Search results for: voltage-gated sodium channel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2142

Search results for: voltage-gated sodium channel

1962 Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux

Authors: D Bhargavi, J. Sharath Kumar Reddy

Abstract:

The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, Da, Peclet number, Pe, Brinkman number, Br and a porous fraction γp on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied.

Keywords: porous material, channel partially filled with a porous material, axial conduction, viscous dissipation

Procedia PDF Downloads 128
1961 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nano Fluid in Single PEMFC Mini Channel

Authors: Irnie Zakaria, W. A. N. W. Mohamed, W. H. Azmi

Abstract:

Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in mini channel of carbon graphite plate to mimic the PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.

Keywords: heat transfer, mini channel, nanofluid, PEMFC

Procedia PDF Downloads 311
1960 The Response of 4-Hydroxybenzoic Acid on Kv1.4 Potassium Channel Subunit Expressed in Xenopus laevis Oocytes

Authors: Fatin H. Mohamad, Jia H. Wong, Muhammad Bilal, Abdul A. Mohamed Yusoff, Jafri M. Abdullah, Jingli Zhang

Abstract:

Kv1.4 is a Shaker-related member of voltage-gated potassium channel which can be associated with cardiac action potential but can also be found in Schaffer collateral and dentate gyrus. It has two inactivation mechanisms; the fast N-type and slow C-type. Kv1.4 produces rapid current inactivation. This A type potential of Kv1.4 makes it as a target in antiepileptic drugs (AEDs) selection. In this study, 4-hydroxybenzoic acid, which can be naturally found in bamboo shoots, were tested on its enhancement effect on potassium current of Kv1.4 channel expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp method. Current obtained were recorded and analyzed with pClamp software whereas statistical analysis were done by student t-test. The ratio of final / peak amplitude is an index of the activity of the Kv1.4 channel. The less the ratio, the greater the function of Kv1.4. The decrease of ratio of which by 1µM 4-hydroxybenzoic acid (n= 7), compared with 0.1% DMSO (vehicle), was mean= 47.62%, SE= 13.76%, P= 0.026 (statistically significant). It indicated more opening of Kv1.4 channels under 4-hydroxybenzoic acid. In conclusion, 4-hydroxybenzoic acid can enhance the function of Kv1.4 potassium channels, which is regarded as one of the mechanisms of antiepileptic treatment.

Keywords: antiepileptic, Kv1.4 potassium channel, two-microelectrode voltage clamp, Xenopus laevis oocytes, 4-hydroxybenzoic acid

Procedia PDF Downloads 331
1959 Addition of Phosphates on Stability of Sterilized Goat Milk in Different Seasons

Authors: Mei-Jen Lin, Yuan-Yuan Yu

Abstract:

Low heat stability of goat milk limited the application of ultra-high temperature (UHT) sterilization on producing sterilized goat milk in order to keep excess goat milk in summer for producing goat dairy products in winter in Taiwan. Therefore, this study aimed to add stabilizers in goat milk to increase the heat stability for producing UHT sterilized goat milk preserved for making goat dairy products in winter. The amounts of 0.05-0.11% blend of sodium phosphates (Na) and blend of sodium/potassium phosphates (Sp) were added in raw goat milk at different seasons a night before autoclaved sterilization at 135°C 4 sec. The coagulation, ion calcium concentration and ethanol stability of sterilized goat milk were analyzed. Results showed that there were seasonal differences on choosing the optimal stabilizers and the addition levels. Addition of 0.05% and 0.22% of both Na and Sp salts in Spring goat milk, 0.10-0.11% of both Na and Sp salts in Summer goat milk, and 0.05%Na Sp group in Autumn goat milk were coagulated after autoclaved, respectively. There was no coagulation found with the addition of 0.08-0.09% both Na and Sp salts in goat milk; furthermore, the ionic calcium concentration were lower than 2.00 mM and ethanol stability higher than 70% in both 0.08-0.09% Na and Sp salts added goat milk. Therefore, the optimal addition level of blend of sodium phosphates and blend of sodium/potassium phosphates were 0.08-0.09% for producing sterilized goat milk at different seasons in Taiwan.

