Search results for: underground mine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 597

Search results for: underground mine

117 Characterization of a Newfound Manganese Tungstate Mineral of Hübnerite in Turquoise Gemstone from Miduk Mine, Kerman, Iran

Authors: Zahra Soleimani Rad, Fariborz Masoudi, Shirin Tondkar

Abstract:

Turquoise is one of the most well-known gemstones in Iran. The mineralogy, crystallography, and gemology of Shahr-e-Babak turquoise in Kerman were investigated and the results are presented in this research. The Miduk porphyry copper deposit is positioned in the Shahr-Babak area in Kerman province, Iran. This deposit is located 85 km NW of the Sar-Cheshmeh porphyry copper deposit. Preliminary mineral exploration was carried out from 1967 to 1970. So far, more than fifty diamond drill holes, each reaching a maximum depth of 1013 meters, have provided evidence supporting the presence of significant and promising porphyry copper mineralization at the Miduk deposit. The mineral deposit harbors a quantity of 170 million metric tons of ore, characterized by a mean composition of 0.86% copper (Cu), 0.007% molybdenum (Mo), 82 parts-per-billion gold (Au), and 1.8 parts-per-million silver (Ag). The Supergene enrichment layer, which constitutes the predominant source of copper ore, exhibits an approximate thickness of 50 meters. Petrography shows that the texture is homogeneous. In terms of a gemstone, greasy luster and blue color are seen, and samples are similar to what is commonly known as turquoise. The geometric minerals were detected in XRD analysis by analyzing the data using the x-pert software. From the mineralogical point of view; the turquoise gemstones of Miduk of Kerman consist of turquoise, quartz, mica, and hübnerite. In this article, to our best knowledge, we are stating the hübnerite mineral identified and seen in the Persian turquoise. Based on the obtained spectra, the main mineral of the Miduk samples from the six members of the turquoise family is the turquoise type with identical peaks that can be used as a reference for identification of the Miduk turquoise. This mineral is structurally composed of phosphate units, units of Al, Cu, water, and hydroxyl units, and does not include a Fe unit. In terms of gemology, the quality of a gemstone depends on the quantity of the turquoise phase and the amount of Cu in it according to SEM and XRD analysis.

Keywords: turquoise, hübnerite, XRD analysis, Miduk, Kerman, Iran

Procedia PDF Downloads 41
116 Drippers Scaling Inhibition of the Localized Irrigation System by Green Inhibitors Based on Plant Extracts

Authors: Driouiche Ali, Karmal Ilham

Abstract:

The Agadir region is characterized by a dry climate, ranging from arid attenuated by oceanic influences to hyper-arid. The water mobilized in the agricultural sector of greater Agadir is 95% of underground origin and comes from the water table of Chtouka. The rest represents the surface waters of the Youssef Ben Tachfine dam. These waters are intended for the irrigation of 26880 hectares of modern agriculture. More than 120 boreholes and wells are currently exploited. Their depth varies between 10 m and 200 m and the unit flow rates of the boreholes are 5 to 50 l/s. A drop in the level of the water table of about 1.5 m/year, on average, has been observed during the last five years. Farmers are thus called upon to improve irrigation methods. Thus, localized or drip irrigation is adopted to allow rational use of water. The importance of this irrigation system is due to the fact that water is applied directly to the root zone and its compatibility with fertilization. However, this irrigation system faces a thorny problem which is the clogging of pipes and drippers. This leads to a lack of uniformity of irrigation over time. This so-called scaling phenomenon, the consequences of which are harmful (cleaning or replacement of pipes), leads to considerable unproductive expenditure. The objective set by this work is the search for green inhibitors likely to prevent this phenomenon of scaling. This study requires a better knowledge of these waters, their physico-chemical characteristics and their scaling power. Thus, using the "LCGE" controlled degassing technique, we initially evaluated, on pure calco-carbonic water at 30°F, the scaling-inhibiting power of some available plant extracts in our region of Souss-Massa. We then carried out a comparative study of the efficacy of these green inhibitors. The action of the most effective green inhibitor on real agricultural waters was then studied.

Keywords: green inhibitors, localized irrigation, plant extracts, scaling inhibition

Procedia PDF Downloads 59
115 Urban Water Logging Adversity: A Case Study on Disruption of Urban Landscape Due to Water Logging Problems and Probable Analytical Solutions for Urban Region on Port City Chittagong, Bangladesh

Authors: Md. Obidul Haque, Abbasi Khanm

Abstract:

Port city Chittagong, the commercial capital of Bangladesh, is flourished with fascinating topography and climatic context along with basic resources for livelihood; both shape this city and become living archives of its ecologies. Chittagong has been witnessing numerous urban development measures being taken by city development authority, though some of those seem incomplete because of lack of proper planning. Due to this unplanned trail, the blessings of nature have become the reason of sufferings for city dwellers. One of which is the water clogging due to heavy rainfall, seepage, high tide, absence of well-knit underground drainage system, and so on. The problem has reached such an extent that the first monsoon rain is enough to shut down the entire city and causing immense sufferings to livestock, specially most vulnerable groups such as children and office going people. Study shows that total discharge is higher than present drainage capacity of the canals, thus, resulting in overflow, as major channels are clogged up by dumping waste or illegal encroachment, which are supposed to flush out rain water. This paper aims to address natural and manmade causes behind urban water clogging, adverse socio-environmental hazardous effects, possibilities for probable solutions on basis of local people’s experience and rational urban planning and landscape architectural proposals such as facilitating well planned drainage system, along with waste management policies etc. which can be able to intervene in these movements to activate the mighty port city’s unfulfilled potentials.

