Search results for: ultrafine particles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1719

Search results for: ultrafine particles

1419 Comprehensive Microstructural and Thermal Analysis of Nano Intumescent Fire Retardant Coating for Structural Applications

Authors: Hammad Aziz

Abstract:

Intumescent fire retardant coating (IFRC) is applied on the surface of material requiring fire protection. In this research work, IFRC’s were developed using ammonium polyphosphate, expandable graphite, melamine, boric acid, zinc borate, mica, magnesium oxide, and bisphenol A BE-188 with polyamide polyamine H-4014 as curing agent. Formulations were prepared using nano size MgO and compared with control formulation i.e. without nano size MgO. Small scale hydrocarbon fire test was conducted to scrutinize the thermal performance of the coating. Char and coating were further characterized by using FESEM, FTIR, EDS, TGA and DTGA. Thus, Intumescent coatings reinforced with 2 wt. % of nano-MgO (rod shaped particles) provide superior thermal performance and uniform microstructure of char due to well dispersion of nano particles.

Keywords: intumescent coating, char, SEM, TGA

Procedia PDF Downloads 398
1418 Effectiveness of Jute Geotextiles for Hill Slope Stabilization in Adverse Climatic Condition

Authors: Pradip Choudhury, Tapobrata Sanyal

Abstract:

Effectiveness of Jute Geotextiles (JGT) in hill slope management now stands substantiated. The reasons of its efficacy are attributed to its bio-degradability, hygroscopic property and its thickness. Usually open weave JGT is used for slope management. Thickness of JGT helps in reducing the velocity of surface run-off, thus curbing the extent of migration of soil particles detached as a result of kinetic energy of rain-drops and also of wind effects. Initially JGT acts as cover of the surface of slope thus protect movement of loose soil particles. Hygroscopic property of jute effects overland storage of the flow. JGT acts as mulch and creates a congenial micro-climate that fosters quick growth of vegetation on bio-degradation. In fact JGT plays an important role in bio-remediation of slope-erosion problems. Considering the environmental aftermath, JGT is the preferred option in developed countries for surface soil conservation against erosion. In India JGT has not been tried in low temperature zones at high altitudes where temperature goes below the freezing point (even below - 25° Celsius). The behavior of JGT in such low-temperature zones is not precisely known. The 16th BRTF of Project Himank of Border Roads Organization (BRO) has recently taken the initiative to try two varieties of JGT , ie, 292 gsm and 500 gsm at two different places for hill slope management in Leh, a high altitude place of about 2,660 mtrs and 4900 mtrs above MSL respectively in Jammu & Kashmir where erosion is caused more as a result of rapid movement of sand particles due to high wind (wind erosion. Soil particles of the region formed naturally by weathering of fragile rocks are usually loosely bonded (non-cohesive), undergo dissociation with the rise in wind force and kinetic energy of rain drops and are blown away by wind. Open weave JGT interestingly was observed to contain the dissociated soil particles within its pores and lend stability the affected soil mass to a great extent thus preventing its movement by extraneous agents such as wind. The paper delineates about climatic factors, type of JGT used and the prevailing site conditions with an attempt to analyze the mechanism of functioning of JGT in low temperature zones.

Keywords: climate, erosion, jutegeotextile, stabilize

Procedia PDF Downloads 401
1417 Impact of Microwave Heating Temperatures on the Pharmaceutical Powder Characteristics

Authors: Maha Al-Ali, Selvakannan Periasamy, Rajarathinam Parthasarathy

Abstract:

Drying temperature is an important factor impacting the physicochemical properties of the dried materials, particularly the pharmaceutical powders. Drying of pharmaceuticals by using microwave radiation is very limited, and the available information about the interaction between the electromagnetic radiations and the pharmaceutical material is still scarce. Therefore, microwave drying process is employed in this work to dry the wet (moisturised) granules of the formulated naproxen-sodium drug. This study aims to investigate the influences of the microwave radiation temperatures on the moisture removal, the crystalline structure, the size and morphology of the dried naproxen-sodium particles, and identify any potential changes in the chemical groups of the drug. In this work, newly formulated naproxen-sodium is prepared and moisturized by wet granulation process and hence dried by using microwave radiation at different temperatures. Moisture analyzer, Fourier-transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscope are used to characterise the non-moisturised powder (reference powder), the moisturised granules, and the dried particles. The results show that microwave drying of naproxen-sodium at high drying temperature is more efficient than that at low temperatures in terms of the moisture removal. Although there is no significant change in the chemical structure of the dried particles, the particle size, crystallinity and morphology are relatively changed with changing of heating temperature.