Keywords: coagulation, goat milk, phosphates, stability

Procedia PDF Downloads 335
1958 Innovative Preparation Techniques: Boosting Oral Bioavailability of Phenylbutyric Acid Through Choline Salt-Based API-Ionic Liquids and Therapeutic Deep Eutectic Systems

Authors: Lin Po-Hsi, Sheu Ming-Thau

Abstract:

Urea cycle disorders (UCD) are rare genetic metabolic disorders that compromise the body's urea cycle. Sodium phenylbutyrate (SPB) is a medication commonly administered in tablet or powder form to lower ammonia levels. Nonetheless, its high sodium content poses risks to sodium-sensitive UCD patients. This necessitates the creation of an alternative drug formulation to mitigate sodium load and optimize drug delivery for UCD patients. This study focused on crafting a novel oral drug formulation for UCD, leveraging choline bicarbonate and phenylbutyric acid. The active pharmaceutical ingredient-ionic liquids (API-ILs) and therapeutic deep eutectic systems (THEDES) were formed by combining these with choline chloride. These systems display characteristics like maintaining a liquid state at room temperature and exhibiting enhanced solubility. This in turn amplifies drug dissolution rate, permeability, and ultimately oral bioavailability. Incorporating choline-based phenylbutyric acid as a substitute for traditional SPB can effectively curtail the sodium load in UCD patients. Our in vitro dissolution experiments revealed that the ILs and DESs, synthesized using choline bicarbonate and choline chloride with phenylbutyric acid, surpassed commercial tablets in dissolution speed. Pharmacokinetic evaluations in SD rats indicated a notable uptick in the oral bioavailability of phenylbutyric acid, underscoring the efficacy of choline salt ILs in augmenting its bioavailability. Additional in vitro intestinal permeability tests on SD rats authenticated that the ILs, formulated with choline bicarbonate and phenylbutyric acid, demonstrate superior permeability compared to their sodium and acid counterparts. To conclude, choline salt ILs developed from choline bicarbonate and phenylbutyric acid present a promising avenue for UCD treatment, with the added benefit of reduced sodium load. They also hold merit in formulation engineering. The sustained-release capabilities of DESs position them favorably for drug delivery, while the low toxicity and cost-effectiveness of choline chloride signal potential in formulation engineering. Overall, this drug formulation heralds a prospective therapeutic avenue for UCD patients.

Keywords: phenylbutyric acid, sodium phenylbutyrate, choline salt, ionic liquids, deep eutectic systems, oral bioavailability

Procedia PDF Downloads 73
1957 Flow Field Optimization for Proton Exchange Membrane Fuel Cells

Authors: Xiao-Dong Wang, Wei-Mon Yan

Abstract:

The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.

Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection

Procedia PDF Downloads 270
1956 The Consumption of Sodium and Fat from Processed Foods

Authors: Pil Kyoo Jo, Jee Young Kim, Yu Jin Oh, Sohyun Park, Young Ha Joo, Hye Suk Kim, Semi Kang

Abstract:

When convenience drives daily food choices, the increased consumption of processed foods may be associated with the increased intakes of sodium and fat and further with the onset of chronic diseases. The purpose of this study was to investigate the levels of sodium, saturated fat, and calories intakes through processed foods and the dietary patterns among adult populations in South Korea. We used the nationally representative data from the 5th Korea National Health and Nutrition Examination Survey (KNHANES, 2010-2012) and a cross-sectional survey on the eating behaviors among university students(N=893, 380 men, 513 women) aged from 20 to 24 years. Results showed that South Koreans consumed 43.5% of their total food consumption from processed foods. The 24-hour recalls data showed that 77% of sodium, 60% of fats, 59% of saturated fat, and 44% of calories were consumed from processed food. The intake of processed foods increased by 1.7% in average since 2008 annually. Only 33% of processed food that respondents consumed had nutrition labeling. The data from university students showed that students selected processed foods in convenience store when eating alone compared to eating with someone else. Given the convenience and lack of time, more people will consume processed foods and it may impact their overall dietary intake and further their health. In order to help people to make healthier food choices, regulations and policies to reduce the potentially unhealthy nutrients of processed foods should be strengthened. This research was supported by the National Research Foundation of Korea for 2011 Korea-Japan Basic Scientific Cooperation Program. This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2015S1A5B6037369).

Keywords: sodium, fat, processed foods, diet trends

Procedia PDF Downloads 225
1955 Improving Capability of Detecting Impulsive Noise

Authors: Farbod Rohani, Elyar Ghafoori, Matin Saeedkondori

Abstract:

Impulse noise is electromagnetic emission which generated by many house hold appliances that are attached to the electrical network. The main difficulty of impulsive noise (IN) elimination process from communication channels is to distinguish it from the transmitted signal and more importantly choosing the proper threshold bandwidth in order to eliminate the signal. Because of wide band property of impulsive noise, we present a novel method for setting the detection threshold, by taking advantage of the fact that impulsive noise bandwidth is usually wider than that of typical communication channels and specifically OFDM channel. After IN detection procedure, we apply simple windowing mechanisms to eliminate them from the communication channel.

