Search results for: transcranial electric field
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9019

Search results for: transcranial electric field

8869 Review, Analysis and Simulation of Advanced Technology Solutions of Selected Components in Power Electronics Systems (PES) of More Electric Aircraft

Authors: Lucjan Setlak, Emil Ruda

Abstract:

The subject of this paper is to review, comparative analysis and simulation of selected components of power electronic systems (PES), consistent with the concept of a more electric aircraft (MEA). Comparative analysis and simulation in software environment MATLAB / Simulink were carried out based on a group of representatives of civil aircraft (B-787, A-380) and military (F-22 Raptor, F-35) in the context of multi-pulse converters used in them (6- and 12-pulse, and 18- and 24-pulse), which are key components of high-tech electronics on-board power systems of autonomous power systems (ASE) of modern aircraft (airplanes of the future).

Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems)

Procedia PDF Downloads 465
8868 Light Car Assisted by PV Panels

Authors: Soufiane Benoumhani, Nadia Saifi, Boubekeur Dokkar, Mohamed Cherif Benzid

Abstract:

This work presents the design and simulation of electric equipment for a hybrid solar vehicle. The new drive train of this vehicle is a parallel hybrid system which means a vehicle driven by a great percentage of an internal combustion engine with 49.35 kW as maximal power and electric motor only as assistance when is needed. This assistance is carried out on the rear axle by a single electric motor of 7.22 kW as nominal power. The motor is driven by 12 batteries connecting in series, which are charged by three PV panels (300 W) installed on the roof and hood of the vehicle. The individual components are modeled and simulated by using the Matlab Simulink environment. The whole system is examined under different load conditions. The reduction of CO₂ emission is obtained by reducing fuel consumption. With the use of this hybrid system, fuel consumption can be reduced from 6.74 kg/h to 5.56 kg/h when the electric motor works at 100 % of its power. The net benefit of the system reaches 1.18 kg/h as fuel reduction at high values of power and torque.

Keywords: light car, hybrid system, PV panel, electric motor

Procedia PDF Downloads 91
8867 The Comparison of the Effect of Mindfulness-Based Relaxation Training and Trans Cranial Electrical Stimulation and Their Combination on Decreasing Physiological Distress in Patients with Type-2 Diabetes

Authors: Gholam Hossein Javanmard, Roghayeh Mohammadi Garegozlo

Abstract:

The present study was a randomized three-group double-blind clinical trial with repeated measures designs which aimed to determine the pure effect and combined effect of mindfulness based-relaxation (MBR) technique and Transcranial Electrical Simulation (tCES) on psychological distress decreasing of patients with type-2 diabetes. The sample of the study consisted of 30 patients with type-2 diabetes who were selected from the Diabetes Association of Bonab city in Iran. The participants were matched and then randomly assigned to the three groups of 10 subjects (MBR, CES, MBR+CES). The subjects received interventions related to their group in 10 individual sessions. Pre-test, post-test, and one-month follow-up were conducted using DASS-42. Analysis of variance with repeated measures showed a significant change in psychological distress. Multivariate covariance analysis and the paired interpersonal comparative test of Ben Foruni indicated that both interventions of MBR and CES have a similar effect on psychological distress decreasing in the post-test and follow-up phase. But, the combined therapy of MBR+CES was more efficient, and it had a more stable effect. However, all three interventions, especially combined intervention of MBR+CES, as efficient and stable treatment, are suggested for improving the psychological status of diabetic patients.

Keywords: mindfulness based-relaxation, transcranial electrical simulation, type 2 diabetes, psychological distress

Procedia PDF Downloads 101
8866 Comparison of Electrical Parameters of Oil-Immersed and Dry-Type Transformer Using Finite Element Method

Authors: U. Amin, A. Talib, S. A. Qureshi, M. J. Hossain, G. Ahmad

Abstract:

The choice evaluation between oil-immersed and dry-type transformers is often controlled by cost, location, and application. This paper compares the electrical performance of liquid- filled and dry-type transformers, which will assist the customer to choose the right and efficient ones for particular applications. An accurate assessment of the time-average flux density, electric field intensity and voltage distribution in an oil-insulated and a dry-type transformer have been computed and investigated. The detailed transformer modeling and analysis has been carried out to determine electrical parameter distributions. The models of oil-immersed and dry-type transformers are developed and solved by using the finite element method (FEM) to compare the electrical parameters. The effects of non-uniform and non-coherent voltage gradient, flux density and electric field distribution on the power losses and insulation properties of transformers are studied in detail. The results show that, for the same voltage and kilo-volt-ampere (kVA) rating, oil-immersed transformers have better insulation properties and less hysteresis losses than the dry-type.

