Search results for: Partha Sarathi Mondal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 52

Search results for: Partha Sarathi Mondal

52 Applications of the Morphological Variability in River Management: A Study of West Rapti River

Authors: Partha Sarathi Mondal, Srabani Sanyal

Abstract:

Different geomorphic agents produce a different landforms pattern. Similarly rivers also have a distinct and diverse landforms pattern. And even, within a river course different and distinct assemblage of landforms i.e. morphological variability are seen. These morphological variability are produced by different river processes. Channel and floodplain morphology helps to interpret river processes. Consequently morphological variability can be used as an important tool for assessing river processes, hydrological connectivity and river health, which will help us to draw inference about river processes and therefore, management of river health. The present study is documented on West Rapti river, a trans-boundary river flowing through Nepal and India, from its source to confluence with Ghaghra river in India. The river shows a significant morphological variability throughout its course. The present study tries to find out factors and processes responsible for the morphological variability of the river and in which way it can be applied in river management practices. For this purpose channel and floodplain morphology of West Rapti river was mapped as accurately as possible and then on the basis of process-form interactions, inferences are drawn to understand factors of morphological variability. The study shows that the valley setting of West Rapti river, in the Himalayan region, is confined and somewhere partly confined whereas, channel of the West Rapti river is single thread in most part of Himalayan region and braided in valley region. In the foothill region valley is unconfined and channel is braided, in middle part channel is meandering and valley is unconfined, whereas, channel is anthropogenically altered in the lower part of the course. Due to this the morphology of West Rapti river is highly diverse. These morphological variability are produced by different geomorphic processes. Therefore, for any river management it is essential to sustain these morphological variability so that the river could not cross the geomorphic threshold and environmental flow of the river along with the biodiversity of riparian region is maintained.

Keywords: channel morphology, environmental flow, floodplain morphology, geomorphic threshold

Procedia PDF Downloads 338
51 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer

Authors: Partha Sarathi Majee, S. Bhattacharyya

Abstract:

Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.

Keywords: debye length, double layer polarization, electrophoresis, mobility reversal, soft particle

Procedia PDF Downloads 318
50 Numerical Investigation of Effect of Throat Design on the Performance of a Rectangular Ramjet Intake

Authors: Subrat Partha Sarathi Pattnaik, Rajan N.K.S.

Abstract:

Integrated rocket ramjet engines are highly suitable for long range missile applications. Designing the fixed geometry intakes for such missiles that can operate efficiently over a range of operating conditions is a highly challenging task. Hence, the present study aims to evaluate the effect of throat design on the performance of a rectangular mixed compression intake for operation in the Mach number range of 1.8 – 2.5. The analysis has been carried out at four different Mach numbers of 1.8, 2, 2.2, 2.5 and two angle-of-attacks of +5 and +10 degrees. For the throat design, three different throat heights have been considered, one corresponding to a 3- external shock design and two heights corresponding to a 2-external shock design leading to different internal contraction ratios. The on-design Mach number for the study is M 2.2. To obtain the viscous flow field in the intake, the theoretical designs have been considered for computational fluid dynamic analysis. For which Favre averaged Navier- Stokes (FANS) equations with two equation SST k-w model have been solved. The analysis shows that for zero angle of attack at on-design and high off-design Mach number operations the three-ramp design leads to a higher total pressure recovery (TPR) compared to the two-ramp design at both contraction ratios maintaining same mass flow ratio (MFR). But at low off-design Mach numbers the total pressure shows an opposite trend that is maximum for the two-ramp low contraction ratio design due to lower shock loss across the external shocks similarly the MFR is higher for low contraction ratio design as the external ramp shocks move closer to the cowl. At both the angle of attack conditions and complete range of Mach numbers the total pressure recovery and mass flow ratios are highest for two ramp low contraction design due to lower stagnation pressure loss across the detached bow shock formed at the ramp and lower mass spillage. Hence, low contraction design is found to be suitable for higher off-design performance.

Keywords: internal contraction ratio, mass flow ratio, mixed compression intake, performance, supersonic flows

Procedia PDF Downloads 75
49 Effect of Grain Size and Stress Parameters on Ratcheting Behaviour of Two Different Single Phase FCC Metals

Authors: Jayanta Kumar Mahato, Partha Sarathi De, Amrita Kundu, P. C. Chakraborti

Abstract:

Ratcheting is one of the most important phenomena to be considered for design and safety assessment of structural components subjected to stress controlled asymmetric cyclic loading in the elasto-plastic domain. In the present study uniaxial ratcheting behavior of commercially pure annealed OFHC copper and aluminium with two different grain sizes has been investigated. Stress-controlled tests have been conducted at various combinations of stress amplitude and mean stress. These stresses were selected in such a way that the ratio of equivalent stress amplitude (σₐeq) to ultimate tensile strength (σUTS) of the selected materials remains constant. It is found that irrespective of grain size the ratcheting fatigue lives decrease with the increase of both stress amplitude and mean stress following power relationships. However, the effect of stress amplitude on ratcheting lives is observed higher as compared to mean stress for both the FCC metals. It is also found that for both FCC metals ratcheting fatigue lives at a constant ratio of equivalent stress amplitude (σ ₐeq) to ultimate tensile strength (σUTS) are more in case fine grain size. So far ratcheting strain rate is concerned, it decreases rapidly within first few cycles and then a steady state is reached. Finally, the ratcheting strain rate increases up to the complete failure of the specimens due to a very large increase of true stress for a substantial reduction in cross-sectional area. The steady state ratcheting strain rate increases with the increase in both stress amplitude and mean stress. Interestingly, a unique perfectly power relationship between steady state ratcheting strain rate and cycles to failure has been found irrespective of stress combination for both FCC metals. Similar to ratcheting strain rate, the strain energy density decreases rapidly within first few cycles followed by steady state and then increases up to a failure of the specimens irrespective of stress combinations for both FCC metals; but strain energy density at steady state decreases with increase in mean stress and increases with the increase of stress amplitude. From the fractography study, it is found that the void density increases with the increase of maximum stress, but the void size and void density are almost same for any combination of stress parameters considering constant maximum stress.

Keywords: ratcheting phenomena, grain size, stress parameter, ratcheting lives, ratcheting strain rate

Procedia PDF Downloads 265
48 Influence of Surface Fault Rupture on Dynamic Behavior of Cantilever Retaining Wall: A Numerical Study

Authors: Partha Sarathi Nayek, Abhiparna Dasgupta, Maheshreddy Gade

Abstract:

Earth retaining structure plays a vital role in stabilizing unstable road cuts and slopes in the mountainous region. The retaining structures located in seismically active regions like the Himalayas may experience moderate to severe earthquakes. An earthquake produces two kinds of ground motion: permanent quasi-static displacement (fault rapture) on the fault rupture plane and transient vibration, traveling a long distance. There has been extensive research work to understand the dynamic behavior of retaining structures subjected to transient ground motions. However, understanding the effect caused by fault rapture phenomena on retaining structures is limited. The presence of shallow crustal active faults and natural slopes in the Himalayan region further highlights the need to study the response of retaining structures subjected to fault rupture phenomena. In this paper, an attempt has been made to understand the dynamic response of the cantilever retaining wall subjected to surface fault rupture. For this purpose, a 2D finite element model consists of a retaining wall, backfill and foundation have been developed using Abaqus 6.14 software. The backfill and foundation material are modeled as per the Mohr-Coulomb failure criterion, and the wall is modeled as linear elastic. In this present study, the interaction between backfill and wall is modeled as ‘surface-surface contact.’ The entire simulation process is divided into three steps, i.e., the initial step, gravity load step, fault rupture step. The interaction property between wall and soil and fixed boundary condition to all the boundary elements are applied in the initial step. In the next step, gravity load is applied, and the boundary elements are allowed to move in the vertical direction to incorporate the settlement of soil due to the gravity load. In the final step, surface fault rupture has been applied to the wall-backfill system. For this purpose, the foundation is divided into two blocks, namely, the hanging wall block and the footwall block. A finite fault rupture displacement is applied to the hanging wall part while the footwall bottom boundary is kept as fixed. Initially, a numerical analysis is performed considering the reverse fault mechanism with a dip angle of 45°. The simulated result is presented in terms of contour maps of permanent displacements of the wall-backfill system. These maps highlighted that surface fault rupture can induce permanent displacement in both horizontal and vertical directions, which can significantly influence the dynamic behavior of the wall-backfill system. Further, the influence of fault mechanism, dip angle, and surface fault rupture position is also investigated in this work.

Keywords: surface fault rupture, retaining wall, dynamic response, finite element analysis

Procedia PDF Downloads 79
47 A CORDIC Based Design Technique for Efficient Computation of DCT

Authors: Deboraj Muchahary, Amlan Deep Borah Abir J. Mondal, Alak Majumder

Abstract:

A discrete cosine transform (DCT) is described and a technique to compute it using fast Fourier transform (FFT) is developed. In this work, DCT of a finite length sequence is obtained by incorporating CORDIC methodology in radix-2 FFT algorithm. The proposed methodology is simple to comprehend and maintains a regular structure, thereby reducing computational complexity. DCTs are used extensively in the area of digital processing for the purpose of pattern recognition. So the efficient computation of DCT maintaining a transparent design flow is highly solicited.