Keywords: impulsive noise, OFDM channel, threshold detecting, windowing mechanisms

Procedia PDF Downloads 313
1954 Development and Validation of a Turbidimetric Bioassay to Determine the Potency of Ertapenem Sodium

Authors: Tahisa M. Pedroso, Hérida R. N. Salgado

Abstract:

The microbiological turbidimetric assay allows the determination of potency of the drug, by measuring the turbidity (absorbance), caused by inhibition of microorganisms by ertapenem sodium. Ertapenem sodium (ERTM), a synthetic antimicrobial agent of the class of carbapenems, shows action against Gram-negative, Gram-positive, aerobic and anaerobic microorganisms. Turbidimetric assays are described in the literature for some antibiotics, but this method is not described for ertapenem. The objective of the present study was to develop and validate a simple, sensitive, precise and accurate microbiological assay by turbidimetry to quantify ertapenem sodium injectable as an alternative to the physicochemical methods described in the literature. Several preliminary tests were performed to choose the following parameters: Staphylococcus aureus ATCC 25923, IAL 1851, 8 % of inoculum, BHI culture medium, and aqueous solution of ertapenem sodium. 10.0 mL of sterile BHI culture medium were distributed in 20 tubes. 0.2 mL of solutions (standard and test), were added in tube, respectively S1, S2 and S3, and T1, T2 and T3, 0.8 mL of culture medium inoculated were transferred to each tube, according parallel lines 3 x 3 test. The tubes were incubated in shaker Marconi MA 420 at a temperature of 35.0 °C ± 2.0 °C for 4 hours. After this period, the growth of microorganisms was inhibited by addition of 0.5 mL of 12% formaldehyde solution in each tube. The absorbance was determined in Quimis Q-798DRM spectrophotometer at a wavelength of 530 nm. An analytical curve was constructed to obtain the equation of the line by the least-squares method and the linearity and parallelism was detected by ANOVA. The specificity of the method was proven by comparing the response obtained for the standard and the finished product. The precision was checked by testing the determination of ertapenem sodium in three days. The accuracy was determined by recovery test. The robustness was determined by comparing the results obtained by varying wavelength, brand of culture medium and volume of culture medium in the tubes. Statistical analysis showed that there is no deviation from linearity in the analytical curves of standard and test samples. The correlation coefficients were 0.9996 and 0.9998 for the standard and test samples, respectively. The specificity was confirmed by comparing the absorbance of the reference substance and test samples. The values obtained for intraday, interday and between analyst precision were 1.25%; 0.26%, 0.15% respectively. The amount of ertapenem sodium present in the samples analyzed, 99.87%, is consistent. The accuracy was proven by the recovery test, with value of 98.20%. The parameters varied did not affect the analysis of ertapenem sodium, confirming the robustness of this method. The turbidimetric assay is more versatile, faster and easier to apply than agar diffusion assay. The method is simple, rapid and accurate and can be used in routine analysis of quality control of formulations containing ertapenem sodium.

Keywords: ertapenem sodium, turbidimetric assay, quality control, validation

Procedia PDF Downloads 370
1953 Flow Performance of Hybrid Cement Based Mortars

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco Torgal

Abstract:

The workability of hybrid alkaline cements is a field of knowledge that still needs further research efforts. This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration.

Keywords: waste reuse, fly ash, waste glass, hybrid cement, biopolymer, polycarboxylate, flow

Procedia PDF Downloads 279
1952 Potential Impact of Sodium Salicylate Nanoemulsion on Expression of Nephrin in Nephrotoxic Experimental Rat

Authors: Nadia A. Mohamed, Zakaria El-Khayat, Wagdy K. B. Khalil, Mehrez E. El-Naggar

Abstract:

Drug nephrotoxicity is still a problem for patients who have taken drugs for elongated periods or permanently. Ultrasound-assisted sol−gel method was used to prepare hollow structured poroussilica nanoemulsion loaded with sodium salicylate as a model drug. The work was extended to achieve the target of the current work via investigating the protective role of this nanoemulsion model as anti-inflammatory drug or ginger for its antioxidant effect against cisplatin-induced nephrotoxicity in male albino rats. The results clarify that the nanoemulsion model was synthesized using ultrasonic assisted with small size and well stabilization as proved by TEM and DLS analysis. Additionally, blood urea nitrogen (BUN), Serum creatinine (SC) and Urinary total protein (UTP) were increased, and the level of creatinine clearance (Crcl) was decreased. All those were met with disorders in oxidative stress and downregulation in the expression of the nephrin gene. Also, histopathological changes of the kidney tissue were observed. These changes back to normal by treatment with silica nanoparticles loaded sodium salicylate (Si-Sc-NPs), ginger or both. Conclusions oil/water nanoemulsion of (Si-Sc NPs) and ginger showed a protective and promising preventive strategy against nephrotoxicity due to their antioxidant and anti-inflammatory effects, and that offers a new approach in attenuating drug induced nephrotoxicity.