Keywords: heating temperature, microwave drying, naproxen-sodium, particle size

Procedia PDF Downloads 127
1416 Designing State Feedback Multi-Target Controllers by the Use of Particle Swarm Optimization Algorithm

Authors: Seyedmahdi Mousavihashemi

Abstract:

One of the most important subjects of interest in researches is 'improving' which result in various algorithms. In so many geometrical problems we are faced with target functions which should be optimized. In group practices, all the functions’ cooperation lead to convergence. In the study, the optimization algorithm of dense particles is used. Usage of the algorithm improves the given performance norms. The results reveal that usage of swarm algorithm for reinforced particles in designing state feedback improves the given performance norm and in optimized designing of multi-target state feedback controlling, the network will maintain its bearing structure. The results also show that PSO is usable for optimization of state feedback controllers.

Keywords: multi-objective, enhanced, feedback, optimization, algorithm, particle, design

Procedia PDF Downloads 468
1415 Improving the Dissolution Rate of Folic Acid via the Antisolvent Vapour Precipitation

Authors: J. Y. Tan, L. C. Lum, M. G. Lee, S. Mansouri, K. Hapgood, X. D. Chen, M. W. Woo

Abstract:

Folic acid (FA) is known to be an important supplement to prevent neural tube defect (NTD) in pregnant women. Similar to some commercial formulations, sodium bicarbonate solution is used as a solvent for FA. This work uses the antisolvent vapor precipitation (AVP), incorporating ethanol vapor as the convective drying medium in place of air to produce branch-like micro-structure FA particles. Interestingly, the dissolution rate of the resultant particle is 2-3 times better than the particle produce from conventional air drying due to the higher surface area of particles produced. The higher dissolution rate could possibly improve the delivery and absorption of FA in human body. This application could potentially be extended to other commercial products, particularly in less soluble drugs to improve its solubility.

Keywords: absorption, antisolvent vapor precipitation, dissolution rate, folic acid

Procedia PDF Downloads 411
1414 The Effect of SIO2 Addition on the Formation and Superconducting Properties of BI2SR2CACU2O8+D System

Authors: N. Boussouf, M. F. Mosbah, M.Hamel, S. Menassel

Abstract:

SiO2 particles were inserted (added) into Bi2Sr2CaCu2O8+d precursor powders in various weight fractions. The influence of Si addition to the Bi2212 system on its phase formation, microstructure and transport properties is investigated. Samples are characterized by means of X ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDX), magnetic AC susceptibility and resistivity measurements. For 1% of added Si, the results showed an increase of the apparent superconducting volume fraction. All the samples doped with Si contained a majority fraction of the high TC superconducting Bi2212 phase. SEM observation showed that the average grain size of the Si added samples increased more than that of the sample without Si. From resistivity measurement the Tconset was found to be increased by 7 K for 1% and 5% of added Si compared to the pure sample.

Keywords: superconductors, Bi2212, doping, SiO2 particles

Procedia PDF Downloads 203
1413 Experimental Investigation of the Thermal Performance of Fe2O3 under Magnetic Field in an Oscillating Heat Pipe

Authors: H. R. Goshayeshi, M. Khalouei, S. Azarberamman

Abstract:

This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions. This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions.

Keywords: experimental, oscillating heat pipe, heat transfer, magnetic field

Procedia PDF Downloads 239
1412 Acute Hepatotoxicity of Nano and Micro-Sized Iron Particles in Adult Albino Rats

Authors: Ghada Hasabo, Mahmoud Saber Elbasiouny, Mervat Abdelsalam, Sherin Ghaleb, Niveen Eldessouky

Abstract:

In the near future, nanotechnology is envisaged for large scale use. Hence health and safety issues of nanoparticles should be promptly addressed. In the present study the acute hepatoxicity assessment due to high single oral dose of nano iron and micro iron particles were studied. The normal daily activities, biochemical alterations, blood coagulation, histopathological changes in Wister rats were the aspect of the toxicological assessment.This work found that significant alterations in biochemical enzymes (serum iron level, liver enzymes, albumin, and bilirubin levels), blood coagulation (PT, PC, INR), and histopathological changes occurred more prominently in the nano iron particle treated group.

Keywords: nanobiotechnology, nanosystems, nanomaterials, nanotechnology

Procedia PDF Downloads 469
1411 Bioremediation of Disposed X-Ray Film for Nanoparticles Production

Authors: Essam A. Makky, Siti H. Mohd Rasdi, J. B. Al-Dabbagh, G. F. Najmuldeen

Abstract:

The synthesis of silver nano particles (SNPs) extensively studied by using chemical and physical methods. Here, the biological methods were used and give benefits in research field in the aspect of very low cost (from waste to wealth) and safe time as well. The study aims to isolate and exploit the microbial power in the production of industrially important by-products in nano-size with high economic value, to extract highly valuable materials from hazardous waste, to quantify nano particle size, and characterization of SNPs by X-Ray Diffraction (XRD) analysis. Disposal X-ray films were used as substrate because it consumes about 1000 tons of total silver chemically produced worldwide annually. This silver is being wasted when these films are used and disposed. Different bacterial isolates were obtained from various sources. Silver was extracted as nano particles by microbial power degradation from disposal X-ray film as the sole carbon source for ten days incubation period in darkness. The protein content was done and all the samples were analyzed using XRD, to characterize of silver (Ag) nano particles size in the form of silver nitrite. Bacterial isolates CL4C showed the average size of SNPs about 19.53 nm, GL7 showed average size about 52.35 nm and JF Outer 2A (PDA) showed 13.52 nm. All bacterial isolates partially identified using Gram’s reaction and the results obtained exhibited that belonging to Bacillus sp.