Keywords: DCT, DFT, CORDIC, FFT

Procedia PDF Downloads 443
46 Non-Cytotoxic Natural Sourced Inorganic Hydroxyapatite (HAp) Scaffold Facilitate Bone-like Mechanical Support and Cell Proliferation

Authors: Sudip Mondal, Biswanath Mondal, Sudit S. Mukhopadhyay, Apurba Dey

Abstract:

Bioactive materials improve devices for a long lifespan but have mechanical limitations. Mechanical characterization is one of the very important characteristics to evaluate the life span and functionality of the scaffold material. After implantation of scaffold material the primary stage rejection of scaffold occurs due to non biocompatible effect of host body system. The second major problems occur due to the effect of mechanical failure. The mechanical and biocompatibility failure of the scaffold materials can be overcome by the prior evaluation of the scaffold materials. In this study chemically treated Labeo rohita scale is used for synthesizing hydroxyapatite (HAp) biomaterial. Thermo-gravimetric and differential thermal analysis (TG-DTA) is carried out to ensure thermal stability. The chemical composition and bond structures of wet ball-milled calcined HAp powder is characterized by Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX) analysis. Fish scale derived apatite materials consists of nano-sized particles with Ca/P ratio of 1.71. The biocompatibility through cytotoxicity evaluation and MTT assay are carried out in MG63 osteoblast cell lines. In the cell attachment study, the cells are tightly attached with HAp scaffolds developed in the laboratory. The result clearly suggests that HAp material synthesized in this study do not have any cytotoxic effect, as well as it has a natural binding affinity for mammalian cell lines. The synthesized HAp powder further successfully used to develop porous scaffold material with suitable mechanical property of ~0.8GPa compressive stress, ~1.10 GPa a hardness and ~ 30-35% porosity which is acceptable for implantation in trauma region for animal model. The histological analysis also supports the bio-affinity of processed HAp biomaterials in Wistar rat model for investigating the contact reaction and stability at the artificial or natural prosthesis interface for biomedical function. This study suggests the natural sourced fish scale-derived HAp material could be used as a suitable alternative biomaterial for tissue engineering application in near future.

Keywords: biomaterials, hydroxyapatite, scaffold, mechanical property, tissue engineering

Procedia PDF Downloads 427
45 Metal-Based Anticancer Agents: In vitro DNA Binding, Cleavage and Cytotoxicity

Authors: Mala Nath, Nagamani Kompelli, Partha Roy, Snehasish Das

Abstract:

Two new metal-based anticancer chemotherapeutic agents, [(Ph2Sn)2(HGuO)2(phen)Cl2] 1 and [(Ph3Sn)(HGuO)(phen)]- Cl.CH3OH.H2O 2, were designed, prepared and characterized by analytical and spectral (IR, ESI-Mass, 1H, 13C and 119Sn NMR) techniques. The proposed geometry of Sn(IV) in 1 and 2 is distorted octahedral and distorted trigonal-bipyramidal, respectively. Both 1 and 2 exhibit potential cytotoxicity in vitro against MCF-7, HepG-2 and DU-145 cell lines. The intrinsic binding constant (Kb) values of 1 (2.33 × 105 M-1) and 2 (2.46 × 105 M-1) evaluated from UV-Visible absorption studies suggest non-classical electrostatic mode of interaction via phosphate backbone of DNA double helix. The Stern-Volmer quenching constant (Ksv) of 1 (9.74 × 105 M-1) and 2 (2.9 × 106 M-1) determined by fluorescence studies suggests the groove binding and intercalation mode for 1 and 2, respectively. Effective cleavage of pBR322 DNA is induced by 1. Their interaction with DNA of cancer cells may account for potency.

Keywords: anticancer agents, DNA binding studies, NMR spectroscopy, organotin

Procedia PDF Downloads 224
44 Diversity of Voices: Audio Visual Continuous Speech Recognition with Traditional Approach

Authors: Partha Protim Majumder, Sajeeb Das, Sharun Akter Khushbu

Abstract:

Bengali is widely spoken in the world, but Bengali speech recognition has not received much attention. Here, we are conducting the toughest task because it must be performed in a noisy place in our study. Another challenge we overcome is dealing with speeches and collecting data on third genders, and our approach is to recognize the gender in speeches. All of the Bangla speech samples used in this study were short and were taken from real-life situations. We employed the male, female, and third-gender categories of speech. In this study, we derive the feature from the spoken word. We used MFCC(1-20), ZCR,rolloff,spec_cen, RMSE, and chroma_stft. Here, we used the algorithms Gboost, Random Forest, K-Nearest Neighbors (KNN), Decision Tree, Naive Bayes, and Logistic Regression (LR) to assess the performance of recognition metrics, and we got the highest performance from random forest in recognizing the gender of the speeches.