Keywords: sodium salicylate nanoencapsulation, nephrin mRNA, drug nephrotoxicity, cisplatin, experimental rats

Procedia PDF Downloads 169
1951 Inertial Particle Focusing Dynamics in Trapezoid Straight Microchannels: Application to Continuous Particle Filtration

Authors: Reza Moloudi, Steve Oh, Charles Chun Yang, Majid Ebrahimi Warkiani, May Win Naing

Abstract:

Inertial microfluidics has emerged recently as a promising tool for high-throughput manipulation of particles and cells for a wide range of flow cytometric tasks including cell separation/filtration, cell counting, and mechanical phenotyping. Inertial focusing is profoundly reliant on the cross-sectional shape of the channel and its impacts not only on the shear field but also the wall-effect lift force near the wall region. Despite comprehensive experiments and numerical analysis of the lift forces for rectangular and non-rectangular microchannels (half-circular and triangular cross-section), which all possess planes of symmetry, less effort has been made on the 'flow field structure' of trapezoidal straight microchannels and its effects on inertial focusing. On the other hand, a rectilinear channel with trapezoidal cross-sections breaks down all planes of symmetry. In this study, particle focusing dynamics inside trapezoid straight microchannels was first studied systematically for a broad range of channel Re number (20 < Re < 800). The altered axial velocity profile and consequently new shear force arrangement led to a cross-laterally movement of equilibration toward the longer side wall when the rectangular straight channel was changed to a trapezoid; however, the main lateral focusing started to move backward toward the middle and the shorter side wall, depending on particle clogging ratio (K=a/Hmin, a is particle size), channel aspect ratio (AR=W/Hmin, W is channel width, and Hmin is smaller channel height), and slope of slanted wall, as the channel Reynolds number further increased (Re > 50). Increasing the channel aspect ratio (AR) from 2 to 4 and the slope of slanted wall up to Tan(α)≈0.4 (Tan(α)=(Hlonger-sidewall-Hshorter-sidewall)/W) enhanced the off-center lateral focusing position from the middle of channel cross-section, up to ~20 percent of the channel width. It was found that the focusing point was spoiled near the slanted wall due to the dissymmetry; it mainly focused near the bottom wall or fluctuated between the channel center and the bottom wall, depending on the slanted wall and Re (Re < 100, channel aspect ratio 4:1). Eventually, as a proof of principle, a trapezoidal straight microchannel along with a bifurcation was designed and utilized for continuous filtration of a broader range of particle clogging ratio (0.3 < K < 1) exiting through the longer wall outlet with ~99% efficiency (Re < 100) in comparison to the rectangular straight microchannels (W > H, 0.3 ≤ K < 0.5).

Keywords: cell/particle sorting, filtration, inertial microfluidics, straight microchannel, trapezoid

Procedia PDF Downloads 184
1950 Numerical Investigation of Heat Transfer in a Channel with Delta Winglet Vortex Generators at Different Reynolds Numbers

Authors: N. K. Singh

Abstract:

In this study the augmentation of heat transfer in a rectangular channel with triangular vortex generators is evaluated. The span wise averaged Nusselt number, mean temperature and total heat flux are compared with and without vortex generators in the channel at a blade angle of 30° for Reynolds numbers 800, 1200, 1600, and 2000. The use of vortex generators increases the span wise averaged Nusselt number compared to the case without vortex generators considerably. At a particular blade angle, increasing the Reynolds number results in an enhancement in the overall performance and span wise averaged Nusselt number was found to be greater at particular location for larger Reynolds number. The total heat flux from the bottom wall with vortex generators was found to be greater than that without vortex generators and the difference increases with increase in Reynolds number.

Keywords: heat transfer, channel with vortex generators, numerical simulation, effect of Reynolds number on heat transfer

Procedia PDF Downloads 292
1949 The Effect of Salinity and Bentonite on the Hydrous Behaviors and Sodium Content of the Broad Bean Vicia faba var. Semilla violeta

Authors: T. Nouri, Y. H. A. Reguieg, A. Latigui, A. Ouaini

Abstract:

Salinity is considered as the most important abiotic factor. It limits growth and productivity of plants and degrades agricultural soils and ecosystem in arid and semi arid area. The study was conducted on Vicia faba L.’Semilla violeta’. Sowing was realized in plastic pots containing sandy substrates of bentonite 0, 3, 5, 7, and 10% associated with abiotic stresses of salinity corresponding to doses of NaCl, MgCl2 and MgSO4 20, 40, and 60 mmol/l respectively. The purpose of this work is to study the combined effect of salinity and of bentonite on a plant commonly cultivated in Algeria the broad bean Vicia faba has through the chemical and hydrous parameter. The results show that the combined action of strong concentration salt (40 and 60 mmol/l) and of bentonite a reduction of the relative content water reveals, against an increase in the content of hydrous deficit and of sodium. The growth of broad bean is significant in the substrate amended to 5 % of bentonite.

