
 

 

  
      Abstract—The aim of this paper is to investigate the 
performance of the developed two point block method designed for 
two processors for solving directly non stiff large systems of higher 
order ordinary differential equations (ODEs). The method calculates 
the numerical solution at two points simultaneously and produces 
two new equally spaced solution values within a block and it is 
possible to assign the computational tasks at each time step to a 
single processor. The algorithm of the method was developed in C 
language and the parallel computation was done on a parallel shared 
memory environment. Numerical results are given to compare the 
efficiency of the developed method to the sequential timing. For 
large problems, the parallel implementation produced 1.95 speed-up 
and 98% efficiency for the two processors. 
 
     Keywords—Numerical methods, parallel method, block method, 
higher order ODEs. 

I. INTRODUCTION 

HE  ever-increasing advancement in computer technology 
has  enabled many in science and engineering sectors to 

apply numerical methods using parallel computation to solve 
mathematical  models arising from physical phenomena. The 
numerical solution of large ODEs systems requires a large 
amount of computing power. Users of parallel computing tend 
to be those with large mathematical problems to solve with the 
desire to obtain faster and more accurate results.  

In this paper, we consider solving directly the higher order 
non stiff IVPs (Initial Value Problems) for system of ODEs of 
the form, 

( )yyxfy ′=′′ ,, , ( ) 0yay = , ( ) ,0yay ′=′ [ ]bax ,∈ .          (1) 
Equation (1) can be reduced to the equivalent first-order 

system of twice the dimension equations and then solved 
using any numerical method. This approach is very well 
established but it obviously will enlarge the dimension of the 
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equations. The approach for solving the system of higher 
order ODEs directly has been suggested by several researchers 
such as in [1] – [8].  In previous work of [8], a general r block 
method of multistep method for solving problems of the form 
(1) has been investigated. The code in [8] used a repetitive 
computation of the divided differences and integration 
coefficients that can be very costly. The worked in [7] has 
presented a direct block method (2PFDIR) for solving higher 
order ODEs in variable step size which is faster in terms of 
timing and comparable or better in terms of accuracy to the 
existence direct non block method in [8]. The 2PFDIR method 
will store the coefficients in the code and there will be no 
calculations that involved the divided difference and 
integration coefficients. In this paper, we would like to extend 
the discussions in [7] on the performance of 2PFDIR method 
using parallel environment particularly focus on the cost of 
time computation by comparing the execution time of 
sequential and parallel implementation for solving large 
problem. 

II. FORMULATION OF THE METHOD 

In Fig. 1, the two values of 1+ny  and 2+ny  are 
simultaneously computed in a block using the same back 
values. The block has the step size h  and the previous back 
block has the step size rh . The idea of having the ratio r is for 
variable step size implementation. 

 

 
 

Fig. 1 Two point block method 
 

In Equation (1), the ( )yyxf ′,,  will be replaced with 
Lagrange interpolation polynomial and the interpolation 
points involved were ( ) ( )2222 ,,,, ++−− nnnn fxfx K . These 
polynomial will be integrate once and twice over the interval 
[ ]1, +nn xx  and [ ]2, +nn xx  respectively, and the following 
corrector formulae will be obtained, 
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Integrate Once 
 
First point: 

 ( ) ( )
( )( )( ) 21

1221240 rrrr
hxyxy nn

+++
+′=′ +  

. ( ( ) ( ) 2
22 2015312 ++++− nfrrrr + ( )( ) 1

22 80751824 ++++ nfrrrr +

( )( )( )( ) nfrrrrr 21004571221 +++++ ( )( ) 1307124 −++− nfrr +
( )( ) )21572 −++ nfrr   .                         (2) 
 
Second point: 

( ) ( )
( )( )( )121215 22

+++
+′=′ +

rrrr
hxyxy nn  

. ( )( ) 2
22 915512 ++++ nfrrrr + ( )( ) 1

22 6151024 ++++ nfrrrr  
+ ( )( )( )( ) nfrrrr 151212 2 −+++ ( ) ( ) 21 2124 −− +−++ nn frfr    .    (3) 
 
Integrate twice 
 
First point: 