Keywords: drainage, high-tide, urban storm water logging (USWL), urban planning, water management

Procedia PDF Downloads 308
114 Use of the Budyko Framework to Estimate the Virtual Water Content in Shijiazhuang Plain, North China

Authors: Enze Zhang

Abstract:

One of the most challenging steps in implementing virtual water content (VWC) analysis of crops is to get properly the total volume of consumptive water use (CWU) and, therefore, the choice of a reliable crop CWU estimation method. In practice, lots of previous researches obtaining CWU of crops follow a classical procedure for calculating crop evapotranspiration which is determined by multiplying reference evapotranspiration by appropriate coefficient, such as crop coefficient and water stress coefficients. However, this manner of calculation requires lots of field experimental data at point scale and more seriously, when current growing conditions differ from the standard conditions, may easily produce deviation between the calculated CWU and the actual CWU. Since evapotranspiration caused by crop planting always plays a vital role in surface water-energy balance in an agricultural region, this study decided to alternatively estimates crop evapotranspiration by Budyko framework. After brief introduce the development process of Budyko framework. We choose a modified Budyko framework under unsteady-state to better evaluated the actual CWU and apply it in an agricultural irrigation area in North China Plain which rely on underground water for irrigation. With the agricultural statistic data, this calculated CWU was further converted into VWC and its subdivision of crops at the annual scale. Results show that all the average values of VWC, VWC_blue and VWC_green show a downward trend with increased agricultural production and improved acreage. By comparison with the previous research, VWC calculated by Budyko framework agree well with part of the previous research and for some other research the value is greater. Our research also suggests that this methodology and findings may be reliable and convenient for investigation of virtual water throughout various agriculture regions of the world.

Keywords: virtual water content, Budyko framework, consumptive water use, crop evapotranspiration

Procedia PDF Downloads 312
113 Stability Evaluation on Accumulation Body of Reservoir Slope in Rumei Hydropower Station, China

Authors: Yaofei Jiang, Liangqing Wang, Yanjun Xu

Abstract:

In recent years, geological explorations have been carried out on the Rumei hydropower station, China. After preliminary analysis of results, the mainly problem of slope in reservoir area is about the stability of accumulation body. It is found that there are 23 accumulations in various sizes in the reservoir area, and most of them are unfavorable geological bodies. Three typical (No. 1, 7, 17) accumulation body slopes were selected as subjects to investigate the stability of the slopes. Take No. 1 accumulation body slope as an example and basic geological condition investigation and formation mechanism analysis were carried out to study the stability and geological analysis of engineering influence of the slope. The accumulation body in the research area distributes along the river with natural slope of 32° ~ 37° which is the natural angle of repose of gravel. The formation mechanism is analyzed based on the composition and structure of the accumulation body. The middle and lower part of the body is dense full of gravel soil mixed with a small amount of sand gravel which is stable. In the upper part, gravel soil is interbedded with bad cemented gravel which as a weak surface is not conducive to slope stability. Under the natural condition before storing water, the underground water level is deep buried, mainly distributed in the bedrock, and the surface and groundwater discharge conditions of the accumulation body are good, which is beneficial to the stability of slope. The safety coefficient calculated by the limit equilibrium method is 1.14, which indicates the slope is basically stable. However, the safety coefficient drops to 1.02 when the normal storage level is 2895m, which is in a dangerous state. The accumulation body will be destabilized by a small-area instability to large-scale or overall instability.

Keywords: accumulation body slope, stability evaluation, geological engineering investigation, effect of storing water

Procedia PDF Downloads 143
112 Gold-Bearing Alteration Zones in South Eastern Desert of Egypt: Geology and Remote Sensing Analysis

Authors: Mohamed F. Sadek, Safaa M. Hassan, Safwat S. Gabr

Abstract:

Several alteration zones hosting gold mineralization are wide spreading in the South Eastern Desert of Egypt where gold has been mined from many localities since the time of the Pharaohs. The Sukkari is the only mine currently producing gold in the Eastern Desert of Egypt. Therefore, it is necessary to conduct more detailed studies on these locations using modern exploratory methods. The remote sensing plays an important role in lithological mapping and detection of associated hydrothermal mineralization particularly the exploration of gold mineralization. This study is focused on three localities in South Eastern Desert of Egypt, namely Beida, Defiet and Hoteib-Eiqat aiming to detect the gold-bearing hydrothermal alteration zones using the integrated data of remote sensing, field study and mineralogical investigation. Generally, these areas are dominated by Precambrian basement rocks including metamorphic and magmatic assemblages. They comprise ophiolitic serpentinite-talc carbonate, island-arc metavolcanics which were intruded by syn to late orogenic mafic and felsic intrusions mainly gabbro, granodiorite and monzogranite. The processed data of Advanced Spaceborne Thermal Emission and Reflection (ASTER) and Landsat-8 images are used in the present study to map the gold bearing-hydrothermal alteration zones. Band rationing and principal component analysis techniques are used to discriminate the different lithologic units exposed in the studied three areas. Field study and mineralogical investigation have been used to verify the remote sensing data. This study concluded that, the integrated remote sensing data with geological, field and mineralogical investigations are very effective in lithological discrimination, detailed geological mapping and detection of the gold-bearing hydrothermal alteration zones. More detailed exploration for gold mineralization with the help of remote sensing techniques is recommended to evaluate its potentiality in the study areas.

Keywords: pan-african, Egypt, landsat-8; ASTER, gold, alteration zones

Procedia PDF Downloads 102
111 Groundwater Investigation Using Resistivity Method and Drilling for Irrigation during the Dry Season in Lwantonde District, Uganda

Authors: Tamale Vincent

Abstract:

Groundwater investigation is the investigation of underground formations to understand the hydrologic cycle, known groundwater occurrences, and identify the nature and types of aquifers. There are different groundwater investigation methods and surface geophysical method is one of the groundwater investigation more especially the Geoelectrical resistivity Schlumberger configuration method which provides valuable information regarding the lateral and vertical successions of subsurface geomaterials in terms of their individual thickness and corresponding resistivity values besides using surface geophysical method, hydrogeological and geological investigation methods are also incorporated to aid in preliminary groundwater investigation. Investigation for groundwater in lwantonde district has been implemented. The area project is located cattle corridor and the dry seasonal troubles the communities in lwantonde district of which 99% of people living there are farmers, thus making agriculture difficult and local government to provide social services to its people. The investigation was done using the Geoelectrical resistivity Schlumberger configuration method. The measurement point is located in the three sub-counties, with a total of 17 measurement points. The study location is at 0025S, 3110E, and covers an area of 160 square kilometers. Based on the results of the Geoelectrical information data, it was found two types of aquifers, which are open aquifers in depth ranging from six meters to twenty-two meters and a confined aquifer in depth ranging from forty-five meters to eighty meters. In addition to the Geoelectrical information data, drilling was done at an accessible point by heavy equipment in the Lwakagura village, Kabura sub-county. At the drilling point, artesian wells were obtained at a depth of eighty meters and can rise to two meters above the soil surface. The discovery of artesian well is then used by residents to meet the needs of clean water and for irrigation considering that in this area most wells contain iron content.