Keywords: salinity, bentonite, Vicia faba L, sodium content, hydrous parameters

Procedia PDF Downloads 333
1948 Multichannel Scheme under Fairness Environment for Cognitive Radio Networks

Authors: Hans Marquez Ramos, Cesar Hernandez, Ingrid Páez

Abstract:

This paper develops a multiple channel assignment model, which allows to take advantage in most efficient way, spectrum opportunities in cognitive radio networks. Developed scheme allows make several available and frequency adjacent channel assignments, which require a bigger wide band, under an equality environment. The hybrid assignment model it is made by to algorithms, one who makes the ranking and select available frequency channels and the other one in charge of establishing an equality criteria, in order to not restrict spectrum opportunities for all other secondary users who wish to make transmissions. Measurements made were done for average bandwidth, average delay, as well fairness computation for several channel assignment. Reached results were evaluated with experimental spectrum occupational data from GSM frequency band captured. Developed model, shows evidence of improvement in spectrum opportunity use and a wider average transmit bandwidth for each secondary user, maintaining equality criteria in channel assignment.

Keywords: bandwidth, fairness, multichannel, secondary users

Procedia PDF Downloads 467
1947 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

Keywords: SPD, ECAP, FEM, pure Al, mechanical properties

Procedia PDF Downloads 154
1946 Optimization of Pretreatment Process of Napier Grass for Improved Sugar Yield

Authors: Shashikant Kumar, Chandraraj K.

Abstract:

Perennial grasses have presented interesting choices in the current demand for renewable and sustainable energy sources to alleviate the load of the global energy problem. The perennial grass Napier grass (Pennisetum purpureum Schumach) is a promising feedstock for the production of cellulosic ethanol. The conversion of biomass into glucose and xylose is a crucial stage in the production of bioethanol, and it necessitates optimal pretreatment. Alkali treatment, among the several pretreatments available, effectively reduces lignin concentration and crystallinity of cellulose. Response surface methodology was used to optimize the alkali pretreatment of Napier grass for maximal reducing sugar production. The combined effects of three independent variables, viz. sodium hydroxide concentration, temperature, and reaction time, were studied. A second-order polynomial equation was used to fit the observed data. Maximum reducing sugar (590.54 mg/g) was obtained under the following conditions: 1.6 % sodium hydroxide, a reaction period of 30 min., and 120˚C. The results showed that Napier grass is a desirable feedstock for bioethanol production.

Keywords: Napier grass, optimization, pretreatment, sodium hydroxide

Procedia PDF Downloads 478
1945 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks

Authors: Danilo López, Johana Hernández, Edwin Rivas

Abstract:

The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.

Keywords: cognitive radio, neural network, prediction, primary user

Procedia PDF Downloads 334
1944 Discharge Estimation in a Two Flow Braided Channel Based on Energy Concept

Authors: Amiya Kumar Pati, Spandan Sahu, Kishanjit Kumar Khatua

Abstract:

River is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. A river flow consisting of small and shallow channels sometimes divide and recombine numerous times because of the slow water flow or the built up sediments. The pattern formed during this process resembles the strands of a braid. Braided streams form where the sediment load is so heavy that some of the sediments are deposited as shifting islands. Braided rivers often exist near the mountainous regions and typically carry coarse-grained and heterogeneous sediments down a fairly steep gradient. In this paper, the apparent shear stress formulae were suitably modified, and the Energy Concept Method (ECM) was applied for the prediction of discharges at the junction of a two-flow braided compound channel. The Energy Concept Method has not been applied for estimating the discharges in the braided channels. The energy loss in the channels is analyzed based on mechanical analysis. The cross-section of channel is divided into two sub-areas, namely the main-channel below the bank-full level and region above the bank-full level for estimating the total discharge. The experimental data are compared with a wide range of theoretical data available in the published literature to verify this model. The accuracy of this approach is also compared with Divided Channel Method (DCM). From error analysis of this method, it is observed that the relative error is less for the data-sets having smooth floodplains when compared to rough floodplains. Comparisons with other models indicate that the present method has reasonable accuracy for engineering purposes.

Keywords: critical flow, energy concept, open channel flow, sediment, two-flow braided compound channel

Procedia PDF Downloads 101
1943 Preparation of Amorphous silica from Algerian Diatomite and Its Properties

Authors: S. Medeghri, S. Hamzaoui, M. Zerdali, S. Masatomo

Abstract:

In this work there is a facile method to produce pure amorphous silica from Algerian diatomite with an economic and ecological method. The sodium silicate is commonly used as precursor in silica gel diatomite preparation. In this study, the preparation of sodium silicate is preceded by acid washing of raw diatomite; the acid is then slowly added to precipitate silica at different pH values to obtain silica gel. The silica gel is characterized by EDX, ICP-MS and XRD. The EDX revels that the purity of silica from diatom is 98% after purification compared to raw diatom.