Keywords: MFCC, ZCR, Bengali, LR, RMSE, roll-off, Gboost

Procedia PDF Downloads 30
43 Mobile Robot Manipulator Kinematics Motion Control Analysis with MATLAB/Simulink

Authors: Wayan Widhiada, Cok Indra Partha, Gusti Ngurah Nitya Santhiarsa

Abstract:

The purpose of this paper is to investigate the sophistication of the use of Proportional Integral and Derivative Control to control the kinematic motion of the mobile robot manipulator. Simulation and experimental methods will be used to investigate the sophistication of PID control to control the mobile robot arm in the collection and placement of several kinds of objects quickly, accurately and correctly. Mathematical modeling will be done by utilizing the integration of Solidworks and MATLAB / Simmechanics software. This method works by converting the physical model file into the xml file. This method is easy, fast and accurate done in modeling and design robotics. The automatic control design of this robot manipulator will be validated in simulations and experimental in control labs as evidence that the mobile robot manipulator gripper control design can achieve the best performance such as the error signal is lower than 5%, small overshoot and get steady signal response as quickly.

Keywords: control analysis, kinematics motion, mobile robot manipulator, performance

Procedia PDF Downloads 378
42 Quantum Technologies, the Practical Challenges to It, and Ideas to Build an Inclusive Quantum Platform, Shoonya Ecosystem (Zero-Point Energy)

Authors: Partha Pratim Kalita

Abstract:

As sound can be converted to light, light can also be deduced to sound. There are technologies to convert light to sound, but there are not many technologies related to the field where sound can be converted to a distinct vibrational sequence of light. Like the laws under which the principles of sound work, there are principles for the light to become quantum in nature. Thus, as we move from sound to the subtler aspects of light, we are moving from 3D to 5D. Either we will be making technologies of 3D in today’s world, or we will be really interested in making technologies of the 5D, depends on our understanding of how quantum 5D works. Right now, the entire world is talking about quantum, which is about the nature and behavior of subatomic particles, which is 5D. In practice, they are using metals and machines based on atomic structures. If we talk of quantum without taking note of the technologies of 5D and beyond, we will only be reinterpreting relative theories in the name of quantum. This paper, therefore, will explore the possibilities of moving towards quantum in its real essence with the Shoonya ecosystem (zero-point energy). In this context, the author shall highlight certain working models developed by him, which are currently in discussion with the Indian government.

Keywords: quantum mechanics, quantum technologies, healthcare, shoonya ecosystem, energy, human consciousness

Procedia PDF Downloads 159
41 Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method

Authors: Subhamita Chakraborty, Shubhabrata Datta, Sujay Kumar Mukherjea, Partha Protim Chattopadhyay

Abstract:

Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.

Keywords: simulation, modeling, thermal analysis, coil cooling, contact pressure, finite volume method

Procedia PDF Downloads 436
40 Parameter Estimation for the Oral Minimal Model and Parameter Distinctions Between Obese and Non-obese Type 2 Diabetes

Authors: Manoja Rajalakshmi Aravindakshana, Devleena Ghosha, Chittaranjan Mandala, K. V. Venkateshb, Jit Sarkarc, Partha Chakrabartic, Sujay K. Maity

Abstract:

Oral Glucose Tolerance Test (OGTT) is the primary test used to diagnose type 2 diabetes mellitus (T2DM) in a clinical setting. Analysis of OGTT data using the Oral Minimal Model (OMM) along with the rate of appearance of ingested glucose (Ra) is performed to study differences in model parameters for control and T2DM groups. The differentiation of parameters of the model gives insight into the behaviour and physiology of T2DM. The model is also studied to find parameter differences among obese and non-obese T2DM subjects and the sensitive parameters were co-related to the known physiological findings. Sensitivity analysis is performed to understand changes in parameter values with model output and to support the findings, appropriate statistical tests are done. This seems to be the first preliminary application of the OMM with obesity as a distinguishing factor in understanding T2DM from estimated parameters of insulin-glucose model and relating the statistical differences in parameters to diabetes pathophysiology.

Keywords: oral minimal model, OGTT, obese and non-obese T2DM, mathematical modeling, parameter estimation

Procedia PDF Downloads 65
39 An Efficient Activated Carbon for Copper (II) Adsorption Synthesized from Indian Gooseberry Seed Shells

Authors: Somen Mondal, Subrata Kumar Majumder

Abstract:

Removal of metal pollutants by efficient activated carbon is challenging research in the present-day scenario. In the present study, the characteristic features of an efficient activated carbon (AC) synthesized from Indian gooseberry seed shells for the copper (II) adsorption are reported. A three-step chemical activation method consisting of the impregnation, carbonization and subsequent activation is used to produce the activated carbon. The copper adsorption kinetics and isotherms onto the activated carbon were analyzed. As per present investigation, Indian gooseberry seed shells showed the BET surface area of 1359 m²/g. The maximum adsorptivity of the activated carbon at a pH value of 9.52 was found to be 44.84 mg/g at 30°C. The adsorption process followed the pseudo-second-order kinetic model along with the Langmuir adsorption isotherm. This AC could be used as a favorable and cost-effective copper (II) adsorbent in wastewater treatment to remove the metal contaminants.