Keywords: artesian well, geoelectrical, lwantonde, Schlumberger

Procedia PDF Downloads 99
110 Uranium Migration Process: A Multi-Technique Investigation Strategy for a Better Understanding of the Role of Colloids

Authors: Emmanuelle Maria, Pierre Crançon, Gaëtane Lespes

Abstract:

The knowledge of uranium migration processes within underground environments is a major issue in the environmental risk assessment associated with nuclear activities. This process is identified as strongly controlled by adsorption mechanisms, thus leading to strongly delayed migration paths. Colloidal ligands are likely to significantly increase the mobility of uranium in natural environments. The ability of colloids to mobilize and transport uranium depends on their origin, their nature, their structure, their stability and their reactivity with uranium. Thus, the colloidal mobilization and transport properties are often described as site-specific. In this work, the colloidal phases of two leachates obtained from two different horizons of the same podzolic soil were characterized with a speciation approach. For this purpose, a multi-technique strategy was used, based on Field-Flow Fractionation coupled to Ultraviolet, Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry (AF4-UV-MALS-ICPMS), Transmission Electron Microscopy (TEM), Electrospray Ionization Orbitrap Mass Spectrometry (ESI-Orbitrap), and Time-Resolved Laser Fluorescence Spectroscopy (TRLFS-EEM). Thus, elemental composition, size distribution, microscopic structure, colloidal stability and possible organic and/or inorganic content of colloids were determined, as well as their association with uranium. The leachates exhibit differences in their physical and chemical characteristics, mainly in the nature of organic matter constituents. The multi-technique investigation strategy used provides original data about colloidal phase structure and composition, offering a new vision of the way the uranium can be mobilized and transported in the considered soil. This information is a real significant contribution opening the way to our understanding and predicting of the colloidal transport.

Keywords: colloids, migration, multi-technique, speciation, transport, uranium

Procedia PDF Downloads 119
109 Heavy Sulphide Material Characterization of Grasberg Block Cave Mine, Mimika, Papua: Implication for Tunnel Development and Mill Issue

Authors: Cahya Wimar Wicaksono, Reynara Davin Chen, Alvian Kristianto Santoso

Abstract:

Grasberg Cu-Au ore deposit as one of the biggest porphyry deposits located in Papua Province, Indonesia produced by several intrusion that restricted by Heavy Sulphide Zone (HSZ) in peripheral. HSZ is the rock that becomes the contact between Grassberg Igneous Complex (GIC) with sedimentary and igneous rock outside, which is rich in sulphide minerals such as pyrite ± pyrrhotite. This research is to obtain the characteristic of HSZ based on geotechnical, geochemical and mineralogy aspect and those implication for daily mining operational activities. Method used in this research are geological and alteration mapping, core logging, FAA (Fire Assay Analysis), AAS (Atomic absorption spectroscopy), RQD (Rock Quality Designation) and rock water content. Data generated from methods among RQD data, mineral composition and grade, lithological and structural geology distribution in research area. The mapping data show that HSZ material characteristics divided into three type based on rocks association, there are near igneous rocks, sedimentary rocks and on HSZ area. And also divided based on its location, north and south part of research area. HSZ material characteristic consist of rock which rich of pyrite ± pyrrhotite, and RQD range valued about 25%-100%. Pyrite ± pyrrhotite which outcropped will react with H₂O and O₂ resulting acid that generates corrosive effect on steel wire and rockbolt. Whereas, pyrite precipitation proses in HSZ forming combustible H₂S gas which is harmful during blasting activities. Furthermore, the impact of H₂S gas in blasting activities is forming poison gas SO₂. Although HSZ high grade Cu-Au, however those high grade Cu-Au rich in sulphide components which is affected in flotation milling process. Pyrite ± pyrrhotite in HSZ will chemically react with Cu-Au that will settle in milling process instead of floating.

Keywords: combustible, corrosive, heavy sulphide zone, pyrite ± pyrrhotite

Procedia PDF Downloads 306
108 Conception of Increasing the Efficiency of Excavation Shoring by Prestressing Diaphragm Walls

Authors: Mateusz Frydrych

Abstract:

The construction of diaphragm walls as excavation shoring as well as part of deep foundations is widely used in geotechnical engineering. Today's design challenges lie in the optimal dimensioning of the cross-section, which is demanded by technological considerations. Also in force is the issue of optimization and sustainable use of construction materials, including reduction of carbon footprint, which is currently a relevant challenge for the construction industry. The author presents the concept of an approach to achieving increased efficiency of diaphragm wall excavation shoring by using structural compression technology. The author proposes to implement prestressed tendons in a non-linear manner in the reinforcement cage. As a result bending moment is reduced, which translates into a reduction in the amount of steel needed in the section, a reduction in displacements, and a reduction in the scratching of the casing, including the achievement of better tightness. This task is rarely seen and has not yet been described in a scientific way in the literature. The author has developed a dynamic numerical model that allows the dimensioning of the cross-section of a prestressed shear wall, as well as the study of casing displacements and cross-sectional forces in any defined computational situation. Numerical software from the Sofistik - open source development environment - was used for the study, and models were validated in Plaxis software . This is an interesting idea that allows for optimizing the execution of construction works and reducing the required resources by using fewer materials and saving time. The author presents the possibilities of a prestressed diaphragm wall, among others, using. The example of a diaphragm wall working as a cantilever at the height of two underground floors without additional strutting or stability protection by using ground anchors. This makes the execution of the work more criminal for the contractor and, as a result, cheaper for the investor.

