

 Abstract—The aim of this paper is to investigate the
performance of the developed two point block method designed for
two processors for solving directly non stiff large systems of higher
order ordinary differential equations (ODEs). The method calculates
the numerical solution at two points simultaneously and produces
two new equally spaced solution values within a block and it is
possible to assign the computational tasks at each time step to a
single processor. The algorithm of the method was developed in C
language and the parallel computation was done on a parallel shared
memory environment. Numerical results are given to compare the
efficiency of the developed method to the sequential timing. For
large problems, the parallel implementation produced 1.95 speed-up
and 98% efficiency for the two processors.

 Keywords—Numerical methods, parallel method, block method,
higher order ODEs.

I. INTRODUCTION

HE ever-increasing advancement in computer technology
has enabled many in science and engineering sectors to

apply numerical methods using parallel computation to solve
mathematical models arising from physical phenomena. The
numerical solution of large ODEs systems requires a large
amount of computing power. Users of parallel computing tend
to be those with large mathematical problems to solve with the
desire to obtain faster and more accurate results.

In this paper, we consider solving directly the higher order
non stiff IVPs (Initial Value Problems) for system of ODEs of
the form,

()yyxfy ′=′′ ,, , () 0yay = , () ,0yay ′=′ []bax ,∈ . (1)
Equation (1) can be reduced to the equivalent first-order

system of twice the dimension equations and then solved
using any numerical method. This approach is very well
established but it obviously will enlarge the dimension of the

Manuscript received May 23, 2008.
Zanariah Abdul Majid is with the Mathematics Department, Faculty

Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul
Ehsan, Malaysia (phone: 603-89467959; fax: 603-89437958; e-mail:
zanariah@math.upm.edu.my).

Mohamed Suleiman is with the Mathematics Department, Faculty Science,
Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan,
Malaysia. (e-mail: m1suleiman@yahoo.com.my).

equations. The approach for solving the system of higher
order ODEs directly has been suggested by several researchers
such as in [1] – [8]. In previous work of [8], a general r block
method of multistep method for solving problems of the form
(1) has been investigated. The code in [8] used a repetitive
computation of the divided differences and integration
coefficients that can be very costly. The worked in [7] has
presented a direct block method (2PFDIR) for solving higher
order ODEs in variable step size which is faster in terms of
timing and comparable or better in terms of accuracy to the
existence direct non block method in [8]. The 2PFDIR method
will store the coefficients in the code and there will be no
calculations that involved the divided difference and
integration coefficients. In this paper, we would like to extend
the discussions in [7] on the performance of 2PFDIR method
using parallel environment particularly focus on the cost of
time computation by comparing the execution time of
sequential and parallel implementation for solving large
problem.

II. FORMULATION OF THE METHOD

In Fig. 1, the two values of 1+ny and 2+ny are
simultaneously computed in a block using the same back
values. The block has the step size h and the previous back
block has the step size rh . The idea of having the ratio r is for
variable step size implementation.

Fig. 1 Two point block method

In Equation (1), the ()yyxf ′,, will be replaced with
Lagrange interpolation polynomial and the interpolation
points involved were () ()2222 ,,,, ++−− nnnn fxfx K . These
polynomial will be integrate once and twice over the interval
[]1, +nn xx and []2, +nn xx respectively, and the following
corrector formulae will be obtained,

Parallel Direct Integration Variable Step Block
Method for Solving Large System of Higher

Order Ordinary Differential Equations
Zanariah Abdul Majid, and Mohamed Suleiman

T

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:4, 2008

269International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
41

81
.p

df

Integrate Once

First point:

 () ()
()()() 21

1221240 rrrr
hxyxy nn

+++
+′=′ +

. (() () 2
22 2015312 ++++− nfrrrr + ()() 1

22 80751824 ++++ nfrrrr +

()()()() nfrrrrr 21004571221 +++++ ()() 1307124 −++− nfrr +
()())21572 −++ nfrr . (2)

Second point:

() ()
()()()121215 22

+++
+′=′ +

rrrr
hxyxy nn

. ()() 2
22 915512 ++++ nfrrrr + ()() 1

22 6151024 ++++ nfrrrr
+ ()()()() nfrrrr 151212 2 −+++ () () 21 2124 −− +−++ nn frfr . (3)