Keywords: diatomite, acid cleaning, dissolution, amorphous silica, purity

Procedia PDF Downloads 544
1942 Convex Restrictions for Outage Constrained MU-MISO Downlink under Imperfect Channel State Information

Authors: A. Preetha Priyadharshini, S. B. M. Priya

Abstract:

In this paper, we consider the MU-MISO downlink scenario, under imperfect channel state information (CSI). The main issue in imperfect CSI is to keep the probability of each user achievable outage rate below the given threshold level. Such a rate outage constraints present significant and analytical challenges. There are many probabilistic methods are used to minimize the transmit optimization problem under imperfect CSI. Here, decomposition based large deviation inequality and Bernstein type inequality convex restriction methods are used to perform the optimization problem under imperfect CSI. These methods are used for achieving improved output quality and lower complexity. They provide a safe tractable approximation of the original rate outage constraints. Based on these method implementations, performance has been evaluated in the terms of feasible rate and average transmission power. The simulation results are shown that all the two methods offer significantly improved outage quality and lower computational complexity.

Keywords: imperfect channel state information, outage probability, multiuser- multi input single output, channel state information

Procedia PDF Downloads 774
1941 Determination of Mineral Elements in Some Coarse Grains Used as Staple Food in Kano, Nigeria

Authors: M. I. Mohammed, U. M. Ahmad

Abstract:

Analyses of mineral elements were carried out on some coarse grains used as staple food in Kano. The levels of Magnesium, Calcium, Manganese, Iron, Copper and Zinc were determined using atomic absorption spectrophotometer (AAS), and that of Sodium and Potassium were obtained using flame photometer (FES). The result of the study shows that the mean results of the mineral elements ranged from 62.50±0.55 - 84.82±0.74mg/kg sodium, 73.33±0.35 - 317±0.10mg/kg magnesium, 89.22±0.26 - 193.33±0.19mg/kg potassium, 70.00±0.52 - 186.67±0.29mg/kg calcium, 1.00±0.11 - 20.50±1.30mg/kg manganese, 25.00±0.11 - 80.50±0.36mg/kg iron. 4.00±0.08 - 13.00±0.24mg/kg copper and 15.00±0.34 - 50.50±0.24 zinc. There was significant difference (p < 0.05) in levels of sodium, potassium and calcium whereas no significant difference (p > 0.05) occurs in levels of magnesium, manganese, copper and zinc. In comparison with Recommended Daily Allowances of essential and trace metals set by international standard organizations, the coarse grains analysed in this work contribute little to the provision of essential and trace elements requirements.

Keywords: mineral elements, coarse grains, staple food, Kano, Nigeria

Procedia PDF Downloads 252
1940 Iterative Panel RC Extraction for Capacitive Touchscreen

Authors: Chae Hoon Park, Jong Kang Park, Jong Tae Kim

Abstract:

Electrical characteristics of capacitive touchscreen need to be accurately analyzed to result in better performance for multi-channel capacitance sensing. In this paper, we extracted the panel resistances and capacitances of the touchscreen by comparing measurement data and model data. By employing a lumped RC model for driver-to-receiver paths in touchscreen, we estimated resistance and capacitance values according to the physical lengths of channel paths which are proportional to the RC model. As a result, we obtained the model having 95.54% accuracy of the measurement data.

Keywords: electrical characteristics of capacitive touchscreen, iterative extraction, lumped RC model, physical lengths of channel paths

Procedia PDF Downloads 310
1939 Applications of the Morphological Variability in River Management: A Study of West Rapti River

Authors: Partha Sarathi Mondal, Srabani Sanyal

Abstract:

Different geomorphic agents produce a different landforms pattern. Similarly rivers also have a distinct and diverse landforms pattern. And even, within a river course different and distinct assemblage of landforms i.e. morphological variability are seen. These morphological variability are produced by different river processes. Channel and floodplain morphology helps to interpret river processes. Consequently morphological variability can be used as an important tool for assessing river processes, hydrological connectivity and river health, which will help us to draw inference about river processes and therefore, management of river health. The present study is documented on West Rapti river, a trans-boundary river flowing through Nepal and India, from its source to confluence with Ghaghra river in India. The river shows a significant morphological variability throughout its course. The present study tries to find out factors and processes responsible for the morphological variability of the river and in which way it can be applied in river management practices. For this purpose channel and floodplain morphology of West Rapti river was mapped as accurately as possible and then on the basis of process-form interactions, inferences are drawn to understand factors of morphological variability. The study shows that the valley setting of West Rapti river, in the Himalayan region, is confined and somewhere partly confined whereas, channel of the West Rapti river is single thread in most part of Himalayan region and braided in valley region. In the foothill region valley is unconfined and channel is braided, in middle part channel is meandering and valley is unconfined, whereas, channel is anthropogenically altered in the lower part of the course. Due to this the morphology of West Rapti river is highly diverse. These morphological variability are produced by different geomorphic processes. Therefore, for any river management it is essential to sustain these morphological variability so that the river could not cross the geomorphic threshold and environmental flow of the river along with the biodiversity of riparian region is maintained.