Keywords: prestressed diaphragm wall, Plaxis, Sofistik, innovation, FEM, optimisation

Procedia PDF Downloads 46
107 Flow Behavior of a ScCO₂-Stimulated Geothermal Reservoir under in-situ Stress and Temperature Conditions

Authors: B. L. Avanthi Isaka, P. G. Ranjith

Abstract:

The development of technically-sound enhanced geothermal systems (EGSs) is identified as a viable solution for world growing energy demand with immense potential, low carbon dioxide emission and importantly, as an environmentally friendly option for renewable energy production. The use of supercritical carbon dioxide (ScCO₂) as the working fluid in EGSs by replacing traditional water-based method is promising due to multiple advantages prevail in ScCO₂-injection for underground reservoir stimulation. The evolution of reservoir stimulation using ScCO₂ and the understanding of the flow behavior of a ScCO₂-stimulated geothermal reservoir is vital in applying ScCO₂-EGSs as a replacement for water-based EGSs. The study is therefore aimed to investigate the flow behavior of a ScCO₂-fractured rock medium at in-situ stress and temperature conditions. A series of permeability tests were conducted for ScCO₂ fractured Harcourt granite rock specimens at 90ºC, under varying confining pressures from 5–60 MPa using the high-pressure and high-temperature tri-axial set up which can simulate deep geological conditions. The permeability of the ScCO₂-fractured rock specimens was compared with that of water-fractured rock specimens. The results show that the permeability of the ScCO₂-fractured rock specimens is one order higher than that of water-fractured rock specimens and the permeability exhibits a non-linear reduction with increasing confining pressure due to the stress-induced fracture closure. Further, the enhanced permeability of the ScCO₂-induced fracture with multiple secondary branches was explained by exploring the CT images of the rock specimens. However, a single plain fracture was induced under water-based fracturing.

Keywords: supercritical carbon dioxide, fracture permeability, granite, enhanced geothermal systems

Procedia PDF Downloads 116
106 Increasing Power Transfer Capacity of Distribution Networks Using Direct Current Feeders

Authors: Akim Borbuev, Francisco de León

Abstract:

Economic and population growth in densely-populated urban areas introduce major challenges to distribution system operators, planers, and designers. To supply added loads, utilities are frequently forced to invest in new distribution feeders. However, this is becoming increasingly more challenging due to space limitations and rising installation costs in urban settings. This paper proposes the conversion of critical alternating current (ac) distribution feeders into direct current (dc) feeders to increase the power transfer capacity by a factor as high as four. Current trends suggest that the return of dc transmission, distribution, and utilization are inevitable. Since a total system-level transformation to dc operation is not possible in a short period of time due to the needed huge investments and utility unreadiness, this paper recommends that feeders that are expected to exceed their limits in near future are converted to dc. The increase in power transfer capacity is achieved through several key differences between ac and dc power transmission systems. First, it is shown that underground cables can be operated at higher dc voltage than the ac voltage for the same dielectric stress in the insulation. Second, cable sheath losses, due to induced voltages yielding circulation currents, that can be as high as phase conductor losses under ac operation, are not present under dc. Finally, skin and proximity effects in conductors and sheaths do not exist in dc cables. The paper demonstrates that in addition to the increased power transfer capacity utilities substituting ac feeders by dc feeders could benefit from significant lower costs and reduced losses. Installing dc feeders is less expensive than installing new ac feeders even when new trenches are not needed. Case studies using the IEEE 342-Node Low Voltage Networked Test System quantify the technical and economic benefits of dc feeders.

Keywords: DC power systems, distribution feeders, distribution networks, power transfer capacity

Procedia PDF Downloads 103
105 Lessons from Farmers Performing Agroforestry for Reclamation of Gold Mine Spoils in Colombia

Authors: Bibiana Betancur-Corredor, Juan Carlos Loaiza, Manfred Denich, Christian Borgemeister

Abstract:

Alluvial gold mining generates a vast amount of deposits that cover the natural soil and negatively impacts riverbeds and valleys, causing loss of livelihood opportunities for farmers of these regions. In Colombia, more than 79,000 ha are affected by alluvial gold mining, therefore developing strategies to return this land to productivity is of crucial importance for the country. A novel restoration strategy has been created by a mining company, where the land is restored through the establishment of agroforestry systems, in which agricultural crops and livestock are combined to complement reforestation in the area. The purpose of this study is to capture the knowledge of farmers who perform agroforestry in areas with deposits created by alluvial gold mining activities. Semi structured interviews were conducted with farmers with regard to the following: indicators of soil fertility, management practices, soil heterogeneity, pest outbreaks and weeds. In order to compare the perceptions of soil fertility of farmers with physicochemical properties of soils, the farmers were asked to identify spots within their farms that have exhibited good and poor yields. Soil samples were collected in order to correlate farmer’s perceptions with soil physicochemical properties. The findings suggest that the main challenge that farmers face is the identification of fertile soil for crop establishment. They identify the fertile soil through visually analyzing soil color and compaction as well as the use of spontaneous growth of specific plants as indicator of soil fertility. For less fertile areas, nitrogen fixing plants are used as green manure to restore soil fertility for crop establishment. The findings of this study imply that if gold mining is followed by reclamation practices that involve the successful establishment of productive farmlands, agricultural productivity of these lands might improve, increasing food security of the affected communities.

Keywords: agroforestry, knowledge, mining, restoration

Procedia PDF Downloads 205
104 Study of Biological Denitrification using Heterotrophic Bacteria and Natural Source of Carbon

Authors: Benbelkacem Ouerdia

Abstract:

Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from wastewater and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables the transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on the initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH.

Keywords: biofilm, carbon source, dates nodes, heterotrophic denitrification, nitrate, nitrite

Procedia PDF Downloads 456
103 Valorization of Dates Nodes as a Carbon Source Using Biological Denitrification

Authors: Ouerdia Benbelkacem Belouanas

Abstract:

Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from waste water and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH.

