Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Embedded Singly Diagonally Implicit Runge-Kutta –Nystrom Method Order 5(4) for the Integration of Special Second Order ODEs
Authors: Fudziah Ismail
Abstract:
In this paper a new embedded Singly Diagonally Implicit Runge-Kutta Nystrom fourth order in fifth order method for solving special second order initial value problems is derived. A standard set of test problems are tested upon and comparisons on the numerical results are made when the same set of test problems are reduced to first order systems and solved using the existing embedded diagonally implicit Runge-Kutta method. The results suggests the superiority of the new method.Keywords: Runge-Kutta Nystrom, Special second orderproblems.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1073485
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675References:
[1] Sharp and Fine, Some Nystrom pairs for the general second order initial-value Problem, Journal of Computational and Applied Mathematics 42: 279-291.(1992).
[2] J. R. Dormand , M. E. A. El-Mikkawy and P. J. Prince, Families of Runge-Kutta Nystrom Formula, IMA Journal of Numerical Analysis, 7: 235-250. (1987).
[3] M. E. A. El-Mikkawy and R. El- Desouky, A new optimized non-FSAL embedded Runge-Kutta-Nystrom algorithm of orders 6 and 4 in six stages, Applied Mathematics and Computation 145 : 33-43, (2003).
[4] G. Papageorgiou., I. Th. Famwlis and Ch. Tsitouras, A P-stable singly diagonally implicit Runge-Kutta-Nystrom method. Numerical Algorithm 17: 345-353.(1998).
[5] Hairer, E. and Wanner, G. (1987), Solving Ordinary Differential Equations I, Springer-Verlag Berlin.
[6] J. R. Dormand. Numerical Methods for Differential Equations A Computational Approach, CRC Press London. 1996, p 57.
[7] M.M. Chawla and P. S. Rao, High-accuracy P-stable methods for y'' = f (t, y), IMA J. Numer.Anal.5:215-220 (1985).
[8] R. C. Allen, Jr. and G. M. Wing, An invariant imbedding algorithm for the solution of inhomogeneous linear two-point boundary value problems, J. Computer Physics 14: 40-58.(1974).
[9] J. C. Butcher and D. J. Chen,. A new Type of Singly-implicit Runge- Kutta method, Applied Numerical Mathematics,, 34: 179-188. (2000).