( ) ( ) ( ) =′−−+ nnn xyhxyxy 1 ( )( )( )1221240 2

2

+++ rrrr
h  

. ( )( ) 2
22 106112 ++++− nfrrrr + ( )( ) 1

22 3021424 ++++ nfrrrr  

+ ( )( )( )( ) nfrrrrr 2702431221 +++++  ( )( ) 1163124 −++− nfrr   
+ ( )( ) 2832 −++ nfrr     .                             (4) 
 
Second point: 

( ) ( ) ( ) =′−−+ nnn xyhxyxy 22 ( )( )( )122115

2

+++ rrrr
h  

. ( )( ) 21232 +++ nfrrr + ( )( ) 1
2 25628 ++++ nfrrrr  

+ ( )( )( )( ) nfrrrr 1221103 ++++  ( ) 1128 −+− nfr  + ( ) 22 −+ nfr     .  (5) 

 
 
 
 
 
 
 
 
 
 

 
 
In Equation (2) – (5), this block method was applied in a 

predictor and corrector mode, and the method is a 
combination of predictor of order 4 and the corrector of order 
5. Each block consists of two steps, i.e n+1 and n+2. The 
corrector equation values depend on the current blocks n+1 
and n+2. The predictor formulae were derived similarly as the 
corrector formulae and the interpolation points involved are 

nn xx ,,3 K− . The predictor equations are dependent on values 
taken from the previous block n, n-1, n-2 and n-3.  

During the implementation of the method, the choices of 
the next step size will be restricted to half, double or the same 
as the previous step size and the successful step size will 

remain constant for at least two blocks before considered it to 
be doubled. This step size strategy helps to minimize the 
choices of the ratio r. In the code developed, when the next 
successful step size is doubled, the ratio r is 0.5 and if the next 
successful step size remain constant, r is 1.0. In case of step 
size failure, r is 2.0. In Equation (2) – (5), substituting the 
ratios of r will give the corrector formulae for the two point 
block direct integration method. For detail see [7]. 

III. PARALLELISM IMPLEMENTATION 
Within a block in the parallel two point direct block method 

for two processors (P2PFDIR), it is possible to assign both the 
predictor and the corrector computations to a single processor 
and to perform the computations simultaneously in parallel. 
Each application of the block method generates a collection of 
approximation to the solution within the block. In a parallel 
environment individual processor could compute 
independently the approximation values to the solution within 
the blocks. 

The sequential programs were executed on DYNIX/ptx 
operating system. The parallel programs of the methods 
employed were run on a shared memory Sequent Symmetry 
parallel computer at the Faculty of Computer Science and 
Information Technology, Universiti Putra Malaysia. The 
choice of an implementation on a shared memory parallel 
computer is due to the fact that such a computer can consists 
of several processors sharing a common memory with fast 
data access and requiring less communication times, which is 
suited to the features of the P2PFDIR method.  

Below are given the general idea of the parallelism of 
P2PFDIR in Fig. 2: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The predictor and corrector equations at each point are 

independent of each other. Thus the equation can be easily 
mapped onto two processors. In the shared memory machine 
this synchronisation point takes the form of a barrier. For 
example, all the processors have to exchange information after 
the evaluation of the terms 1+n

pF  and 2+n
pF  before continue 

to Step 3. The same process happen at Step 4 after the 
evaluation of the terms 1+n

cF  and 2+n
cF . The parallelism is 

achieved when the code computes at Step 3, particularly the 

mn
cY +  and mn

cF + , m=1,2.  Step 1 – 2, Step 3 and Step  4 

 
 
 
 
        
                           synchronisation point 
         
                           synchronisation point 
     
 
 
 

Fig. 2. The parallel process of P2PFDIR 

Processor 1 
(P1) 

Step 1:  Prediction 1+n
pY  

Step 2:   Evaluate 1+n
pF  

Step 3:   Correction 1+n
cY  

 

Step 4:   Evaluate 1+n
cF  

Processor 2 
(P2) 

Step 1: Prediction 2+n
pY  

Step 2: Evaluate 2+n
pF  

Step 3: Correction 2+n
cY  

 

Step 4:   Evaluate 2+n
cF  
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can be done concurrently as they are independent to each 
other. Parallelization in P2PFDIR is achieved by sharing the f-
evaluations.  