Keywords: biofilm, carbon source, dates nodes, heterotrophic denitrification, nitrate, nitrite

Procedia PDF Downloads 388
102 Effect of Climate Change Rate in Indonesia against the Shrinking Dimensions of Granules and Plasticity Index of Soils

Authors: Muhammad Rasyid Angkotasan

Abstract:

The soil is a dense granules and arrangement of the pores that are related to each other, so that the water can flow from one point which has higher energy to a point that has lower energy. The flow of water through the pores of the porous ground is urgently needed in water seepage estimates in ground water pumping problems, investigate for underground construction, as well as analyzing the stability of the construction of Weirs. Climate change resulted in long-term changes in the distribution of weather patterns are statistically throughout the period start time of decades to millions of years. In other words, changes in the average weather circumstances or a change in the distribution of weather events, on average, for example, the number of extreme weather events that increasingly a lot or a little. Climate change is limited to a particular regional or can occur in all regions of the Earth. Geographical location between two continents and two oceans and is located around the equator is klimatologis factor is the cause of flooding and drought in Indonesia. This caused Indonesia' geographical position is on a hemisphere with a tropical monsoon climate is very sensitive to climatic anomaly El Nino Southern Oscillation (ENSO). ENSO causes drought occurrence in sea surface temperature conditions in the Pacific Equator warms up to the middle part of the East (El Nino). Based on the analysis of the climate of the last 30 years show that there is a tendency, the formation of a new pattern of climate causes the onset of climate change. The impact of climate change on the occurrence of the agricultural sector is the bergesernya beginning of the dry season which led to the above-mentioned pattern planting due to drought. The impact of climate change (drought) which is very extreme in Indonesia affect the shrinkage dimensions grain land and reduced the value of a percentage of the soil Plasticity Index caused by climate change.

Keywords: climate change, soil shrinkage, plasticity index, shrinking dimensions

Procedia PDF Downloads 214
101 Sustainable Technologies for Decommissioning of Nuclear Facilities

Authors: Ahmed Stifi, Sascha Gentes

Abstract:

The German nuclear industry, while implementing the German policy, believes that the journey towards the green-field, namely phasing out of nuclear energy, should be achieved through green techniques. The most important techniques required for the wide range of decommissioning activities are decontamination techniques, cutting techniques, radioactivity measuring techniques, remote control techniques, techniques for worker and environmental protection and techniques for treating, preconditioning and conditioning nuclear waste. Many decontamination techniques are used for removing contamination from metal, concrete or other surfaces like the scales inside pipes. As the pipeline system is one of the important components of nuclear power plants, the process of decontamination in tubing is of more significance. The development of energy sectors like oil sector, gas sector and nuclear sector, since the middle of 20th century, increased the pipeline industry and the research in the decontamination of tubing in each sector is found to serve each other. The extraction of natural products and material through the pipeline can result in scale formation. These scales can be radioactively contaminated through an accumulation process especially in the petrochemical industry when oil and gas are extracted from the underground reservoir. The radioactivity measured in these scales can be significantly high and pose a great threat to people and the environment. At present, the decontamination process involves using high pressure water jets with or without abrasive material and this technology produces a high amount of secondary waste. In order to overcome it, the research team within Karlsruhe Institute of Technology developed a new sustainable method to carry out the decontamination of tubing without producing any secondary waste. This method is based on vibration technique which removes scales and also does not require any auxiliary materials. The outcome of the research project proves that the vibration technique used for decontamination of tubing is environmental friendly in other words a sustainable technique.

Keywords: sustainable technologies, decontamination, pipeline, nuclear industry

Procedia PDF Downloads 281
100 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House

Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal

Abstract:

Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.

Keywords: sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production

Procedia PDF Downloads 316
99 Humanity's Still Sub-Quantum Core-Self Intelligence

Authors: Andrew Shugyo Daijo Bonnici

Abstract:

Core-Self Intelligence (CSI) is an absolutely still, non-verbal, non-cerebral intelligence. Our still core-self intelligence is felt at our body's center point of gravity, just an inch below our navel, deep within our lower abdomen. The still sub-quantum depth of core-Self remains untouched by the conditioning influences of family, society, culture, religion, and spiritual views that shape our personalities and ego-self identities. As core-Self intelligence is inborn and unconditioned, it exists within all human beings regardless of age, race, color, creed, mental acuity, or national origin. Our core-self intelligence functions as a wise and compassionate guide that advances our health and well-being, our mental clarity and emotional resiliency, our fearless peace and behavioral wisdom, and our ever-deepening compassion for self and others. Although our core-Self, with its absolutely still non-judgmental intelligence, operates far beneath the functioning of our ego-self identity and our thinking mind, it effectively coexists with our passing thoughts, all of our figuring and thinking, our logical and rational way of knowing, the ebb and flow of our feelings, and the natural or triggered emergence of our emotions. When we allow our whole inner somatic awareness to gently sink into the intelligent center point of gravity within our lower abdomen, the felt arising of our core- Self’s inborn stillness has a serene and relaxing effect on our ego-self and thinking mind. It naturally slows down the speedy passage of our involuntary thoughts, diminishes our ego-self's defensive and reactive functioning, and decreases narcissistic reflections on I, me, and mine. All of these healthy cognitive benefits advance our innate wisdom and compassion, facilitate our personal and interpersonal growth, and liberate the ever-fresh wonder and curiosity of our beginner's heartmind. In conclusion, by studying, exploring, and researching our core-Self intelligence, psychologists and psychotherapists can unlock new avenues for advancing the farther reaches of our mental, emotional, and spiritual health and well-being, our innate behavioral wisdom and boundless empathy, our lucid compassion for self and others, and our unwavering confidence in the still guiding light of our core-Self that exists at the abdominal center point of all human beings.

Keywords: intelligence, transpersonal, beginner’s heartmind, compassionate wisdom

Procedia PDF Downloads 36
98 The Effects of Green Manure Returning on Properties and Fungal Communities in Vanadium/Titanium Magnet Tailings

Authors: Hai-Hong Gu, Yan-Jun Ai, Zheng Zhou

Abstract:

Vanadium and titanium are rare metals with superior properties and are important resources in aerospace, aviation, and military. The vanadium/titanium magnetite are mostly ultra-lean ores, and a large number of tailings has been produced in the exploitation process. The tailings are characterized by loose structure, poor nutrient, complex composition and high trace metal contents. Returning green manure has been shown to not only increase plant biomass and soil nutrients but also change the bioavailability of trace metals and the microbial community structure. Fungi play an important role in decomposing organic matter and increasing soil fertility, and the application of organic matter also affects the community structure of fungi. The effects of green manure plants, alfalfa (Medicago sativa L.), returned to the tailings in situ on community structure of fungi, nutrients and bioavailability of trace metals in vanadium/titanium magnetite tailings were investigated in a pot experiment. The results showed that the fungal community diversity and richness were increase after alfalfa green manure returned in situ. The dominant phyla of the fungal community were Ascomycota, Basidiomycota and Ciliophora, especially, the phyla Ciliophora was rare in ordinary soil, but had been found to be the dominant phyla in tailings. Meanwhile, the nutrient properties and various trace metals may shape the microbial communities by affecting the abundance of fungi. It was found that the plant growth was stimulated and the available N and organic C were significantly improved in the vanadium/titanium magnetite tailing with the long-term returning of alfalfa green manure. Moreover, the DTPA-TEA extractable Cd and Zn concentrations in the vanadium/titanium magnetite tailing were reduced by 7.72%~23.8% and 8.02%~24.4%, respectively, compared with those in the non-returning treatment. The above results suggest that the returning of alfalfa green manure could be a potential approach to improve fungal community structure and restore mine tailing ecosystem.