Keywords: activated carbon, adsorption isotherm, kinetic model, characterization

Procedia PDF Downloads 127
38 Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid

Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal

Abstract:

In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index.

Keywords: electric double layer, finite volume method, flow behavior index, mixed electroosmotic/pressure driven flow, non-Newtonian power-law fluids, numerical simulation

Procedia PDF Downloads 282
37 Thermal End Effect on the Isotachophoretic Separation of Analytes

Authors: Partha P. Gopmandal, S. Bhattacharyya

Abstract:

We investigate the thermal end effect on the pseudo-steady state behavior of the isotachophoretic transport of ionic species in a 2-D microchannel. Both ends of the channel are kept at a constant temperature which may lead to significant changes in electrophoretic migration speed. A mathematical model based on Nernst-Planck equations for transport of ions coupled with the equation for temperature field is considered. In addition, the charge conservation equations govern the potential field due to the external electric field. We have computed the equations for ion transport, potential and temperature in a coupled manner through the finite volume method. The diffusive terms are discretized via central difference scheme, while QUICK (Quadratic Upwind Interpolation Convection Kinematics) scheme is used to discretize the convective terms. We find that the thermal end effect has significant effect on the isotachophoretic (ITP) migration speed of the analyte. Our result shows that the ITP velocity for temperature dependent case no longer varies linearly with the applied electric field. A detailed analysis has been made to provide a range of the key parameters to minimize the Joule heating effect on ITP transport of analytes.

Keywords: finite volume method, isotachophoresis, QUICK scheme, thermal effect

Procedia PDF Downloads 245
36 Effects of Thermal Radiation on Mixed Convection in a MHD Nanofluid Flow over a Stretching Sheet Using a Spectral Relaxation Method

Authors: Nageeb A. H. Haroun, Sabyasachi Mondal, Precious Sibanda

Abstract:

The effects of thermal radiation, Soret and Dufour parameters on mixed convection and nanofluid flow over a stretching sheet in the presence of a magnetic field are investigated. The flow is subject to temperature dependent viscosity and a chemical reaction parameter. It is assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modelled using systems of nonlinear differential equations which have been solved numerically using a spectral relaxation method. In addition to the discussion on heat and mass transfer processes, the velocity, nanoparticles volume fraction profiles as well as the skin friction coefficient are determined for different important physical parameters. A comparison of current findings with previously published results for some special cases of the problem shows an excellent agreement.

Keywords: non-isothermal wedge, thermal radiation, nanofluid, magnetic field, soret and dufour effects

Procedia PDF Downloads 208
35 Effect of pH-Dependent Surface Charge on the Electroosmotic Flow through Nanochannel

Authors: Partha P. Gopmandal, Somnath Bhattacharyya, Naren Bag

Abstract:

In this article, we have studied the effect of pH-regulated surface charge on the electroosmotic flow (EOF) through nanochannel filled with binary symmetric electrolyte solution. The channel wall possesses either an acidic or a basic functional group. Going beyond the widely employed Debye-Huckel linearization, we develop a mathematical model based on Nernst-Planck equation for the charged species, Poisson equation for the induced potential, Stokes equation for fluid flow. A finite volume based numerical algorithm is adopted to study the effect of key parameters on the EOF. We have computed the coupled governing equations through the finite volume method and our results found to be in good agreement with the analytical solution obtained from the corresponding linear model based on low surface charge condition or strong electrolyte solution. The influence of the surface charge density, reaction constant of the functional groups, bulk pH, and concentration of the electrolyte solution on the overall flow rate is studied extensively. We find the effect of surface charge diminishes with the increase in electrolyte concentration. In addition for strong electrolyte, the surface charge becomes independent of pH due to complete dissociation of the functional groups.

Keywords: electroosmosis, finite volume method, functional group, surface charge

Procedia PDF Downloads 376
34 Host-Assisted Delivery of a Model Drug to Genomic DNA: Key Information From Ultrafast Spectroscopy and in Silico Study

Authors: Ria Ghosh, Soumendra Singh, Dipanjan Mukherjee, Susmita Mondal, Monojit Das, Uttam Pal, Aniruddha Adhikari, Aman Bhushan, Surajit Bose, Siddharth Sankar Bhattacharyya, Debasish Pal, Tanusri Saha-Dasgupta, Maitree Bhattacharyya, Debasis Bhattacharyya, Asim Kumar Mallick, Ranjan Das, Samir Kumar Pal

Abstract:

Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ~652 s 1. However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner.