Keywords: nanotechnology, bioremediation, disposal X-ray film, nanoparticle, waste, XRD

Procedia PDF Downloads 457
1410 Using Divergent Nozzle with Aerodynamic Lens to Focus Nanoparticles

Authors: Hasan Jumaah Mrayeh, Fue-Sang Lien

Abstract:

ANSYS Fluent will be used to simulate Computational Fluid Dynamics (CFD) for an efficient lens and nozzle design which will be explained in this paper. We have designed and characterized an aerodynamic lens and a divergent nozzle for focusing flow that transmits sub 25 nm particles through the aerodynamic lens. The design of the lens and nozzle has been improved using CFD for particle trajectories. We obtained a case for calculating nanoparticles (25 nm) flowing through the aerodynamic lens and divergent nozzle. Nanoparticles are transported by air, which is pumped into the aerodynamic lens through the nozzle at 1 atmospheric pressure. We have also developed a computational methodology that can determine the exact focus characteristics of aerodynamic lens systems. Particle trajectories were traced using the Lagrange approach. The simulation shows the ability of the aerodynamic lens to focus on 25 nm particles after using a divergent nozzle.

Keywords: aerodynamic lens, divergent nozzle, ANSYS Fluent, Lagrange approach

Procedia PDF Downloads 282
1409 Characterization of A390 Aluminum Alloy Produced at Different Slow Shot Speeds Using Assisted Vacuum High-Pressure Die Casting

Authors: Wenbo Yu, Zihao Yuan, Zhipeng Guo, Shoumei Xiong

Abstract:

Under different slow shot speeds in vacuum assisted high pressure die casting (VHPDC) process, plate-shaped specimens of hypereutectic A390 aluminum alloy were produced. According to the results, the vacuum pressure inside the die cavity increased linearly with the increasing slow shot speed at the beginning of mold filling. Meanwhile, it was found that the tensile properties of vacuum die castings were deteriorated by the porosity content. In addition, the average primary Si size varies between 14µm to 23µm, which has a binary functional relationship with the slow shot speeds. Due to the vacuum effect, the castings were treated by T6 heat treatment. After heat treatment, microstructural morphologies revealed that needle-shaped and thin-flaked eutectic Si particles became rounded while Al2Cu dissolved into α-Al matrix. For the as-received sample in-situ tensile test, microcracks firstly initiate at the primary Si particles and propagated along Al matrix with a transgranular fracture mode. In contrast, for the treated sample, the crack initiated at the Al2Cu particles and propagated along Al grain boundaries with an intergranular fracture mode. In-situ three bending test, microcracks firstly formed in the primary Si particles for both samples. Subsequently, the cracks between primary Si linked along Al grain boundaries in as received sample. In contrast, the cracks in primary Si linked through the solid lines in Al matrix. Furthermore, the fractography revealed that the fracture mechanism has evolved from brittle transgranular fracture to a fracture mode with many dimples after heat treatment.

Keywords: A390 aluminum, vacuum assisted high pressure die casting, heat treatment, mechanical properties

Procedia PDF Downloads 213
1408 Hydrodynamics and Heat Transfer Characteristics of a Solar Thermochemical Fluidized Bed Reactor

Authors: Selvan Bellan, Koji Matsubara, Nobuyuki Gokon, Tatsuya Kodama, Hyun Seok-Cho

Abstract:

In concentrated solar thermal industry, fluidized-bed technology has been used to produce hydrogen by thermochemical two step water splitting cycles, and synthetic gas by gasification of coal coke. Recently, couple of fluidized bed reactors have been developed and tested at Niigata University, Japan, for two-step thermochemical water splitting cycles and coal coke gasification using Xe light, solar simulator. The hydrodynamic behavior of the gas-solid flow plays a vital role in the aforementioned fluidized bed reactors. Thus, in order to study the dynamics of dense gas-solid flow, a CFD-DEM model has been developed; in which the contact forces between the particles have been calculated by the spring-dashpot model, based on the soft-sphere method. Heat transfer and hydrodynamics of a solar thermochemical fluidized bed reactor filled with ceria particles have been studied numerically and experimentally for beam-down solar concentrating system. An experimental visualization of particles circulation pattern and mixing of two-tower fluidized bed system has been presented. Simulation results have been compared with experimental data to validate the CFD-DEM model. Results indicate that the model can predict the particle-fluid flow of the two-tower fluidized bed reactor. Using this model, the key operating parameters can be optimized.

Keywords: solar reactor, CFD-DEM modeling, fluidized bed, beam-down solar concentrating system

Procedia PDF Downloads 171
1407 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction

Authors: Kyoungjin Kim

Abstract:

Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.