Keywords: finite element method, flux density, transformer, voltage gradient

Procedia PDF Downloads 249
8865 A Study of Electric Generation Characteristics for Thin-Film Piezoelectric PbZrTiO₃ Ceramic Plate during the Static and Cyclic Loading Conditions

Authors: Tsukasa Ogawa, Mitsuhiro Okayasu

Abstract:

To examine the generation properties of electric power for piezoelectric (PbZrTiO3) ceramic plates, the electric-power generation characteristics were examined experimentally and numerically during cyclic bending under various loading fixtures with different contact condition, i.e., point and area contact. In the low applied loading condition between 10 and 50 N, increasing the load-contact area on the piezoelectric ceramic led to a nonlinear decrease in the generated voltage. Decreasing contact area, including the point contact, basically enhanced the generated voltage, although the voltage saturated during loading when the contact area is less than ϕ5 mm, which was attributed to the high strain status, resulting in the material failure, i.e., high stress concentration. In this case, severe plastic deformation and the domain switching were dominated failure modes in the ceramic. From this approach, it is clear that the applied load became more larger (50 ~100 N), larger contact area (ϕ10 ~ ϕ20 mm) became advantageous for power generation. Based upon this cyclic loading was carried out to investigate the fatigue characteristics of the piezoelectric ceramic late. For all contact conditions, electric voltage dropped in the beginning of the cyclic loading, although the higher electric generation was stable in the further cyclic loading for the contact area of ϕ10 ~ ϕ20 mm. In constant, further decrement of electric generation occurred for the point contact condition, and the low electric voltage was generated for the larger contact condition.

Keywords: electric power generation, piezoelectric ceramic, lead zirconate titanate ceramic, loading conditions

Procedia PDF Downloads 136
8864 Channel Length Modulation Effect on Monolayer Graphene Nanoribbon Field Effect Transistor

Authors: Mehdi Saeidmanesh, Razali Ismail

Abstract:

Recently, Graphene Nanoribbon Field Effect Transistors (GNR FETs) attract a great deal of attention due to their better performance in comparison with conventional devices. In this paper, channel length Modulation (CLM) effect on the electrical characteristics of GNR FETs is analytically studied and modeled. To this end, the special distribution of the electric potential along the channel and current-voltage characteristic of the device is modeled. The obtained results of analytical model are compared to the experimental data of published works. As a result, it is observable that considering the effect of CLM, the current-voltage response of GNR FET is more realistic.

Keywords: graphene nanoribbon, field effect transistors, short channel effects, channel length modulation

Procedia PDF Downloads 378
8863 Electret: A Solution of Partial Discharge in High Voltage Applications

Authors: Farhina Haque, Chanyeop Park

Abstract:

The high efficiency, high field, and high power density provided by wide bandgap (WBG) semiconductors and advanced power electronic converter (PEC) topologies enabled the dynamic control of power in medium to high voltage systems. Although WBG semiconductors outperform the conventional Silicon based devices in terms of voltage rating, switching speed, and efficiency, the increased voltage handling properties, high dv/dt, and compact device packaging increase local electric fields, which are the main causes of partial discharge (PD) in the advanced medium and high voltage applications. PD, which occurs actively in voids, triple points, and airgaps, is an inevitable dielectric challenge that causes insulation and device aging. The aging process accelerates over time and eventually leads to the complete failure of the applications. Hence, it is critical to mitigating PD. Sharp edges, airgaps, triple points, and bubbles are common defects that exist in any medium to high voltage device. The defects are created during the manufacturing processes of the devices and are prone to high-electric-field-induced PD due to the low permittivity and low breakdown strength of the gaseous medium filling the defects. A contemporary approach of mitigating PD by neutralizing electric fields in high power density applications is introduced in this study. To neutralize the locally enhanced electric fields that occur around the triple points, airgaps, sharp edges, and bubbles, electrets are developed and incorporated into high voltage applications. Electrets are electric fields emitting dielectric materials that are embedded with electrical charges on the surface and in bulk. In this study, electrets are fabricated by electrically charging polyvinylidene difluoride (PVDF) films based on the widely used triode corona discharge method. To investigate the PD mitigation performance of the fabricated electret films, a series of PD experiments are conducted on both the charged and uncharged PVDF films under square voltage stimuli that represent PWM waveform. In addition to the use of single layer electrets, multiple layers of electrets are also experimented with to mitigate PD caused by higher system voltages. The electret-based approach shows great promise in mitigating PD by neutralizing the local electric field. The results of the PD measurements suggest that the development of an ultimate solution to the decades-long dielectric challenge would be possible with further developments in the fabrication process of electrets.

Keywords: electrets, high power density, partial discharge, triode corona discharge

Procedia PDF Downloads 180
8862 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon

Authors: M. Salmanpour, O. Nourani Zonouz

Abstract:

In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.

Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders, simulation

Procedia PDF Downloads 441
8861 Educational Plan and Program of the Subject: Maintenance of Electric Power Equipment

Authors: Rade M. Ciric, Sasa Mandic

Abstract:

Students of Higher Education Technical School of Professional Studies, in Novi Sad follow the subject Maintenance of electric power equipment at the Electrotechnical Department. This paper presents educational plan and program of the subject Maintenance of electric power equipment. The course deals with the problems of preventive and investing maintenance of transformer stations (TS), performing and maintenance of grounding of TS and pillars, as well as tracing and detection the location of the cables failure. There is a special elaborated subject concerning the safe work conditions for the electrician during network maintenance, as well as the basics of making and keeping technical documentation of the equipment.

Keywords: educational plan and program, electric power equipment, maintenance, technical documentation, safe work

Procedia PDF Downloads 431
8860 Optimal Energy Management System for Electrical Vehicles to Further Extend the Range

Authors: M. R. Rouhi, S. Shafiei, A. Taghavipour, H. Adibi-Asl, A. Doosthoseini

Abstract:

This research targets at alleviating the problem of range anxiety associated with the battery electric vehicles (BEVs) by considering mechanical and control aspects of the powertrain. In this way, all the energy consuming components and their effect on reducing the range of the BEV and battery life index are identified. On the other hand, an appropriate control strategy is designed to guarantee the performance of the BEV and the extended electric range which is evaluated by an extensive simulation procedure and a real-world driving schedule.

Keywords: battery, electric vehicles, ultra-capacitor, model predictive control

Procedia PDF Downloads 230
8859 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example

Authors: Yue Huang, Yiheng Feng

Abstract:

Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.

Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing

Procedia PDF Downloads 60
8858 Modelling of Relocation and Battery Autonomy Problem on Electric Cars Sharing Dynamic by Using Discrete Event Simulation and Petri Net

Authors: Taha Benarbia, Kay W. Axhausen, Anugrah Ilahi

Abstract:

Electric car sharing system as ecologic transportation increasing in the world. The complexity of managing electric car sharing systems, especially one-way trips and battery autonomy have direct influence to on supply and demand of system. One must be able to precisely model the demand and supply of these systems to better operate electric car sharing and estimate its effect on mobility management and the accessibility that it provides in urban areas. In this context, our work focus to develop performances optimization model of the system based on discrete event simulation and stochastic Petri net. The objective is to search optimal decisions and management parameters of the system in order to fulfil at best demand while minimizing undesirable situations. In this paper, we present new model of electric cars sharing with relocation based on monitoring system. The proposed approach also help to precise the influence of battery charging level on the behaviour of system as important decision parameter of this complex and dynamical system.