Keywords: DNA, drug delivery, micelle, pre-micelle, SDS, toluidine blue

Procedia PDF Downloads 67
33 Mineral Status of Feeds and Fodder and Its Subsequent Effect on Plasma of Livestock and Its Products in Red Lateritic Zone of West Bengal, India

Authors: S. K. Pyne, M. Mondal, G. Samanta

Abstract:

A survey was carried out in red lateritic zone of West Bengal to compare the mineral status in plasma of livestock grazing over red lateritic region. Sufficient number of samples of soil, feeds, fodder and blood were collected from four districts of red lateritic zone namely, West Midnapore, Birbhum, Bankura and Purulia respectively. The samples were analysed for Calcium (Ca), Phosphorus (P), Copper (Cu), Zinc (Zn), Manganese (Mn) and Iron (Fe). Concentration of Cu, Mn and Fe in soil were above the minimum critical level, whereas, Zn deficiency is wide spread in red lateritic soil. Paddy straw is deficient in Ca, P, Zn and Mn in the region. Green fodders are also deficient in P, Cu, Zn. The richness of iron (Fe) in soil, feeds, fodder and tree leaves is the characteristics of this region. Phosphorus is deficient in plasma of all categories of livestock with the exception of bullock. Cu is deficient in plasma of calf. Plasma Mn and Fe were higher (p<0.01) in the animals of red lateritic zone. The study reveals that the overall deficiency of phosphorus in different categories of livestock and there is need of dietary supplementation.

Keywords: mineral, red lateritic zone, grazing livestock, plasma

Procedia PDF Downloads 295
32 Dynamics of the Coupled Fitzhugh-Rinzel Neurons

Authors: Sanjeev Kumar Sharma, Arnab Mondal, Ranjit Kumar Upadhyay

Abstract:

Excitable cells often produce different oscillatory activities that help us to understand the transmitting and processing of signals in the neural system. We consider a FitzHugh-Rinzel (FH-R) model and studied the different dynamics of the model by considering the parameter c as the predominant parameter. The model exhibits different types of neuronal responses such as regular spiking, mixed-mode bursting oscillations (MMBOs), elliptic bursting, etc. Based on the bifurcation diagram, we consider the three regimes (MMBOs, elliptic bursting, and quiescent state). An analytical treatment for the occurrence of the supercritical Hopf bifurcation is studied. Further, we extend our study to a network of a hundred neurons by considering the bi-directional synaptic coupling between them. In this article, we investigate the alternation of spiking propagation and bursting phenomena of an uncoupled and coupled FH-R neurons. We explore that the complete graph of heterogenous desynchronized neurons can exhibit different types of bursting oscillations for certain coupling strength. For higher coupling strength, all the neurons in the network show complete synchronization.

Keywords: excitable neuron model, spiking-bursting, stability and bifurcation, synchronization networks

Procedia PDF Downloads 94
31 Engagement Analysis Using DAiSEE Dataset

Authors: Naman Solanki, Souraj Mondal

Abstract:

With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.

Keywords: computer vision, engagement prediction, deep learning, multi-level classification

Procedia PDF Downloads 88
30 Diffusion Dynamics of Leech-Heart Inter-Neuron Model

Authors: Arnab Mondal, Sanjeev Kumar Sharma, Ranjit Kumar Upadhyay

Abstract:

We study the spatiotemporal dynamics of a neuronal cable. The processes of one- dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage, i.e., membrane voltage diffusively interacts for spatiotemporal pattern formalism. The recovery and other variables interact through the membrane voltage. A 3D Leech-Heart (LH) model is introduced to investigate the nonlinear responses of an excitable neuronal cable. The deterministic LH model shows different types of firing properties. We explore the parameter space of the uncoupled LH model and based on the bifurcation diagram, considering v_k2_ashift as a bifurcation parameter, we analyze the 1D diffusion dynamics in three regimes: bursting, regular spiking, and a quiescent state. Depending on parameters, it is shown that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, it is explored a 2D diffusion acting on the membrane voltage, where different types of patterns can be observed. The results show that the LH neurons with different firing characteristics depending on the control parameters participate in a collective behavior of an information processing system that depends on the overall network.

Keywords: bifurcation, pattern formation, spatio-temporal dynamics, stability analysis

Procedia PDF Downloads 185
29 Characterization of Enterotoxigenic Escherichia coli CS6 Promoter

Authors: Mondal Indranil, Bhakat Debjyoti, Mukhopadayay Asish K., Chatterjee Nabendu S.