Keywords: nanoparticles, thermite reaction, combustion wave, numerical modeling

Procedia PDF Downloads 352
1406 Optimizing Oxidation Process Parameters of Al-Li Base Alloys Using Taguchi Method

Authors: Muna K. Abbass, Laith A. Mohammed, Muntaha K. Abbas

Abstract:

The oxidation of Al-Li base alloy containing small amounts of rare earth (RE) oxides such as 0.2 wt% Y2O3 and 0.2wt% Nd2O3 particles have been studied at temperatures: 400ºC, 500ºC and 550°C for 60hr in a dry air. Alloys used in this study were prepared by melting and casting in a permanent steel mould under controlled atmosphere. Identification of oxidation kinetics was carried out by using weight gain/surface area (∆W/A) measurements while scanning electron microscopy (SEM) and x-ray diffraction analysis were used for micro structural morphologies and phase identification of the oxide scales. It was observed that the oxidation kinetic for all studied alloys follows the parabolic law in most experimental tests under the different oxidation temperatures. It was also found that the alloy containing 0.2 wt %Y 2O3 particles possess the lowest oxidation rate and shows great improvements in oxidation resistance compared to the alloy containing 0.2 wt % Nd2O3 particles and Al-Li base alloy. In this work, Taguchi method is performed to estimate the optimum weight gain /area (∆W/A) parameter in oxidation process of Al-Li base alloys to obtain a minimum thickness of oxidation layer. Taguchi method is used to formulate the experimental layout, to analyses the effect of each parameter (time, temperature and alloy type) on the oxidation generation and to predict the optimal choice for each parameter and analyzed the effect of these parameters on the weight gain /area (∆W/A) parameter. The analysis shows that, the temperature significantly affects on the (∆W/A) parameter.

Keywords: Al-Li base alloy, oxidation, Taguchi method, temperature

Procedia PDF Downloads 340
1405 Multifunctional Coating of Nylon Using Nano-Si, Nano-Ti and SiO2-TiO2 Nancomposite :Properties of Colorimetric and Flammability

Authors: E. Fereydouni, Laleh Maleknia , M. E. Olya

Abstract:

The present research, nylon fabric dyed by pressure method with nano-Si, nano-Ti particles and SiO2-TiO2 nancomposite. The influence of the amount of Si, Ti and SiO2-TiO2 on the performance of nylon fabric was investigated by the use of Fourier transform infrared spectrophotometer (FTIR), horizontal flammability apparatus (HFA), scanning electron microscope (SEM), electron dispersive X-ray spectroscope (EDX), water contact angle tester (WCA) and CIE LAB colorimetric system. The possible interactions between particles and nylon fiber were elucidated by the FTIR spectroscopy. Results indicated that the stabilized nanoparticles and nanocomposite enhances flame retardancy of nylon fabrics. Also, the prominet features of nanoparticles and nanocomposite treatment can note increase of adsorption and fixation of dye.

Keywords: nano-Si, nano- Ti, SiO2-TiO2 nancomposite, nylon fabric, flame retardant nylon

Procedia PDF Downloads 334
1404 Probing Extensive Air Shower Primaries and Their Interactions by Combining Individual Muon Tracks and Shower Depth

Authors: Moon Moon Devi, Ran Budnik

Abstract:

The current large area cosmic ray detector surface arrays typically measure only the net flux and arrival-time of the charged particles produced in an extensive air shower (EAS). Measurement of the individual charged particles at a surface array will provide additional distinguishing parameters to identify the primary and to map the very high energy interactions in the upper layers of the atmosphere. In turn, these may probe anomalies in QCD interactions at energies beyond the reach of current accelerators. The recent attempts of studying the individual muon tracks are limited in their expandability to larger arrays and can only probe primary particles with energy up to about 10^15.5 eV. New developments in detector technology allow for a realistic cost of large area detectors, however with limitations on energy resolutions, directional information, and dynamic range. In this study, we perform a simulation study using CORSIKA to combine the energy spectrum and lateral spread of the muons with the longitudinal depth (Xmax) of an EAS initiated by a primary at ultra high energies (10¹⁶ – 10¹⁹) eV. Using proton and iron as the shower primaries, we show that the muon observables and Xmax together can be used to distinguish the primary. This study can be used to design a future detector for the surface array, which will be able to enhance our knowledge of primaries and QCD interactions.