Keywords: fungal community, green manure returning, vanadium/titanium magnet tailings, trace metals

Procedia PDF Downloads 40
97 The Influence of Bentonite on the Rheology of Geothermal Grouts

Authors: A. N. Ghafar, O. A. Chaudhari, W. Oettel, P. Fontana

Abstract:

This study is a part of the EU project GEOCOND-Advanced materials and processes to improve performance and cost-efficiency of shallow geothermal systems and underground thermal storage. In heat exchange boreholes, to improve the heat transfer between the pipes and the surrounding ground, the space between the pipes and the borehole wall is normally filled with geothermal grout. Traditionally, bentonite has been a crucial component in most commercially available geothermal grouts to assure the required stability and impermeability. The investigations conducted in the early stage of this project during the benchmarking tests on some commercial grouts showed considerable sensitivity of the rheological properties of the tested grouts to the mixing parameters, i.e., mixing time and velocity. Further studies on this matter showed that bentonite, which has been one of the important constituents in most grout mixes, was probably responsible for such behavior. Apparently, proper amount of shear should be applied during the mixing process to sufficiently activate the bentonite. The higher the amount of applied shear the more the activation of bentonite, resulting in change in the grout rheology. This explains why, occasionally in the field applications, the flow properties of the commercially available geothermal grouts using different mixing conditions (mixer type, mixing time, mixing velocity) are completely different than expected. A series of tests were conducted on the grout mixes, with and without bentonite, using different mixing protocols. The aim was to eliminate/reduce the sensitivity of the rheological properties of the geothermal grouts to the mixing parameters by replacing bentonite with polymeric (non-clay) stabilizers. The results showed that by replacing bentonite with a proper polymeric stabilizer, the sensitivity of the grout mix on mixing time and velocity was to a great extent diminished. This can be considered as an alternative for the developers/producers of geothermal grouts to provide enhanced materials with less uncertainty in obtained results in the field applications.

Keywords: flow properties, geothermal grout, mixing time, mixing velocity, rheological properties

Procedia PDF Downloads 104
96 Construction Strategy of Urban Public Space in Driverless Era

Authors: Yang Ye, Hongfei Qiu, Yaqi Li

Abstract:

The planning and construction of traditional cities are oriented by cars, which leads to the problems of insufficient urban public space, fragmentation, and low utilization efficiency. With the development of driverless technology, the urban structure will change from the traditional single-core grid structure to the multi-core model. In terms of traffic organization, with the release of land for traffic facilities, public space will become more continuous and integrated with traffic space. In the context of driverless technology, urban public reconstruction is characterized by modularization and high efficiency, and its planning and layout features accord with points (service facilities), lines (smart lines), surfaces (activity centers). The public space of driverless urban roads will provide diversified urban public facilities and services. The intensive urban layout makes the commercial public space realize the functions of central activities and style display, respectively, in the interior (building atrium) and the exterior (building periphery). In addition to recreation function, urban green space can also utilize underground parking space to realize efficient dispatching of shared cars. The roads inside the residential community will be integrated into the urban landscape, providing conditions for the community public activity space with changing time sequence and improving the efficiency of space utilization. The intervention of driverless technology will change the thinking of traditional urban construction and turn it into a human-oriented one. As a result, urban public space will be richer, more connected, more efficient, and the urban space justice will be optimized. By summarizing the frontier research, this paper discusses the impact of unmanned driving on cities, especially urban public space, which is beneficial for landscape architects to cope with the future development and changes of the industry and provides a reference for the related research and practice.

Keywords: driverless, urban public space, construction strategy, urban design

Procedia PDF Downloads 89
95 Study of the Transport of ²²⁶Ra Colloidal in Mining Context Using a Multi-Disciplinary Approach

Authors: Marine Reymond, Michael Descostes, Marie Muguet, Clemence Besancon, Martine Leermakers, Catherine Beaucaire, Sophie Billon, Patricia Patrier

Abstract:

²²⁶Ra is one of the radionuclides resulting from the disintegration of ²³⁸U. Due to its half-life (1600 y) and its high specific activity (3.7 x 1010 Bq/g), ²²⁶Ra is found at the ultra-trace level in the natural environment (usually below 1 Bq/L, i.e. 10-13 mol/L). Because of its decay in ²²²Rn, a radioactive gas with a shorter half-life (3.8 days) which is difficult to control and dangerous for humans when inhaled, ²²⁶Ra is subject to a dedicated monitoring in surface waters especially in the context of uranium mining. In natural waters, radionuclides occur in dissolved, colloidal or particular forms. Due to the size of colloids, generally ranging between 1 nm and 1 µm and their high specific surface areas, the colloidal fraction could be involved in the transport of trace elements, including radionuclides in the environment. The colloidal fraction is not always easy to determine and few existing studies focus on ²²⁶Ra. In the present study, a complete multidisciplinary approach is proposed to assess the colloidal transport of ²²⁶Ra. It includes water sampling by conventional filtration (0.2µm) and the innovative Diffusive Gradient in Thin Films technique to measure the dissolved fraction (<10nm), from which the colloidal fraction could be estimated. Suspended matter in these waters were also sampled and characterized mineralogically by X-Ray Diffraction, infrared spectroscopy and scanning electron microscopy. All of these data, which were acquired on a rehabilitated former uranium mine, allowed to build a geochemical model using the geochemical calculation code PhreeqC to describe, as accurately as possible, the colloidal transport of ²²⁶Ra. Colloidal transport of ²²⁶Ra was found, for some of the sampling points, to account for up to 95% of the total ²²⁶Ra measured in water. Mineralogical characterization and associated geochemical modelling highlight the role of barite, a barium sulfate mineral well known to trap ²²⁶Ra into its structure. Barite was shown to be responsible for the colloidal ²²⁶Ra fraction despite the presence of kaolinite and ferrihydrite, which are also known to retain ²²⁶Ra by sorption.