The algorithm for P2PFDIR is executed in C language. In 
order to see a possible speed up of the parallel code, the test 
problems in Section IV should be expensive. Therefore, the 
relatively small problems have been enlarge by scaling. The 
computation cost increased when solving large systems of 
higher order ODEs because the function evaluations continue 
to increase. Using two processors to do the work 
simultaneously can help to reduce the computation time when 
solving large problem. 

IV. RESULTS AND DISCUSSION 
The following two problems were tested using S2PFDIR 

and P2PFDIR and compare the sequential and parallel timing 
for N=1000, 2000 and 4000 for Problem 1 and N=101 when 
interval [0, 20] and [0, 40] for Problem 2.   
 
Problem 1: (Lagrange equation for the hanging string) 

( )21
2

1 yyKy +−=″  

( )321
2

2 23 yyyKy +−=″  

( )432
2

3 352 yyyKy +−=″  

M  

( ) ( )( )NNN yNyNKy 121 1
2 −−−=″

−  
=N number of equations, bx ≤≤0 , =b end of the interval. 

1=K , the initial values ( ) ( ) 000 =′= ii yy  

except ( ) ( ) 100 22 =′= −− NN yy ,  
Source: [9] 

 
Problem 2: (Moon – the second celestial mechanics problem.) 

( )∑
≠=

−
=″

N

ijj ij

ij
ji

r

xx
mx

,0
3

γ  

( )∑
≠=

−
=″

N

ijj ij

ij
ji

r

yy
my

,0
3

γ  where Ni ,,0 K=  

 ( ) ( )( )2
1

22
jijiij yyxxr −+−= , Nji ,,0, K=  

γ = 6.672, 3
0 107,60 −×== imm  Ni ,,1K=  

Initial data: ( ) ( ) ( ) ( ) 00000 0000 =′=′== yxyx  

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛=′+⎟

⎠
⎞

⎜
⎝
⎛=

i
x

i
x ii 100

2sin8.00,400
100
2cos300 ππ  

    ( ) ( ) 1
100
2cos8.00,

100
2sin300 +⎟

⎠
⎞

⎜
⎝
⎛−=′⎟

⎠
⎞

⎜
⎝
⎛=

i
y

i
y ii

ππ  

   =N 101, bt ≤≤0 , =b end of the interval. 
Source: [10] 
 

The performance of the sequential and parallel execution 
times for every problem is shown in Table I– IV while Table 
V shows the speed-up and efficiency performance for the 
problem. The notations are defined as follows: 

 
 

TOL    Tolerances 
MTD   Method employed 
TS    Total number of steps 
FS    Failure steps 
FCN    Total function calls 
MAXE   Magnitude of the global error ( )nn xyy −(max   
TIME   The execution time. 
S2PFDIR Sequential implementation of the two point 

implicit block method 
P2PFDIR Parallel implementation of the two point implicit 

block method 
 

In the code, we iterate the corrector to convergence. The 
convergence test employed were  
  ( ) ( )( )22

1
++

+ − n
s

n
s yyabs < 0.1 ×  TOL, K2,1,0=s      (6) 

where s is the number of iteration. After the successful 
convergence test of (6), local errors estimated at the point 

2+nx  will be performed to control the error for the block. The 
error controls were at the second point in the block because in 
general it had given us better results. The local errors 
estimates will be obtain by comparing the absolute difference 
of the corrector formula derived of order k and a similar 
corrector formula of order k-1.  

In these problems we recall that speedup is a measure of the 
relative benefits of parallelising a given application over 
sequential implementation. The speedup ratio on two 

processors that we use is defined as 
2

0
2 T

TS =  where 0T  is the 

time for the fastest serial algorithm for a given problem and 
2T  is the execution time of a parallel program on two 

processors. 
Efficiency of a parallel algorithm is defined as the ratio of 

speedup compared to the number of processors used. It can be 

defined as 100
2
2

2 ×=
SE . In an ideal parallel system, speed-up 

is equal to the number of processors (P) being used and 
efficiency is equal to 100%. In practice, speedup is less than P 
and efficiency is between 0% and 100%, depending on the 
degree of effectiveness with which the processors are utilised. 
The speed-up shows the speed gain of the parallel 
computation and it can describe the increase of performance in 
the parallel system.  