Keywords: ultra high energy extensive air shower, muon tracking, air shower primaries, QCD interactions

Procedia PDF Downloads 195
1403 Effect of Various Capping Agents on Photocatalytic, Antibacterial and Antibiofilm of ZnO Nanoparticles

Authors: K. Akhil, J. Jayakumar, S. Sudheer Khan

Abstract:

Zinc oxide nanoparticles (ZnO NPs) are extensively used in a wide variety of commercial products including sunscreen, textile and paints. The present study evaluated the effect of surface capping agents including polyethylene glycol (EG), gelatin, polyvinyl alcohol(PVA) and poly vinyl pyrrolidone(PVP) on photocatalytic activity of ZnO NPs. The particles were also tested for its antibacterial and antibiofilm activity against Staphylococcus aureus (MTCC 3160) and Pseudomonas aeruginosa (MTCC 1688). Preliminary characterization was done by UV-Visible spectroscopy. Electron microscopic analysis showed that the particles were hexagonal in shape. The hydrodynamic size distribution was analyzed by using dynamic light scattering method and crystalline nature was determined by X-Ray diffraction method.

Keywords: antibacterial, antibiofilm, capping agents, photodegradation, surface coating, zinc oxide nanoparticles

Procedia PDF Downloads 240
1402 Lipid-Coated Magnetic Nanoparticles for Frequency Triggered Drug Delivery

Authors: Yogita Patil-Sen

Abstract:

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) have become increasingly important materials for separation of specific bio-molecules, drug delivery vehicle, contrast agent for MRI and magnetic hyperthermia for cancer therapy. Hyperthermia is emerging as an alternative cancer treatment to the conventional radio- and chemo-therapy, which have harmful side effects. When subjected to an alternating magnetic field, the magnetic energy of SPIONs is converted into thermal energy due to movement of particles. The ability of SPIONs to generate heat and potentially kill cancerous cells, which are more susceptible than the normal cells to temperatures higher than 41 °C forms the basis of hyerpthermia treatement. The amount of heat generated depends upon the magnetic properties of SPIONs which in turn is affected by their properties such as size and shape. One of the main problems associated with SPIONs is particle aggregation which limits their employability in in vivo drug delivery applications and hyperthermia cancer treatments. Coating the iron oxide core with thermally responsive lipid based nanostructures tend to overcome the issue of aggregation as well as improve biocompatibility and can enhance drug loading efficiency. Herein we report suitability of SPIONs and silica coated core-shell SPIONs, which are further, coated with various lipids for drug delivery and magnetic hyperthermia applications. The synthesis of nanoparticles is carried out using the established methods reported in the literature with some modifications. The nanoparticles are characterised using Infrared spectroscopy (IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). The heating ability of nanoparticles is tested under alternating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of alternating magnetic field. The results suggest that the nanoparticles exhibit superparamagnetic behaviour, although coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the alternating magnetic field. Thus, the results demonstrate that lipid coated SPIONs exhibit potential as drug delivery vehicles for magnetic hyperthermia based cancer therapy.

Keywords: drug delivery, hyperthermia, lipids, superparamagnetic iron oxide nanoparticles (SPIONS)

Procedia PDF Downloads 206
1401 Investigation of Shear Strength, and Dilative Behavior of Coarse-grained Samples Using Laboratory Test and Machine Learning Technique

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Coarse-grained soils are known and commonly used in a wide range of geotechnical projects, including high earth dams or embankments for their high shear strength. The most important engineering property of these soils is friction angle which represents the interlocking between soil particles and can be applied widely in designing and constructing these earth structures. Friction angle and dilative behavior of coarse-grained soils can be estimated from empirical correlations with in-situ testing and physical properties of the soil or measured directly in the laboratory performing direct shear or triaxial tests. Unfortunately, large-scale testing is difficult, challenging, and expensive and is not possible in most soil mechanic laboratories. So, it is common to remove the large particles and do the tests, which cannot be counted as an exact estimation of the parameters and behavior of the original soil. This paper describes a new methodology to simulate particles grading distribution of a well-graded gravel sample to a smaller scale sample as it can be tested in an ordinary direct shear apparatus to estimate the stress-strain behavior, friction angle, and dilative behavior of the original coarse-grained soil considering its confining pressure, and relative density using a machine learning method. A total number of 72 direct shear tests are performed in 6 different sizes, 3 different confining pressures, and 4 different relative densities. Multivariate Adaptive Regression Spline (MARS) technique was used to develop an equation in order to predict shear strength and dilative behavior based on the size distribution of coarse-grained soil particles. Also, an uncertainty analysis was performed in order to examine the reliability of the proposed equation.

Keywords: MARS, coarse-grained soil, shear strength, uncertainty analysis

Procedia PDF Downloads 135
1400 Particle Size Effect on Shear Strength of Granular Materials in Direct Shear Test

Authors: R. Alias, A. Kasa, M. R. Taha

Abstract:

The effect of particle size on shear strength of granular materials are investigated using direct shear tests. Small direct shear test (60 mm by 60 mm by 24 mm deep) were conducted for particles passing the sieves with opening size of 2.36 mm. Meanwhile, particles passing the standard 20 mm sieves were tested using large direct shear test (300 mm by 300 mm by 200 mm deep). The large direct shear tests and the small direct shear tests carried out using the same shearing rate of 0.09 mm/min and similar normal stresses of 100, 200, and 300 kPa. The results show that the peak and residual shear strength decreases as particle size increases.