Keywords: colloids, mining context, radium, transport

Procedia PDF Downloads 131
94 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning

Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan

Abstract:

The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.

Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass

Procedia PDF Downloads 92
93 “It Isn’t a State Problem”: The Minas Conga Mine Controversy and Exemplifying the Need for Binding International Obligations on Corporate Actors

Authors: Cindy Woods

Abstract:

After years of implacable neoliberal globalization, multinational corporations have moved from the periphery to the center of the international legal agenda. Human rights advocates have long called for greater corporate accountability in the international arena. The creation of the Global Compact in 2000, while aimed at fostering greater corporate respect for human rights, did not silence these calls. After multiple unsuccessful attempts to adopt a set of norms relating to the human rights responsibilities of transnational corporations, the United Nations succeeded in 2008 with the Guiding Principles on Business and Human Rights (Guiding Principles). The Guiding Principles, praised by some within the international human rights community for their recognition of an individual corporate responsibility to respect human rights, have not escaped their share of criticism. Many view the Guiding Principles to be toothless, failing to directly impose obligations upon corporations, and call for binding international obligations on corporate entities. After decades of attempting to promulgate human rights obligations for multinational corporations, the existing legal frameworks in place fall short of protecting individuals from the human rights abuses of multinational corporations. The Global Compact and Guiding Principles are proof of the United Nations’ unwillingness to impose international legal obligations on corporate actors. In June 2014, the Human Rights Council adopted a resolution to draft international legally binding human rights norms for business entities; however, key players in the international arena have already announced they will not cooperate with such efforts. This Note, through an overview of the existing corporate accountability frameworks and a study of Newmont Mining’s Minas Conga project in Peru, argues that binding international human rights obligations on corporations are necessary to fully protect human rights. Where states refuse to or simply cannot uphold their duty to protect individuals from transnational businesses’ human rights transgressions, there must exist mechanisms to pursue justice directly against the multinational corporation.

Keywords: business and human rights, Latin America, international treaty on business and human rights, mining, human rights

Procedia PDF Downloads 482
92 Surface Tension and Bulk Density of Ammonium Nitrate Solutions: A Molecular Dynamics Study

Authors: Sara Mosallanejad, Bogdan Z. Dlugogorski, Jeff Gore, Mohammednoor Altarawneh

Abstract:

Ammonium nitrate (NH­₄NO₃, AN) is commonly used as the main component of AN emulsion and fuel oil (ANFO) explosives, that use extensively in civilian and mining operations for underground development and tunneling applications. The emulsion formulation and wettability of AN prills, which affect the physical stability and detonation of ANFO, highly depend on the surface tension, density, viscosity of the used liquid. Therefore, for engineering applications of this material, the determination of density and surface tension of concentrated aqueous solutions of AN is essential. The molecular dynamics (MD) simulation method have been used to investigate the density and the surface tension of high concentrated ammonium nitrate solutions; up to its solubility limit in water. Non-polarisable models for water and ions have carried out the simulations, and the electronic continuum correction model (ECC) uses a scaling of the charges of the ions to apply the polarisation implicitly into the non-polarisable model. The results of calculated density and the surface tension of the solutions have been compared to available experimental values. Our MD simulations show that the non-polarisable model with full-charge ions overestimates the experimental results while the reduce-charge model for the ions fits very well with the experimental data. Ions in the solutions show repulsion from the interface using the non-polarisable force fields. However, when charges of the ions in the original model are scaled in line with the scaling factor of the ECC model, the ions create a double ionic layer near the interface by the migration of anions toward the interface while cations stay in the bulk of the solutions. Similar ions orientations near the interface were observed when polarisable models were used in simulations. In conclusion, applying the ECC model to the non-polarisable force field yields the density and surface tension of the AN solutions with high accuracy in comparison to the experimental measurements.

Keywords: ammonium nitrate, electronic continuum correction, non-polarisable force field, surface tension

Procedia PDF Downloads 192
91 Mapping and Database on Mass Movements along the Eastern Edge of the East African Rift in Burundi

Authors: L. Nahimana

Abstract:

The eastern edge of the East African Rift in Burundi shows many mass movement phenomena corresponding to landslides, mudflow, debris flow, spectacular erosion (mega-gully), flash floods and alluvial deposits. These phenomena usually occur during the rainy season. Their extent and consecutive damages vary widely. To manage these phenomena, it is necessary to adopt a methodological approach of their mapping with a structured database. The elements for this database are: three-dimensional extent of the phenomenon, natural causes and conditions (geological lithology, slope, weathering depth and products, rainfall patterns, natural environment) and the anthropogenic factors corresponding to the various human activities. The extent of the area provides information about the possibilities and opportunities for mitigation technique. The lithological nature allows understanding the influence of the nature of the rock and its structure on the intensity of the weathering of rocks, as well as the geotechnical properties of the weathering products. The slope influences the land stability. The intensity of annual, monthly and daily rainfall helps to understand the conditions of water saturation of the terrains. Certain natural circumstances such as the presence of streams and rivers promote foot slope erosion and thus the occurrence and activity of mass movements. The construction of some infrastructures such as new roads and agglomerations deeply modify the flow of surface and underground water followed by mass movements. Using geospatial data selected on the East African Rift in Burundi, it is presented case of mass movements illustrating the nature, importance, various factors and the extent of the damages. An analysis of these elements for each hazard can guide the options for mitigation of the phenomenon and its consequences.