Keywords: electric car-sharing systems, smart mobility, Petri nets modelling, discrete event simulation

Procedia PDF Downloads 153
8857 Analyzing the Effect of Ambient Temperature and Loads Power Factor on Electric Generator Power Rating

Authors: Ahmed Elsebaay, Maged A. Abu Adma, Mahmoud Ramadan

Abstract:

This study presents a technique clarifying the effect of ambient air temperature and loads power factor changing from standard values on electric generator power rating. The study introduces an optimized technique for selecting the correct electric generator power rating for certain application and operating site ambient temperature. The de-rating factors due to the previous effects will be calculated to be applied on a generator to select its power rating accurately to avoid unsafe operation and save its lifetime. The information in this paper provides a simple, accurate, and general method for synchronous generator selection and eliminates common errors.

Keywords: ambient temperature, de-rating factor, electric generator, power factor

Procedia PDF Downloads 326
8856 Mueller Matrix Polarimetry for Analysis Scattering Biological Fluid Media

Authors: S. Cherif, A. Medjahed, M. Bouafia, A. Manallah

Abstract:

A light wave is characterized by 4 characteristics: its amplitude, its frequency, its phase and the direction of polarization of its luminous vector (the electric field). It is in this last characteristic that we will be interested. The polarization of the light was introduced in order to describe the vectorial behavior of the light; it describes the way in which the electric field evolves in a point of space. Our work consists in studying diffusing mediums. Different types of biological fluids were selected to study the evolution of each with increasing scattering power of the medium, and in the same time to make a comparison between them. When crossing these mediums, the light undergoes modifications and/or deterioration of its initial state of polarization. This phenomenon is related to the properties of the medium, the idea is to compare the characteristics of the entering and outgoing light from the studied medium by a white light. The advantage of this model is that it is experimentally accessible workable intensity measurements with CCD sensors and allows operation in 2D. The latter information is used to discriminate some physical properties of the studied areas. We chose four types of milk to study the evolution of each with increasing scattering power of the medium.

Keywords: light polarization, Mueller matrix, Mueller images, diffusing medium, milk

Procedia PDF Downloads 310
8855 Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels

Authors: Meimei Wen, Chang Nyung Kim

Abstract:

In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows.

Keywords: CFX, liquid metal, manifold, MHD flow

Procedia PDF Downloads 323
8854 The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating

Authors: Siming Wang, Qing Ni, Yu Wu, Ruihai Xu, Hong Ye

Abstract:

Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500°C but degrades beyond 600°C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high volume power density, demonstrating great potential in the fluid heating field.

Keywords: conductive coating, honeycomb ceramic electric heater, high specific surface area, high volume power density

Procedia PDF Downloads 111
8853 Transient Phenomena in a 100 W Hall Thrusters: Experimental Measurements of Discharge Current and Plasma Parameter Evolution

Authors: Clémence Royer, Stéphane Mazouffre

Abstract:

Nowadays, electric propulsion systems play a crucial role in space exploration missions due to their high specific impulse and long operational life. The Hall thrusters are one of the most mature EP technologies. It is a gridless ion thruster that has proved reliable and high-performance for decades in various space missions. Operation of HT relies on electron emissions through a cathode placed outside a hollow dielectric channel that includes an anode at the back. Negatively charged particles are trapped in a magnetic field and efficiently slow down. By collisions, the electron cloud ionizes xenon atoms. A large electric field is generated in the axial direction due to the low electron transverse mobility in the region of a strong magnetic field. Positive particles are pulled out of the chamber at high velocity and are neutralized directly at the exhaust area. This phenomenon leads to the acceleration of the spacecraft system at a high specific impulse. While HT’s architecture and operating principle are relatively simple, the physics behind thrust is complex and still partly unknown. Current and voltage oscillations, as well as electron properties, have been captured over a 30 mn time period after ignition. The observed low-frequency oscillations exhibited specific frequency ranges, amplitudes, and stability patterns. Correlations between the oscillations and plasma characteristics we analyzed. The impact of these instabilities on thruster performance, including thrust efficiency, has been evaluated as well. Moreover, strategies for mitigating and controlling these instabilities have been developed, such as filtering. In this contribution, in addition to presenting a summary of the results obtained in the transient regime, we will present and discuss recent advances in Hall thruster plasma discharge filtering and control.