Keywords: channel morphology, environmental flow, floodplain morphology, geomorphic threshold

Procedia PDF Downloads 340
1938 Voice over IP Quality of Service Evaluation for Mobile Ad Hoc Network in an Indoor Environment for Different Voice Codecs

Authors: Lina Abou Haibeh, Nadir Hakem, Ousama Abu Safia

Abstract:

In this paper, the performance and quality of Voice over IP (VoIP) calls carried over a Mobile Ad Hoc Network (MANET) which has a number of SIP nodes registered on a SIP Proxy are analyzed. The testing campaigns are carried out in an indoor corridor structure having a well-defined channel’s characteristics and model for the different voice codecs, G.711, G.727 and G.723.1. These voice codecs are commonly used in VoIP technology. The calls’ quality are evaluated using four Quality of Service (QoS) metrics, namely, mean opinion score (MOS), jitter, delay, and packet loss. The relationship between the wireless channel’s parameters and the optimum codec is well-established. According to the experimental results, the voice codec G.711 has the best performance for the proposed MANET topology

Keywords: wireless channel modelling, Voip, MANET, session initiation protocol (SIP), QoS

Procedia PDF Downloads 192
1937 Nondestructive Acoustic Microcharacterisation of Gamma Irradiation Effects on Sodium Oxide Borate Glass X2Na2O-X2B2O3 by Acoustic Signature

Authors: Ibrahim Al-Suraihy, Abdellaziz Doghmane, Zahia Hadjoub

Abstract:

We discuss in this work the elastic properties by using acoustic microscopes to measure Rayleigh and longitudinal wave velocities in a no radiated and radiated sodium borate glasses X2Na2O-X2B2O3 with 0 ≤ x ≤ 27 (mol %) at microscopic resolution. The acoustic material signatures were first measured, from which the characteristic surface velocities were determined.Longitudinal and shear ultrasonic velocities were measured in a different composition of sodium borate glass samples before and after irradiation with γ-rays. Results showed that the effect due to increasing sodium oxide content on the ultrasonic velocity appeared more clearly than due to γ-radiation. It was found that as Na2O composition increases, longitudinal velocities vary from 3832 to 5636 m/s in irradiated sample and it vary from 4010 to 5836 m/s in high radiated sample by 10 dose whereas shear velocities vary from 2223 to 3269 m/s in irradiated sample and it vary from 2326 m/s in low radiation to 3385 m/s in high radiated sample by 10 dose. The effect of increasing sodium oxide content on ultrasonic velocity was very clear. The increase of velocity was attributed to the gradual increase in the rigidity of glass and hence strengthening of network due to gradual change of boron atoms from the three-fold to the four-fold coordination of oxygen atoms. The ultrasonic velocities data of glass samples have been used to find the elastic modulus. It was found that ultrasonic velocity, elastic modulus and microhardness increase with increasing barium oxide content and increasing γ-radiation dose.

Keywords: mechanical properties X2Na2O-X2B2O3, acoustic signature, SAW velocities, additives, gamma-radiation dose

Procedia PDF Downloads 377
1936 Magnetohydrodynamic Flows in a Misaligned Duct under a Uniform Magnetic Field

Authors: Mengqi Zhu, Chang Nyung Kim

Abstract:

This study numerically investigates three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a misaligned duct under a uniform magnetic field. The duct consists of two misaligned horizontal channels (one is inflow channel, the other is outflow channel) and one central vertical channel. Computational fluid dynamics simulations are performed to predict the behavior of the MHD flows, using commercial code CFX. In the current study, a case with Hartmann number 1000 is considered. The electromagnetic features of LM MHD flows are elucidated to examine the interdependency of the flow velocity, current density, electric potential, pressure drop and Lorentz force. The results show that pressure decreases linearly along the main flow direction.

Keywords: CFX, liquid-metal magnetohydrodynamic flows, misaligned duct, pressure drop

Procedia PDF Downloads 260
1935 Agriculture Water Quality Evaluation in Minig Basin

Authors: Ben Salah Nahla

Abstract:

The problem of water in Tunisia affects the quality and quantity. Tunisia is in a situation of water shortage. It was estimated that 4.6 Mm3/an. Moreover, the quality of water in Tunisia is also mediocre. In fact, 50% of the water has a high salinity (> 1.5g/l). There are several parameters which affect water quality such as sodium, fluoride. An excess of this parameter may induce some human health. Furthermore, the mining basin area has a problem of industrial waste. This problem may affect the water quality of the groundwater. Therefore, the purpose of this work is to assess the water quality in Basin Mining and the impact of fluorine. For this research, some water samples were done in the field and specific water analysis was implemented in the laboratory. Sampling is carried out on eight drilling in the area of the mining region. In the following, we will look at water view composition, physical and chemical quality. A physical-chemical analysis of water from a survey of the Mining area of Tunisia was performed and showed an excess for the following items: fluorine, sodium, sulfate. So many chemicals may be present in water. However, only a small number of them immediately concern in terms of health in all circumstances. Fluorine (F) is one particular chemical that is considered both necessary for the human body, but an excess of the rate of this chemical causes serious diseases. Sodium fluoride and sodium silicofluoride are more soluble and may spread in animals and plants where their toxicity largest organizations. The more complex particles such as cryolite and fluorite, almost insoluble, are more stable and less toxic. Thereafter, we will study the problem of excess fluorine in the water. The latter intended for human consumption must always comply with the limits for microbiological quality parameters and physical-chemical parameters defined by European standards (1.5 mg/l) and Tunisian (2 mg/l).

Keywords: water, minier basin, fluorine, silicofluoride

Procedia PDF Downloads 552
1934 Effect of Reynolds Number on Wall-normal Turbulence Intensity in a Smooth and Rough Open Channel Using both Outer and Inner Scaling

Authors: Md Abdullah Al Faruque, Ram Balachandar

Abstract:

Sudden change of bed condition is frequent in open channel flow. Change of bed condition affects the turbulence characteristics in both streamwise and wall-normal direction. Understanding the turbulence intensity in open channel flow is of vital importance to the modeling of sediment transport and resuspension, bed formation, entrainment, and the exchange of energy and momentum. A comprehensive study was carried out to understand the extent of the effect of Reynolds number and bed roughness on different turbulence characteristics in an open channel flow. Four different bed conditions (impervious smooth bed, impervious continuous rough bed, pervious rough sand bed, and impervious distributed roughness) and two different Reynolds numbers were adopted for this cause. The effect of bed roughness on different turbulence characteristics is seen to be prevalent for most of the flow depth. Effect of Reynolds number on different turbulence characteristics is also evident for flow over different bed, but the extent varies on bed condition. Although the same sand grain is used to create the different rough bed conditions, the difference in turbulence characteristics is an indication that specific geometry of the roughness has an influence on turbulence characteristics. Roughness increases the contribution of the extreme turbulent events which produces very large instantaneous Reynolds shear stress and can potentially influence the sediment transport, resuspension of pollutant from bed and alter the nutrient composition, which eventually affect the sustainability of benthic organisms.

Keywords: open channel flow, Reynolds Number, roughness, turbulence

Procedia PDF Downloads 381
1933 Identification of a Lead Compound for Selective Inhibition of Nav1.7 to Treat Chronic Pain

Authors: Sharat Chandra, Zilong Wang, Ru-Rong Ji, Andrey Bortsov

Abstract:

Chronic pain (CP) therapeutic approaches have limited efficacy. As a result, doctors are prescribing opioids for chronic pain, leading to opioid overuse, abuse, and addiction epidemic. Therefore, the development of effective and safe CP drugs remains an unmet medical need. Voltage-gated sodium (Nav) channels act as cardiovascular and neurological disorder’s molecular targets. Nav channels selective inhibitors are hard to design because there are nine closely-related isoforms (Nav1.1-1.9) that share the protein sequence segments. We are targeting the Nav1.7 found in the peripheral nervous system and engaged in the perception of pain. The objective of this project was to screen a 1.5 million compound library for identification of inhibitors for Nav1.7 with analgesic effect. In this study, we designed a protocol for identification of isoform-selective inhibitors of Nav1.7, by utilizing the prior information on isoform-selective antagonists. First, a similarity search was performed; then the identified hits were docked into a binding site on the fourth voltage-sensor domain (VSD4) of Nav1.7. We used the FTrees tool for similarity searching and library generation; the generated library was docked in the VSD4 domain binding site using FlexX and compounds were shortlisted using a FlexX score and SeeSAR hyde scoring. Finally, the top 25 compounds were tested with molecular dynamics simulation (MDS). We reduced our list to 9 compounds based on the MDS root mean square deviation plot and obtained them from a vendor for in vitro and in vivo validation. Whole-cell patch-clamp recordings in HEK-293 cells and dorsal root ganglion neurons were conducted. We used patch pipettes to record transient Na⁺ currents. One of the compounds reduced the peak sodium currents in Nav1.7-HEK-293 stable cell line in a dose-dependent manner, with IC50 values at 0.74 µM. In summary, our computer-aided analgesic discovery approach allowed us to develop pre-clinical analgesic candidate with significant reduction of time and cost.

Keywords: chronic pain, voltage-gated sodium channel, isoform-selective antagonist, similarity search, virtual screening, analgesics development

Procedia PDF Downloads 97