Keywords: particle size, shear strength, granular material, direct shear test

Procedia PDF Downloads 455
1399 Fabrication of Al/Al2O3 Functionally Graded Composites via Centrifugal Method by Using a Polymeric Suspension

Authors: Majid Eslami

Abstract:

Functionally graded materials (FGMs) exhibit heterogeneous microstructures in which the composition and properties gently change in specified directions. The common type of FGMs consist of a metal in which ceramic particles are distributed with a graded concentration. There are many processing routes for FGMs. An important group of these methods is casting techniques (gravity or centrifugal). However, the main problem of casting molten metal slurry with dispersed ceramic particles is a destructive chemical reaction between these two phases which deteriorates the properties of the materials. In order to overcome this problem, in the present investigation a suspension of 6061 aluminum and alumina powders in a liquid polymer was used as the starting material and subjected to centrifugal force for making FGMs. The size rang of these powders was 45-63 and 106-125 μm. The volume percent of alumina in the Al/Al2O3 powder mixture was in the range of 5 to 20%. PMMA (Plexiglas) in different concentrations (20-50 g/lit) was dissolved in toluene and used as the suspension liquid. The glass mold contaning the suspension of Al/Al2O3 powders in the mentioned liquid was rotated at 1700 rpm for different times (4-40 min) while the arm length was kept constant (10 cm) for all the experiments. After curing the polymer, burning out the binder, cold pressing and sintering , cylindrical samples (φ=22 mm h=20 mm) were produced. The density of samples before and after sintering was quantified by Archimedes method. The results indicated that by using the same sized alumina and aluminum powders particles, FGM sample can be produced by rotation times exceeding 7 min. However, by using coarse alumina and fine alumina powders the sample exhibits step concentration. On the other hand, using fine alumina and coarse alumina results in a relatively uniform concentration of Al2O3 along the sample height. These results are attributed to the effects of size and density of different powders on the centrifugal force induced on the powders during rotation. The PMMA concentration and the vol.% of alumina in the suspension did not have any considerable effect on the distribution of alumina particles in the samples. The hardness profiles along the height of samples were affected by both the alumina vol.% and porosity content. The presence of alumina particles increased the hardness while increased porosity reduced the hardness. Therefore, the hardness values did not show the expected gradient in same sample. The sintering resulted in decreased porosity for all the samples investigated.

Keywords: FGM, powder metallurgy, centrifugal method, polymeric suspension

Procedia PDF Downloads 188
1398 Sediment Trapping by Seagrass Blades under Oscillatory Flow

Authors: Aina Barcelona, Carolyn Oldham, Jordi Colomer, Jordi Garcia-Orellana, Teresa Serra

Abstract:

Seagrass meadows increase the sedimentation within the canopy. However, there is still a lack of knowledge about how seagrasses impact the vertical distribution of sediment coming from external sources and reaches the meadow. This study aims to determine the number of particles retained by a seagrass meadow. Based on the hydrodynamics in the vertical direction, a meadow can be separated into different compartments: the blades, the seabed, within the canopy layer, and the above canopy layer. A set of laboratory experiments were conducted under different hydrodynamic conditions and canopy densities with the purpose to mimic the real field conditions. This study demonstrates and quantifies that seagrass meadows decrease the volume of the suspended sediment by two mechanisms: capturing the suspended sediment by the seagrass blades and promoting the particle sedimentation to the seabed. This study also demonstrates that the number of sediment particles trapped by single seagrass blades decreases with canopy density. However, when considering the trapping by the total number of blades, the sediment captured by all the blades of the meadow increases with canopy density. Furthermore, comparing with the bare seabed, this study demonstrated that there is a reduction in the suspended particles within the canopy, which implies an improvement in the water clarity. In addition, the particle sedimentation on the seabed increases with the canopy density compared with the bare seabed, making evident the contribution of the vegetation in enhancing sedimentation.

Keywords: seagrass, sediment capture, turbulent kinetic energy, oscillatory flow

Procedia PDF Downloads 208
1397 Effect of Deep Cryogenic Treatment on Aluminium Alloy Used for Making Heat Exchangers in Automotive HVAC System

Authors: H. Mohit

Abstract:

In automotive air conditioning system, two heat exchangers are used as evaporator and condenser which are placed inside the bonnet of a car in a compact manner. The dust particles from outside and moisture content produced during the process leads to formation of impure particles on the surface of evaporator coil. But in condenser coil, the impure particles are settling down due to dust from atmosphere. The major problem of the heat exchanger used in automotive air conditioning is leakage of refrigerant due to corrosion. This effect of corrosion will lead to damage on the surface of heat exchanger and leakage of refrigerant from the system. To protect from corrosion, coatings are applied on its surfaces. Nowadays, to improve the corrosion resistance of these heat exchangers, hydrophilic coatings are used, which is very expensive. Cryogenic treatment is one method which involves the treatment of materials below -150 °C using the cryogenic fluid such as liquid nitrogen. In this project work, a study of improvement in corrosion resistance of materials of aluminium alloys of various grades as AA 1100, AA 6061, AA 6063 and AA 2024 that are mainly used for fin and tube heat exchangers in automotive air conditioning system is made. In total, five different processes are selected for these grades of aluminium alloy and various parameters like corrosion rate, dimensional stability, hardness and microstructure are measured. The improvements were observed in these parameters while comparing it with conventional heat treatment process.