Abstract:

CS6 is the prevalent CF in our region and deciphering its molecular regulators would play a pivotal role in reducing the burden of ETEC pathogenesis. In prokaryotes, most of the genes are under the control of one operon and the promoter present upstream of the gene regulates the transcription of that gene. Here the promoter of CS6 was characterized by computational method and further analyzed by β-galactosidase assay and sequencing. Promoter constructs and deletions were prepared as required to analyze promoter activity. The effect of different additives on the CS6 promoter was analysed by the β-galactosidase assay. Bioinformatics analysis done by Softberry/BPROM predicted fur, lrp, and crp boxes, -10 and -35 region upstream of the CS6 gene. The promoter construction in no promoter plasmid pTL61T showed that region -573 to +1 is actually the promoter region as predicted. Sequential deletion of the region upstream of CS6 revealed that promoter activity remains the same when -573bp to -350bp is deleted. But after the deletion of the upstream region -350 bp to -255bp, promoter expression decreases drastically to 26%. Further deletion also decreases promoter activity up to a little range. So the region -355bp to -255bp holds the promoter sequence for the CS6 gene. Additives like iron, NaCl, etc., modulate promoter activity in a dose-dependent manner. From the promoter analysis, it can be said that the minimum region lies between -254 and +1. Important region(s) lies between -350 bp to -255 bp upstream in the promoter, which might have important elements needed to control CS6 gene expression.

Keywords: microbiology, promoter, colonization factor, ETEC

Procedia PDF Downloads 133
28 Systematic Study of Mutually Inclusive Influence of Temperature and Substitution on the Coordination Geometry of Co(II) in a Series of Coordination Polymer and Their Properties

Authors: Manasi Roy, Raju Mondal

Abstract:

During last two decades the synthesis and design of MOFs or novel coordination polymers (CPs) has flourished as an emerging area of research due to their role as functional materials. Accordingly, ten new cobalt-based MOFs have been synthesized using a simple bispyrazole ligand, 4,4′-methylene-bispyrazole (H2MBP), and isophthalic acid (H2IPA) and its four 5-substituted derivatives R-H2IPA (R = COOH, OH, tBu, NH2). The major aim of this study was to validate the mutual influence of temperature and substitutions on the final structural self-assembly. Five different isophthalic acid derivatives were used to study the influence of substituents while each reaction was carried out at two different temperatures to assess the temperature effect. A clear correlation was observed between the reaction temperature and the coordination number of the cobalt atoms which consequently changes the self assembly pattern. Another fact that the periodical change in coordination number did bring about some systematic changes in the structural network via secondary building unit selectivity. With the presence of a tunable cavity inside the network, and unsaturated metal centers, MOFs show highly encouraging photocatalytic degradation of toxic dye with a potential application in waste water purification. Another fascinating aspect of this work is the construction of magnetic coordination polymers with the occurrence of a not-so-common MCE behavior of cobalt-based MOF.

Keywords: MOFs, temperature effect, MCE, dye degradation

Procedia PDF Downloads 110
27 Hemoglobin Levels at a Standalone Dialysis Unit

Authors: Babu Shersad, Partha Banerjee

Abstract:

Reduction in haemoglobin levels has been implicated to be a cause for reduced exercise tolerance and cardiovascular complications of chronic renal diseases. Trends of hemoglobin levels in patients on haemodialysis could be an indicator of efficacy of hemodialysis and an indicator of quality of life in haemodialysis patients. In the UAE, the rate of growth (of patients on dialysis) is 10 to 15 per cent per year. The primary mode of haemodialysis in the region is based on in-patient hospital-based hemodialysis units. The increase in risk of cardiovascular and cerebrovascular morbidity as well as mortality in pre-dialysis Chronic Renal Disease has been reported. However, data on the health burden on haemodialysis in standalone dialysis facilities is very scarce. This is mainly due to the paucity of ambulatory centres for haemodialysis in the region. AMSA is the first center to offer standalone dialysis in the UAE and a study over a one year period was performed. Patient data was analyzed using a questionnaire for 45 patients with an average of 2.5 dialysis sessions per week. All patients were on chronic haemodialysis as outpatients. The trends of haemoglobin levels as an independent variable were evaluated. These trends were interpreted in comparison with other parameters of renal function (creatinine, uric acid, blood pressure and ferritin). Trends indicate an increase in hemoglobin levels with increased supplementation of iron and erythropoietin over time. The adequacy of hemodialysis shows improvement concomitantly. This, in turn, correlates with better patient outcomes and has a direct impact on morbidity and mortality. This study is a pilot study and further studies are indicated so that objective parameters can be studied and validated for hemodialysis in the region.