Keywords: mass movement, landslide, mudflow, debris flow, spectacular erosion, mega-gully, flash flood, alluvial deposit, East African rift, Burundi

Procedia PDF Downloads 280
90 Evaluation of Molasses and Sucrose as Cabohydrate Sources for Biofloc System on Nile Tilapia (Oreochromis niloticus) Performances

Authors: A. M. Nour, M. A. Zaki, E. A. Omer, Nourhan Mohamed

Abstract:

Performances of mixed-sex Nile tilapia (Oreochromis niloticus) fingerlings (11.33 ± 1.78 g /fish) reared under biofloc system developed by molasses and sucrose as carbon sources in indoor fiberglass tanks were evaluated. Six indoor fiberglass tanks (1m 3 each filled with 1000 l of underground fresh water), each was stocked with 2kg fish were used for 14 weeks experimental period. Three experimental groups were designed (each group 2 tanks) as following: 1-control: 20% daily without biofloc, 2-zero water exchange rate with biofloc (molasses as C source) and 3-zero water exchange rate with biofloc (sucrose as C source). Fish in all aquariums were fed on floating feed pellets (30% crude protein, 3 mm in diameter) at a rate of 3% of the actual live fish body, 3 times daily and 6 days a week. Carbohydrate supplementations were applied daily to each tank two hrs, after feeding to maintain the carbon: nitrogen ratio (C: N) ratio 20:1. Fish were reared under continuous aeration by pumping air into the water in the tank bottom using two sandy diffusers and constant temperature between 27.0-28.0 ºC by using electrical heaters for 10 weeks. Criteria's for assessment of water quality parameters, biofloc production and fish growth performances were collected and evaluated. The results showed that total ammonia nitrogen in control group was higher than biofloc groups. The biofloc volumes were 19.13 mg/l and 13.96 mg/l for sucrose and molasses, respectively. Biofloc protein (%), ether extract (%) and gross energy (kcal/100g DM), they were higher in biofloc molasses group than biofloc sucrose group. Tilapia growth performances were significantly higher (P < 0.05) with molasses group than in sucrose and control groups, respectively. The highest feed and nutrient utilization values for protein efficiency ratio (PER), protein productive (PPV%) and energy utilization (EU, %) were higher in molasses group followed by sucrose group and control group respectively.

Keywords: biofloc, Nile tilapia, cabohydrates, performances

Procedia PDF Downloads 165
89 Improvement of the Q-System Using the Rock Engineering System: A Case Study of Water Conveyor Tunnel of Azad Dam

Authors: Sahand Golmohammadi, Sana Hosseini Shirazi

Abstract:

Because the status and mechanical parameters of discontinuities in the rock mass are included in the calculations, various methods of rock engineering classification are often used as a starting point for the design of different types of structures. The Q-system is one of the most frequently used methods for stability analysis and determination of support systems of underground structures in rock, including tunnel. In this method, six main parameters of the rock mass, namely, the rock quality designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja), joint water parameter (Jw) and stress reduction factor (SRF) are required. In this regard, in order to achieve a reasonable and optimal design, identifying the effective parameters for the stability of the mentioned structures is one of the most important goals and the most necessary actions in rock engineering. Therefore, it is necessary to study the relationships between the parameters of a system and how they interact with each other and, ultimately, the whole system. In this research, it has attempted to determine the most effective parameters (key parameters) from the six parameters of rock mass in the Q-system using the rock engineering system (RES) method to improve the relationships between the parameters in the calculation of the Q value. The RES system is, in fact, a method by which one can determine the degree of cause and effect of a system's parameters by making an interaction matrix. In this research, the geomechanical data collected from the water conveyor tunnel of Azad Dam were used to make the interaction matrix of the Q-system. For this purpose, instead of using the conventional methods that are always accompanied by defects such as uncertainty, the Q-system interaction matrix is coded using a technique that is actually a statistical analysis of the data and determining the correlation coefficient between them. So, the effect of each parameter on the system is evaluated with greater certainty. The results of this study show that the formed interaction matrix provides a reasonable estimate of the effective parameters in the Q-system. Among the six parameters of the Q-system, the SRF and Jr parameters have the maximum and minimum impact on the system, respectively, and also the RQD and Jw parameters have the maximum and minimum impact on the system, respectively. Therefore, by developing this method, we can obtain a more accurate relation to the rock mass classification by weighting the required parameters in the Q-system.

Keywords: Q-system, rock engineering system, statistical analysis, rock mass, tunnel

Procedia PDF Downloads 43
88 A Review on Investigating the Relations between Water Harvesting and Water Conflicts

Authors: B. Laurita

Abstract:

The importance of Water Harvesting (WH) as an effective mean to deal with water scarcity is universally recognized. The collection and storage of rainwater, floodwater or quick runoff and their conversion to productive uses can ensure water availability for domestic and agricultural use, enabling a lower exploitation of the aquifer, preventing erosion events and providing significant ecosystem services. At the same time, it has been proven that it can reduce the insurgence of water conflicts if supported by a cooperative process of planning and management. On the other hand, the construction of water harvesting structures changes the hydrological regime, affecting upstream-downstream dynamics and changing water allocation, often causing contentions. Furthermore, dynamics existing between water harvesting and water conflict are not properly investigated yet. Thus, objective of this study is to analyze the relations between water harvesting and the insurgence of water conflicts, providing a solid theoretical basis and foundations for future studies. Two search engines were selected in order to perform the study: Google Scholar and Scopus. Separate researches were conducted on the mutual influences between water conflicts and the four main water harvesting techniques: rooftop harvesting, surface harvesting, underground harvesting, runoff harvesting. Some of the aforementioned water harvesting techniques have been developed and implemented on scales ranging from the small, household-sided ones, to gargantuan dam systems. Instead of focusing on the collisions related to large-scale systems, this review is aimed to look for and collect examples of the effects that the implementation of small water harvesting systems has had on the access to the water resource and on water governance. The present research allowed to highlight that in the studies that have been conducted up to now, water harvesting, and in particular those structures that allow the collection and storage of water for domestic use, is usually recognized as a positive, palliative element during contentions. On the other hand, water harvesting can worsen and, in some cases, even generate conflicts for water management. This shows the necessity of studies that consider both benefits and negative influences of water harvesting, analyzing its role respectively as triggering or as mitigating factor of conflicting situations.

Keywords: arid areas, governance, water conflicts, water harvesting

Procedia PDF Downloads 176