Keywords: cryogenic treatment, corrosion resistance, dimensional stability, materials science

Procedia PDF Downloads 230
1396 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes

Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert

Abstract:

In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theory

Keywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments

Procedia PDF Downloads 143
1395 Evaluation of Suspended Particles Impact on Condensation in Expanding Flow with Aerodynamics Waves

Authors: Piotr Wisniewski, Sławomir Dykas

Abstract:

Condensation has a negative impact on turbomachinery efficiency in many energy processes.In technical applications, it is often impossible to dry the working fluid at the nozzle inlet. One of the most popular working fluid is atmospheric air that always contains water in form of steam, liquid, or ice crystals. Moreover, it always contains some amount of suspended particles which influence the phase change process. It is known that the phenomena of evaporation or condensation are connected with release or absorption of latent heat, what influence the fluid physical properties and might affect the machinery efficiency therefore, the phase transition has to be taken under account. This researchpresents an attempt to evaluate the impact of solid and liquid particles suspended in the air on the expansion of moist air in a low expansion rate, i.e., with expansion rate, P≈1000s⁻¹. The numerical study supported by analytical and experimental research is presented in this work. The experimental study was carried out using an in-house experimental test rig, where nozzle was examined for different inlet air relative humidity values included in the range of 25 to 51%. The nozzle was tested for a supersonic flow as well as for flow with shock waves induced by elevated back pressure. The Schlieren photography technique and measurement of static pressure on the nozzle wall were used for qualitative identification of both condensation and shock waves. A numerical model validated against experimental data available in the literature was used for analysis of occurring flow phenomena. The analysis of the suspended particles number, diameter, and character (solid or liquid) revealed their connection with heterogeneous condensation importance. If the expansion of fluid without suspended particlesis considered, the condensation triggers so called condensation wave that appears downstream the nozzle throat. If the solid particles are considered, with increasing number of them, the condensation triggers upwind the nozzle throat, decreasing the condensation wave strength. Due to the release of latent heat during condensation, the fluid temperature and pressure increase, leading to the shift of normal shock upstream the flow. Owing relatively large diameters of the droplets created during heterogeneous condensation, they evaporate partially on the shock and continues to evaporate downstream the nozzle. If the liquid water particles are considered, due to their larger radius, their do not affect the expanding flow significantly, however might be in major importance while considering the compression phenomena as they will tend to evaporate on the shock wave. This research proves the need of further study of phase change phenomena in supersonic flow especially considering the interaction of droplets with the aerodynamic waves in the flow.

Keywords: aerodynamics, computational fluid dynamics, condensation, moist air, multi-phase flows

Procedia PDF Downloads 88
1394 Investigation of Electrochemical, Morphological, Rheological and Mechanical Properties of Nano-Layered Graphene/Zinc Nanoparticles Incorporated Cold Galvanizing Compound at Reduced Pigment Volume Concentration

Authors: Muhammad Abid

Abstract:

The ultimate goal of this research was to produce a cold galvanizing compound (CGC) at reduced pigment volume concentration (PVC) to protect metallic structures from corrosion. The influence of the partial replacement of Zn dust by nano-layered graphene (NGr) and Zn metal nanoparticles on the electrochemical, morphological, rheological, and mechanical properties of CGC was investigated. EIS was used to explore the electrochemical nature of coatings. The EIS results revealed that the partial replacement of Zn by NGr and Zn nanoparticles enhanced the cathodic protection at reduced PVC (4:1) by improving the electrical contact between the Zn particles and the metal substrate. The Tafel scan was conducted to support the cathodic behaviour of the coatings. The sample formulated solely with Zn at PVC 4:1 was found to be dominated in physical barrier characteristics over cathodic protection. By increasing the concentration of NGr in the formulation, the corrosion potential shifted towards a more negative side. The coating with 1.5% NGr showed the highest galvanic action at reduced PVC. FE-SEM confirmed the interconnected network of conducting particles. The coating without NGr and Zn nanoparticles at PVC 4:1 showed significant gaps between the Zn dust particles. The novelty was evidenced when micrographs showed the consistent distribution of NGr and Zn nanoparticles all over the surface, which acted as a bridge between spherical Zn particles and provided cathodic protection at a reduced PVC. The layered structure of graphene also improved the physical shielding effect of the coatings, which limited the diffusion of electrolytes and corrosion products (oxides/hydroxides) into the coatings, which was reflected by the salt spray test. The rheological properties of coatings showed good liquid/fluid properties. All the coatings showed excellent adhesion but had different strength values. A real-time scratch resistance assessment showed all the coatings had good scratch resistance.