Integrate twice

First point:

() () () =′−−+ nnn xyhxyxy 1 ()()()1221240 2

2

+++ rrrr
h

. ()() 2
22 106112 ++++− nfrrrr + ()() 1

22 3021424 ++++ nfrrrr

+ ()()()() nfrrrrr 2702431221 +++++ ()() 1163124 −++− nfrr
+ ()() 2832 −++ nfrr . (4)

Second point:

() () () =′−−+ nnn xyhxyxy 22 ()()()122115

2

+++ rrrr
h

. ()() 21232 +++ nfrrr + ()() 1
2 25628 ++++ nfrrrr

+ ()()()() nfrrrr 1221103 ++++ () 1128 −+− nfr + () 22 −+ nfr . (5)

In Equation (2) – (5), this block method was applied in a

predictor and corrector mode, and the method is a
combination of predictor of order 4 and the corrector of order
5. Each block consists of two steps, i.e n+1 and n+2. The
corrector equation values depend on the current blocks n+1
and n+2. The predictor formulae were derived similarly as the
corrector formulae and the interpolation points involved are

nn xx ,,3 K− . The predictor equations are dependent on values
taken from the previous block n, n-1, n-2 and n-3.

During the implementation of the method, the choices of
the next step size will be restricted to half, double or the same
as the previous step size and the successful step size will

remain constant for at least two blocks before considered it to
be doubled. This step size strategy helps to minimize the
choices of the ratio r. In the code developed, when the next
successful step size is doubled, the ratio r is 0.5 and if the next
successful step size remain constant, r is 1.0. In case of step
size failure, r is 2.0. In Equation (2) – (5), substituting the
ratios of r will give the corrector formulae for the two point
block direct integration method. For detail see [7].

III. PARALLELISM IMPLEMENTATION
Within a block in the parallel two point direct block method

for two processors (P2PFDIR), it is possible to assign both the
predictor and the corrector computations to a single processor
and to perform the computations simultaneously in parallel.
Each application of the block method generates a collection of
approximation to the solution within the block. In a parallel
environment individual processor could compute
independently the approximation values to the solution within
the blocks.

The sequential programs were executed on DYNIX/ptx
operating system. The parallel programs of the methods
employed were run on a shared memory Sequent Symmetry
parallel computer at the Faculty of Computer Science and
Information Technology, Universiti Putra Malaysia. The
choice of an implementation on a shared memory parallel
computer is due to the fact that such a computer can consists
of several processors sharing a common memory with fast
data access and requiring less communication times, which is
suited to the features of the P2PFDIR method.

Below are given the general idea of the parallelism of
P2PFDIR in Fig. 2:

The predictor and corrector equations at each point are

independent of each other. Thus the equation can be easily
mapped onto two processors. In the shared memory machine
this synchronisation point takes the form of a barrier. For
example, all the processors have to exchange information after
the evaluation of the terms 1+n

pF and 2+n
pF before continue

to Step 3. The same process happen at Step 4 after the
evaluation of the terms 1+n

cF and 2+n
cF . The parallelism is

achieved when the code computes at Step 3, particularly the

mn
cY + and mn

cF + , m=1,2. Step 1 – 2, Step 3 and Step 4

 synchronisation point

 synchronisation point

Fig. 2. The parallel process of P2PFDIR

Processor 1
(P1)

Step 1: Prediction 1+n
pY

Step 2: Evaluate 1+n
pF

Step 3: Correction 1+n
cY

Step 4: Evaluate 1+n
cF

Processor 2
(P2)

Step 1: Prediction 2+n
pY

Step 2: Evaluate 2+n
pF

Step 3: Correction 2+n
cY

Step 4: Evaluate 2+n
cF

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:4, 2008

270International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
41

81
.p

df

can be done concurrently as they are independent to each
other. Parallelization in P2PFDIR is achieved by sharing the f-
evaluations.