Keywords: haemodialysis, haemoglobin in haemodialysis, haemodialysis parameters, erythropoietic agents in haemodialysis

Procedia PDF Downloads 248
26 Contributing Factors Affecting the Safety in Construction Sites of Bangladesh

Authors: Farzana Rahman, Mohammed Hossain Ezaz, Dipak Halder, Proshanta Mondal

Abstract:

Site safety is an important function regardless of project size. A key goal, which must be met for a successful project, is to finish the project with a good safety record. Construction safety is an important issue in all over the world. Today, developed countries strictly follow the safety procedure to avoid any hazard, accident or fatality. However, for a least developed country like Bangladesh, still accidents and fatalities are quite high due to lack of safety management. With the increased volume of construction work in Bangladesh, the need for proper attention in safety issues has become essential for human, economic and other consideration. Recently lots of accidents are taking place in construction sites of Bangladesh causing severe injury to death to the workers and pedestrians. There are a number of reasons/factors that these high numbers are widespread to the construction industry that are not found in most other businesses. The objective of this research work is to identify and explore the various factor that affect the construction site safety in Bangladesh. A questionnaire surveys was conducted to the reputed construction companies of Bangladesh to examine the present safety situation in construction sites. Nine factors were selected for the survey. The finding shows that 78% of organizations’ from the respondents are conscious about the safety procedure and they usually provide safety measures for the workers. Promotion of safety measures at the working site results in a better working environment, higher productivity and greater contentment among the workers.

Keywords: construction sites, fatalities, safety issues, safety situation

Procedia PDF Downloads 533
25 Exploring Spin Reorientation Transition and Berry Curvature Driven Anomalous Hall Effect in Quasi-2D vdW Ferromagnet Fe4GeTe2

Authors: Satyabrata Bera, Mintu Mondal

Abstract:

Two-dimensional (2D) ferromagnetic materials have garnered significant attention due to their potential to host intriguing scientific phenomena such as the anomalous Hall effect, anomalous Nernst effect, and high transport spin polarization. This study focuses on the investigation of air-stable van der Waals(vdW) ferromagnets, FeGeTe₂ (FₙGT with n = 3, 4, and 5). Particular emphasis is placed on the Fe4GeTe2 (F4GT) compound, which exhibits a complex and fascinating magnetic behavior characterized by two distinct transitions: (i) paramagnetic (PM) to ferromagnetic (FM) around T C ∼ 270 K, and (ii) another spins reorientation transition (SRT) at T SRT ∼ 100 K . Scaling analysis of magnetocaloric effect confirms the second-order character of the ferromagnetic transition, while the same analysis at T SRT suggests that SRT is first-order phase transition. Moreover, the F4GT exhibits a large anomalous Hall conductivity (AHC), ∼ 490 S/cm at 2 K . The near-quadratic behavior of the anomalous Hall resistivity with the longitudinal resistivity suggests that a dominant AHC contribution arises from an intrinsic Berry curvature (BC) mechanism. Electronic structure calculations reveal a significant BC resulting from SOC-induced gapped nodal lines around the Fermi level, thereby giving rise to large AHC. Additionally, we reported exceptionally large anomalous Hall angle (≃ 10.6%) and Hall factor (≃ 0.22 V −1 ) values, the largest observed within this vdW family. The findings presented here, provide valuable insights into the fascinating magnetic and transport properties of 2D ferromagnetic materials, in particular, FₙGT family.

Keywords: 2D vdW ferromagnet, spin reorientation transition, anomalous hall effect, berry curvature

Procedia PDF Downloads 39
24 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI

Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De

Abstract:

Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.

Keywords: aquaculture farms, LULC, Mangrove, NDVI

Procedia PDF Downloads 146
23 An Economic Analysis of Bottled Drinking Water Industry in India

Authors: Swadhin Mondal

Abstract:

While safe drinking water is an effective defense against the infection of water borne diseases, a large number of populations suffering from these diseases do not have access to safe drinking water due inadequacy of supply. Private entrepreneurs entered this sector and made bottled drinking water available by supplying various kinds of bottled water. In this study we found that the bottled drinking water industry has experienced a spectacular growth over the past two decades and it has a huge growth potential because of rising demand for safe drinking. High profit margin (217 %) is the main attraction to the entrepreneur to invest in this industry. Health awareness, lack of safe drinking water facilities, rising income, urbanization, migration and rising trend in tourism industries are the major influencing factors of demand for bottled drinking water (BDW). This industry also partially fulfills the demand for drinking water. More than 2 percent of household’s demands were met by this industry and many more households (additional 4 percent) coping with BDW during water crisis. Poor households spend around 4 percent of their total monthly household’s consumption expenditure on BDW which may have an adverse impact on household because households could have spent this for purchasing other goods. Like other developed counties, a large section of Indian households are shifting from their traditional sources of water to BDW. However, there are some concerns about the quality of BDW. Many cases, BDW contains chemical toxins at more than permissible level that can be harmful for health. Hence, there is an urgent need for appropriate intervention to regulate price, reduce potential harm and improve the quality of water provided by this industry.

Keywords: drinking water, public health public failure, privatization, development, public policy

Procedia PDF Downloads 299