Keywords: protective coatings, anti-corrosion, galvanization, graphene, nanomaterials, polymers

Procedia PDF Downloads 61
1393 Utilization of Fly Ash as Backfilling Material in Indian Coal Mines

Authors: P. Venkata Karthik, B. Kranthi Kumar

Abstract:

Fly ash is a solid waste product of coal based electric power generating plants. Fly ash is the finest of coal ash particles and it is transported from the combustion chamber by exhaust gases. Fly ash is removed by particulate emission control devices such as electrostatic precipitators or filter fabric bag-houses. It is a fine material with spherical particles. Large quantities of fly ash discharged from coal-fired power stations are a major problem not only in terms of scarcity of land available for its disposal, but also in environmental aspects. Fly ash can be one of the alternatives and can be a viable option to use as a filling material. This paper contains the problems associated with fly ash generation, need for its management and the efficacy of fly ash composite as a backfilling material. By conducting suitable geotechnical investigations and numerical modelling techniques, the fly ash composite material was tested. It also contains case studies of typical Indian opencast and underground coal mines.

Keywords: backfilling, fly ash, high concentration slurry disposal, power plant, void infilling

Procedia PDF Downloads 226
1392 Continuous Synthesis of Nickel Nanoparticles by Hydrazine Reduction

Authors: Yong-Su Jo, Seung-Min Yang, Seok Hong Min, Tae Kwon Ha

Abstract:

The synthesis of nickel nanoparticles by the reduction of nickel chloride with hydrazine in an aqueous solution. The effect of hydrazine concentration on batch-processed particle characteristics was investigated using Field Emission Scanning Electron Microscopy (FESEM). Both average particle size and geometric standard deviation (GSD) were decreasing with increasing hydrazine concentration. The continuous synthesis of nickel nanoparticles by microemulsion method was also studied using FESEM and X-ray Diffraction (XRD). The average size and geometric standard deviation of continuous-processed particles were 87.4 nm and 1.16, respectively. X-ray diffraction revealed continuous-processed particles were pure nickel crystalline with a face-centered cubic (fcc) structure.

Keywords: nanoparticle, hydrazine reduction, continuous process, microemulsion method

Procedia PDF Downloads 424
1391 Grain Growth Behavior of High Carbon Microalloyed Steels Containing Very Low Amounts of Niobium

Authors: Huseyin Zengin, Muhammet Emre Turan, Yunus Turen, Hayrettin Ahlatci, Yavuz Sun

Abstract:

This study aimed for understanding the effects of dilute Nb additions on the austenite microstructure of microalloyed steels at five different reheating temperatures from 950 °C to 1300 °C. Four microalloyed high-carbon steels having 0.8 %wt C were examined in which three of them had varying Nb concentrations from 0.005 wt% to 0.02 wt% and one of them had no Nb concentration. The quantitative metallographic techniques were used to measure the average prior austenite grain size in order to compare the grain growth pinning effects of Nb precipitates as a function of reheating temperature. Due to the higher stability of the precipitates with increasing Nb concentrations, the grain coarsening temperature that resulted in inefficient grain growth impediment and a bimodal grain distribution in the microstructure, showed an increase with increasing Nb concentration. The respective grain coarsening temperatures (T_GC) in an ascending order for the steels having 0.005 wt% Nb, 0.01 wt% Nb and 0.02 wt% Nb were 950 °C, 1050 °C and 1150 °C. According to these observed grain coarsening temperatures, an approximation was made considering the complete dissolution temperature (T_DISS) of second phase particles as T_GC=T_DISS-300. On the other hand, the plain carbon steel did not show abnormal grain growth behaviour due to the absence of second phase particles. It was also observed that the higher the Nb concentration, the smaller the average prior austenite grain size although the small increments in Nb concenration did not change the average grain size considerably.

Keywords: microalloyed steels, prior austenite grains, second phase particles, grain coarsening temperature

Procedia PDF Downloads 231
1390 Production of Hard Nickel Particle Reinforced Ti6Al4V Matrix Composites by Hot Pressing

Authors: Ridvan Yamanoglu

Abstract:

In the current study, titanium based composites reinforced by hard nickel alloy particles were produced. Powder metallurgical hot pressing technique was used for the fabrication of composite materials. The composites containing different ratio of hard nickel particles were sintered at 900 oC for 15 and 30 minutes under 50 MPa pressure. All titanium based composites were obtained under a vacuum atmosphere of 10-4 mbar to prevent of oxidation of titanium due to its high reactivity to oxygen. The microstructural characterization of the composite samples was carried out by optical and scanning electron microscopy. The mechanical properties of the samples were determined by means of hardness and wear tests. The results showed that when the nickel particle content increased the mechanical properties of the composites enhanced. The results are discussed in detail and optimum nickel particle content were determined.

Keywords: titanium, composite, nickel, hot pressing

Procedia PDF Downloads 142