The two problems above were run without exact reference 
solution in a closed form, so we used the reference solution 
obtained by the same program using tolerance at two order 
higher from the current tolerance. The tested problems were 
run without calculating the maximum error for the execution 
time of the sequential and parallel execution time. The values 
maximum errors were computed in a separate program. In 
Table I – III, without loss of generality, we only compute the 
MAXE at TOL = 210− since the execution time is grossly 
increased with a finer tolerance. 
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TABLE I 
NUMERICAL RESULTS OF 2PFDIR FOR SOLVING PROBLEM 1 WHEN N=1000 

 
TABLE II 

NUMERICAL RESULTS OF 2PFDIR FOR SOLVING PROBLEM 1 WHEN N=2000 

 
TABLE III 

NUMERICAL RESULTS OF 2PFDIR FOR SOLVING PROBLEM 1 WHEN N=4000 

 
TABLE IV 

NUMERICAL RESULTS OF 2PFDIR FOR SOLVING PROBLEM 2 WHEN N=101, 
INTERVAL [0, 20] 

N=101, [0,20] TOL MTD 
TS FS FCN TIME(sec) 

210−  S2PFDIR 
P2PFDIR 

29 
 

0 128 
70 

2.079400 
1.329228 

MAXE=3.78992(-4) 
410−  S2PFDIR 

P2PFDIR 
36 

 
0 158 

85 
2.542150 
1.543892 

MAXE=2.40610(-6) 
610−  S2PFDIR 

P2PFDIR 
44 

 
0 198 

105 
3.175919 
1.902361 

MAXE=8.76138(-7) 
810−  S2PFDIR 

P2PFDIR 
52 

 
0 238 

125 
3.808737 
2.260861 

MAXE=4.36732(-9) 
1010−  S2PFDIR 

P2PFDIR 
70 

 
0 
 

336 
174 

5.360910 
3.137757 

MAXE=6.78177(-11) 
 

TABLE V 
NUMERICAL RESULTS OF 2PFDIR FOR SOLVING PROBLEM 2 WHEN N=101, 

INTERVAL [0, 40] 
N=101, [0,40] TOL MTD 

TS FS FCN TIME(sec) 
210−  S2PFDIR 

P2PFDIR 
31 0 136 

74 
2.201868 
1.395546 

MAXE=1.77673(-4) 
410−  S2PFDIR 

P2PFDIR 
39 0 176 

94 
2.835758 
1.704369 

MAXE=1.53896(-6) 
610−  S2PFDIR 

P2PFDIR 
48 0 224 

118 
3.674788 
2.133841 

MAXE=1.39440(-7) 
810−  S2PFDIR 

P2PFDIR 
62 0 296 

154 
4.720133 
2.779889 

MAXE=1.29065(-8) 
1010−  S2PFDIR 

P2PFDIR 
94 0 478 

245 
7.599380 
4.409488 

MAXE=1.54553(-10) 
 

In Table I - V show the numerical results for the tested 
problems. For sequential S2PFDIR only one processor was 
used and two processors were employed for the parallel 
algorithms of P2PFDIR. The numerical results show that the 
parallel execution time is faster than the sequential execution 
time for large ODEs systems.   

 
TABLE VI 

SPEED-UP AND EFFICIENCY OF 2PFDIR FOR SOLVING PROBLEM 1 AND 2 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: For each tolerance the values in the square brackets give the results    

of the efficiency in percentage. 
 

In Table VI, the speed-up ranging between 1.87 and 1.95 
for solving Problem 1 when 4000=N  and the efficiency is 
between 94% and 98%. Better speed-up and efficiency can be 
achieved by increasing the dimension of the ODEs in Problem 
1. In Problem 2, the speed up ranging between 1.58 and 1.72 
as the interval increased at the same number of equations. The 
number of function evaluations is almost half in the parallel 
mode compared to the sequential mode.  

In term of accuracy, numerical results are within the given 
tolerances. The performance of parallel implementation of an 
integration method depends heavily on the machine, the size 
of the problem and the costs of the function evaluation. The 
results suggest that P2PFDIR method be highly recommended 
for solving large systems of higher order ODEs. 
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