The algorithm for P2PFDIR is executed in C language. In
order to see a possible speed up of the parallel code, the test
problems in Section IV should be expensive. Therefore, the
relatively small problems have been enlarge by scaling. The
computation cost increased when solving large systems of
higher order ODEs because the function evaluations continue
to increase. Using two processors to do the work
simultaneously can help to reduce the computation time when
solving large problem.

IV. RESULTS AND DISCUSSION
The following two problems were tested using S2PFDIR

and P2PFDIR and compare the sequential and parallel timing
for N=1000, 2000 and 4000 for Problem 1 and N=101 when
interval [0, 20] and [0, 40] for Problem 2.

Problem 1: (Lagrange equation for the hanging string)

()21
2

1 yyKy +−=″

()321
2

2 23 yyyKy +−=″

()432
2

3 352 yyyKy +−=″

M

() ()()NNN yNyNKy 121 1
2 −−−=″

−
=N number of equations, bx ≤≤0 , =b end of the interval.

1=K , the initial values () () 000 =′= ii yy

except () () 100 22 =′= −− NN yy ,
Source: [9]

Problem 2: (Moon – the second celestial mechanics problem.)

()∑
≠=

−
=″

N

ijj ij

ij
ji

r

xx
mx

,0
3

γ

()∑
≠=

−
=″

N

ijj ij

ij
ji

r

yy
my

,0
3

γ where Ni ,,0 K=

 () ()()2
1

22
jijiij yyxxr −+−= , Nji ,,0, K=

γ = 6.672, 3
0 107,60 −×== imm Ni ,,1K=

Initial data: () () () () 00000 0000 =′=′== yxyx

() () ⎟
⎠
⎞

⎜
⎝
⎛=′+⎟

⎠
⎞

⎜
⎝
⎛=

i
x

i
x ii 100

2sin8.00,400
100
2cos300 ππ

 () () 1
100
2cos8.00,

100
2sin300 +⎟

⎠
⎞

⎜
⎝
⎛−=′⎟

⎠
⎞

⎜
⎝
⎛=

i
y

i
y ii

ππ

 =N 101, bt ≤≤0 , =b end of the interval.
Source: [10]

The performance of the sequential and parallel execution
times for every problem is shown in Table I– IV while Table
V shows the speed-up and efficiency performance for the
problem. The notations are defined as follows:

TOL Tolerances
MTD Method employed
TS Total number of steps
FS Failure steps
FCN Total function calls
MAXE Magnitude of the global error ()nn xyy −(max
TIME The execution time.
S2PFDIR Sequential implementation of the two point

implicit block method
P2PFDIR Parallel implementation of the two point implicit

block method

In the code, we iterate the corrector to convergence. The
convergence test employed were
 () ()()22

1
++

+ − n
s

n
s yyabs < 0.1 × TOL, K2,1,0=s (6)

where s is the number of iteration. After the successful
convergence test of (6), local errors estimated at the point

2+nx will be performed to control the error for the block. The
error controls were at the second point in the block because in
general it had given us better results. The local errors
estimates will be obtain by comparing the absolute difference
of the corrector formula derived of order k and a similar
corrector formula of order k-1.

In these problems we recall that speedup is a measure of the
relative benefits of parallelising a given application over
sequential implementation. The speedup ratio on two

processors that we use is defined as
2

0
2 T

TS = where 0T is the

time for the fastest serial algorithm for a given problem and
2T is the execution time of a parallel program on two

processors.
Efficiency of a parallel algorithm is defined as the ratio of

speedup compared to the number of processors used. It can be

defined as 100
2
2

2 ×=
SE . In an ideal parallel system, speed-up

is equal to the number of processors (P) being used and
efficiency is equal to 100%. In practice, speedup is less than P
and efficiency is between 0% and 100%, depending on the
degree of effectiveness with which the processors are utilised.
The speed-up shows the speed gain of the parallel
computation and it can describe the increase of performance in
the parallel system.

