in [7]. Therefore

World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences Vol:2, No:2, 2008

 $au_X^{T-G} \subset au_f$ since au_f is the finest T-neighborhood

topology making all \hat{x} continuous.

Next, let $x \in X$, μ a T-neighborhood of x in τ_f . Then $\hat{x}^{-1}(\mu)$ a T-neighborhood of e in G; i.e. $(\hat{x}^{-1}(\mu))I_x$ is a T-neighborhood of x in τ_X^{T-G} .

But
$$(\hat{x}^{-1} (\mu))I_x = \hat{x}(\hat{x}^{-1} (\mu)) = \mu \wedge 1_{range\hat{x}} \leq \mu$$
.

This proves that μ is a T-neighborhood of x in τ_X^{T-G} . Then $\tau_{\rm f} \subset \tau_X^{T-G}$. Hence, equality holds.

REFERENCES

- T.M.G. Ahsanullah, On fuzzy neighbourhood groups, J. Math. Anal. Appl.130 (1988)237-251.
- [2] N. Bourbaki, "General Topology Part I," Addision- Wesley, Reading, MA, 1966.
- [3] D.H. Foster, Fuzzy topological groups, J. Math. Anal. Appl. 67 (1979) 549-564.
- [4] K. A. Hashem and N. N. Morsi, Fuzzy T- neighborhood spaces, Part I: T- proximities, Fuzzy Sets and Systems 127 (2002) 247-264.
- K. A. Hashem and N. N. Morsi, Fuzzy T- neighborhood spaces, Part II: T- neighborhood systems, Fuzzy Sets and Systems 127 (2002) 265-280.
- [6] K. A. Hashem and N. N. Morsi, Fuzzy T- neighborhood spaces, Part III: T- separation axioms, Fuzzy Sets and Systems 133 (2002) 333-361.
- [7] H. A. Khorshed and M. A. El Gendy, On Fuzzy T- neighbourhood groups, 3rd Internationa Conference of Mathematics and Engineering Physics (2006) 24-32.
- B] A. Patronis, Colloq. Math. Soc. Janos Bolyai 23(1978) 939-944.