The two problems above were run without exact reference
solution in a closed form, so we used the reference solution
obtained by the same program using tolerance at two order
higher from the current tolerance. The tested problems were
run without calculating the maximum error for the execution
time of the sequential and parallel execution time. The values
maximum errors were computed in a separate program. In
Table I – III, without loss of generality, we only compute the
MAXE at TOL = 210− since the execution time is grossly
increased with a finer tolerance.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:4, 2008

271International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
41

81
.p

df

TABLE I
NUMERICAL RESULTS OF 2PFDIR FOR SOLVING PROBLEM 1 WHEN N=1000

TABLE II

NUMERICAL RESULTS OF 2PFDIR FOR SOLVING PROBLEM 1 WHEN N=2000

TABLE III

NUMERICAL RESULTS OF 2PFDIR FOR SOLVING PROBLEM 1 WHEN N=4000

TABLE IV

NUMERICAL RESULTS OF 2PFDIR FOR SOLVING PROBLEM 2 WHEN N=101,
INTERVAL [0, 20]

N=101, [0,20] TOL MTD
TS FS FCN TIME(sec)

210− S2PFDIR
P2PFDIR

29

0 128
70

2.079400
1.329228

MAXE=3.78992(-4)
410− S2PFDIR

P2PFDIR
36

0 158

85
2.542150
1.543892

MAXE=2.40610(-6)
610− S2PFDIR

P2PFDIR
44

0 198

105
3.175919
1.902361

MAXE=8.76138(-7)
810− S2PFDIR

P2PFDIR
52

0 238

125
3.808737
2.260861

MAXE=4.36732(-9)
1010− S2PFDIR

P2PFDIR
70

0

336
174

5.360910
3.137757

MAXE=6.78177(-11)

TABLE V
NUMERICAL RESULTS OF 2PFDIR FOR SOLVING PROBLEM 2 WHEN N=101,

INTERVAL [0, 40]
N=101, [0,40] TOL MTD

TS FS FCN TIME(sec)
210− S2PFDIR

P2PFDIR
31 0 136

74
2.201868
1.395546

MAXE=1.77673(-4)
410− S2PFDIR

P2PFDIR
39 0 176

94
2.835758
1.704369

MAXE=1.53896(-6)
610− S2PFDIR

P2PFDIR
48 0 224

118
3.674788
2.133841

MAXE=1.39440(-7)
810− S2PFDIR

P2PFDIR
62 0 296

154
4.720133
2.779889

MAXE=1.29065(-8)
1010− S2PFDIR

P2PFDIR
94 0 478

245
7.599380
4.409488

MAXE=1.54553(-10)

In Table I - V show the numerical results for the tested
problems. For sequential S2PFDIR only one processor was
used and two processors were employed for the parallel
algorithms of P2PFDIR. The numerical results show that the
parallel execution time is faster than the sequential execution
time for large ODEs systems.

TABLE VI

SPEED-UP AND EFFICIENCY OF 2PFDIR FOR SOLVING PROBLEM 1 AND 2

Note: For each tolerance the values in the square brackets give the results

of the efficiency in percentage.

In Table VI, the speed-up ranging between 1.87 and 1.95
for solving Problem 1 when 4000=N and the efficiency is
between 94% and 98%. Better speed-up and efficiency can be
achieved by increasing the dimension of the ODEs in Problem
1. In Problem 2, the speed up ranging between 1.58 and 1.72
as the interval increased at the same number of equations. The
number of function evaluations is almost half in the parallel
mode compared to the sequential mode.

In term of accuracy, numerical results are within the given
tolerances. The performance of parallel implementation of an
integration method depends heavily on the machine, the size
of the problem and the costs of the function evaluation. The
results suggest that P2PFDIR method be highly recommended
for solving large systems of higher order ODEs.

REFERENCES
[1] P.C. Chakravarti, P.B. Worland. A class of self starting methods for the

numerical solution of ()yxfy ,=′′ , BIT 11, pp 368-383, 1971.

TOL MTD N=1000, [0, 5]
 TS FS FCN TIME(min)

210− S2PFDIR
P2PFDIR

 239

0

1762
883

0.195781
0.179703

 MAXE=1.15083(-2)
410− S2PFDIR

P2PFDIR
570 1 3384

1698
0.381467
0.354987

610− S2PFDIR
P2PFDIR

714

0

5584
2797

0.609685
0.601066

810− S2PFDIR
P2PFDIR

1743

0

10402
5207

1.167327
1.087472

1010− S2PFDIR
P2PFDIR

4298

0

25722
12867

2.882636
2.682821

TOL MTD N=2000, [0, 5]
 TS FS FCN TIME(min)

210− S2PFDIR
P2PFDIR

329

0

2300
1150

0.649994
0.436222

 MAXE=2.36506(-2)
410− S2PFDIR

P2PFDIR
796 0 4734

2373
1.360806
0.936770

610− S2PFDIR
P2PFDIR

997 0

7642
3801

2.128587
1.449660

810− S2PFDIR
P2PFDIR

2451

0

14648
7330

4.082667
2.874696

1010− S2PFDIR
P2PFDIR

6066

0

36330
18171

10.672470
7.236281

TOL MTD N=4000, [0, 5]
 TS FS FCN TIME(min)

210− S2PFDIR
P2PFDIR

457

0

3070
1530

1.278904
0.683906

 MAXE=4.23114(-2)
410− S2PFDIR

P2PFDIR
1116 0 6654

3323
2.812752
1.488229

610− S2PFDIR
P2PFDIR

1397 0

10032
5012

4.127480
2.195468

810− S2PFDIR
P2PFDIR

3459

0

20644
10318

8.778264
4.524878

1010− S2PFDIR
P2PFDIR

8566

0

51328
25658

21.953364
11.258135

 PROB 1 PROB 2
TOL N=1000

[0, 5]
N=2000

[0, 5]
N=4000

[0, 5]
N=101
[0, 20]

N=101
[0, 40]

210− 1.09
[55]

1.49
[75]

1.87
[94]

1.56
[78]

1.58
[79]

410− 1.07
[54]

1.45
[73]

1.89
[95]

1.65
[83]

1.66
[83]

610− 1.01
[51]

1.47
[74]

1.88
[94]

1.67
[84]

1.72
[86]

810− 1.07
[54]

1.42
[71]

1.94
[97]

1.68
[84]

1.70
[85]

1010− 1.07
[54]

1.52
[76]

1.95
[98]

1.71
[86]

1.72
[86]

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:4, 2008

272International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
41

81
.p

df

[2] M.B.Suleiman, Solving higher order odes directly by the direct
integration method, Applied Mathematics and Computation 33, pp 197-
219., 1989.

[3] S O.Fatunla, Block methods for second order odes. Intern. J. Computer
Math 40, pp 55-63, .1990.

[4] Z. Omar, M. Suleiman, Parallel two-point explicit block method for
solving high-order ordinary differential equations. Int. J. of Simulation
and Process Modelling. Vol. 2, No.3/4 pp. 227 - 231, 2006.

[5] Z. Omar and M. Suleiman, Parallel r-point implicit block method for
solving higher order ordinary differential equations directly, Journal of
ICT, 3(1), pp 53-66, 2004.

[6] N.H. Cong, K. Strehmel, R. Weiner, and H. Podhaisky, Runge–Kutta-
Nystrom-type parallel block predictor-corrector methods. Advances in
Computational Mathematics 10, pp 115–133, 1999.

[7] Z. A. Majid and M. Suleiman, Two point block direct integration
implicit variable steps method for solving higher order systems of
ordinary differential equations. International Conference of Applied and
Engineering Mathematics. WCE (London). Proceeding of the World
Congress on Engineering 2007, WCE 2007, Volume II, pp 812-815,
2007.

[8] Z. Omar, Developing parallel block methods for solving higher order
odes directly, Ph.D. Thesis, University Putra Malaysia, Malaysia, 1999.

[9] Hairer.E., Norsett. S.P. and Wanner. G., Solving Ordinary Differential
Equations I: Nonstiff Problems. Berlin: Springer-Verlag. pp 26, 1993.

[10] Cong, N.H., Podhaisky, H. and Weiner, R., Performance of explicit
pseudo two-step RKN methods on a shared memory computer, 2001.
(http://www.mathematik.uni-halle.de/reports/rep-num.html)

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:4, 2008

273International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s

V
ol

:2
, N

o:
4,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
41

81
.p

df