Keywords: electric propulsion, Hall Thruster, plasma diagnostics, low-frequency oscillations

Procedia PDF Downloads 54
8852 Electrohydrodynamic Study of Microwave Plasma PECVD Reactor

Authors: Keltoum Bouherine, Olivier Leroy

Abstract:

The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.

Keywords: electron density, electric field, microwave plasma reactor, gas velocity, non-equilibrium plasma

Procedia PDF Downloads 303
8851 Microswitches with Sputtered Au, Aupd, Au-on-Aupt, and Auptcu Alloy - Electric Contacts

Authors: Nikolay Konukhov

Abstract:

This paper to report on a new analytic model for predicting microcontact resistance and the design, fabrication, and testing of microelectromechanical systems (MEMS) metal contact switches with sputtered bimetallic (i.e., gold (Au)-on-Au-platinum (Pt), (Au-on-Au-(6.3at%)Pt)), binary alloy (i.e., Au-palladium (Pd), (Au-(3.7at%)Pd)), and ternary alloy (i.e., Au-Pt-copper (Cu), (Au-(5.0at%)Pt-(0.5at%)Cu)) electric contacts. The microswitches with bimetallic and binary alloy contacts resulted in contact resistance values between 1–2

Keywords: alloys, electric contacts, microelectromechanical systems (MEMS), microswitch

Procedia PDF Downloads 142
8850 Hybrid System Configurations and Charging Strategies for Isolated Electric Tuk-Tuk Charging Station in South Africa

Authors: L. Bokopane, K. Kusakana, H. J. Vermaark

Abstract:

The success of renewable powered electric vehicle charging station in isolated areas depends highly on the availability and sustainability of renewable resources all year round at a selected location. The main focus of this paper is to discuss the possible charging strategies that could be implemented to find the best possible configuration of an electric Tuk-Tuk charging station at a given location within South Africa. The charging station is designed, modeled and simulated to evaluate its performances. The techno-economic analysis of different feasible supply configurations of the charging station using renewable energies is simulated using HOMER software and the results compared in order to select the best possible charging strategies in terms of cost of energy consumed.

Keywords: electric tuk-tuk, renewable energy, energy Storage, hybrid systems, HOMER

Procedia PDF Downloads 492
8849 Assessment of Cytogenetic Damage as a Function of Radiofrequency Electromagnetic Radiations Exposure Measured by Electric Field Strength: A Gender Based Study

Authors: Ramanpreet, Gursatej Gandhi

Abstract:

Background: Dependence on electromagnetic radiations involved in communication and information technologies has incredibly increased in the personal and professional world. Among the numerous radiations, sources are fixed site transmitters, mobile phone base stations, and power lines beside indoor devices like cordless phones, WiFi, Bluetooth, TV, radio, microwave ovens, etc. Rather there is the continuous emittance of radiofrequency radiations (RFR) even to those not using the devices from mobile phone base stations. The consistent and widespread usage of wireless devices has build-up electromagnetic fields everywhere. In fact, the radiofrequency electromagnetic field (RF-EMF) has insidiously become a part of the environment and like any contaminant may pose to be health-hazardous requiring assessment. Materials and Methods: In the present study, cytogenetic damage was assessed using the Buccal Micronucleus Cytome (BMCyt) assay as a function of radiation exposure after Institutional Ethics Committee clearance of the study and written voluntary informed consent from the participants. On a pre-designed questionnaire, general information lifestyle patterns (diet, physical activity, smoking, drinking, use of mobile phones, internet, Wi-Fi usage, etc.) genetic, reproductive (pedigrees) and medical histories were recorded. For this, 24 hour-personal exposimeter measurements (PEM) were recorded for unrelated 60 healthy adults (40 cases residing in the vicinity of mobile phone base stations since their installation and 20 controls residing in areas with no base stations). The personal exposimeter collects information from all the sources generating EMF (TETRA, GSM, UMTS, DECT, and WLAN) as total RF-EMF uplink and downlink. Findings: The cases (n=40; 23-90 years) and the controls (n=20; 19-65 years) matched for alcohol drinking, smoking habits, and mobile and cordless phone usage. The PEM in cases (149.28 ± 8.98 mV/m) revealed significantly higher (p=0.000) electric field strength compared to the recorded value (80.40 ± 0.30 mV/m) in controls. The GSM 900 uplink (p=0.000), GSM 1800 downlink (p=0.000),UMTS (both uplink; p=0.013 and downlink; p=0.001) and DECT (p=0.000) electric field strength were significantly elevated in the cases as compared to controls. The electric field strength in the cases was significantly from GSM1800 (52.26 ± 4.49mV/m) followed by GSM900 (45.69 ± 4.98mV/m), UMTS (25.03 ± 3.33mV/m), DECT (18.02 ± 2.14mV/m) and was least from WLAN (8.26 ± 2.35mV/m). The higher significantly (p=0.000) increased exposure to the cases was from GSM (97.96 ± 6.97mV/m) in comparison to UMTS, DECT, and WLAN. The frequencies of micronuclei (1.86X, p=0.007), nuclear buds (2.95X, p=0.002) and cell death parameter (condensed chromatin cells) were significantly (1.75X, p=0.007) elevated in cases compared to that in controls probably as a function of radiofrequency radiation exposure. Conclusion: In the absence of other exposure(s), any cytogenetic damage if unrepaired is a cause of concern as it can cause malignancy. Larger sample size with the clinical assessment will prove more insightful of such an effect.

Keywords: Buccal micronucleus cytome assay, cytogenetic damage, electric field strength, personal exposimeter

Procedia PDF Downloads 128
8848 Synthesis of Iron-Modified Montmorillonite as Filler for Electrospun Nanocomposite Fibers

Authors: Khryslyn Araño, Dela Cruz, Michael Leo, Dela Pena, Eden May, Leslie Joy Diaz

Abstract:

Montmorillonite (MMT) is a very abundant clay mineral and is versatile such that it can be chemically or physically altered by changing the ions between the sheets of its layered structure. This clay mineral can be prepared into functional nanoparticles that can be used as fillers in other nanomaterials such as nanofibers to achieve special properties. In this study, two types of iron-modified MMT, Iron-MMT (FeMMT) and Zero Valent Iron-MMT (ZVIMMT) were synthesized via ion exchange technique. The modified clay was incorporated in polymer nanofibers which were produced using a process called electrospinning. ICP analysis confirmed that clay modification was successful where there is an observed decrease in the concentration of Na and an increase in the concentration of Fe after ion exchange. XRD analysis also confirmed that modification took place because of the changes in the d-spacing of Na-MMT from 11.5 Å to 13.6 Å and 12.6 Å after synthesis of FeMMT and ZVIMMT, respectively. SEM images of the electrospun nanofibers revealed that the ZVIMMT-filled fibers have a smaller average diameter than the FeMMT-filled fibers because of the lower resistance of the suspensions of the former to the elongation force from the applied electric field. The resistance to the electric field was measured by getting the bulk voltage of the suspensions.

Keywords: electrospinning, nanofibers, montmorillonite, materials science

Procedia PDF Downloads 310
8847 A Novel Design Methodology for a 1.5 KW DC/DC Converter in EV and Hybrid EV Applications

Authors: Farhan Beg

Abstract:

This paper presents a method for the efficient implementation of a unidirectional or bidirectional DC/DC converter. The DC/DC converter is used essentially for energy exchange between the low voltage service battery and a high voltage battery commonly found in Electric Vehicle applications. In these applications, apart from cost, efficiency of design is an important characteristic. A useful way to reduce the size of electronic equipment in the electric vehicles is proposed in this paper. The technique simplifies the mechanical complexity and maximizes the energy usage using the latest converter control techniques. Moreover a bidirectional battery charger for hybrid electric vehicles is also implemented in this paper. Several simulations on the test system have been carried out in Matlab/Simulink environment. The results exemplify the robustness of the proposed design methodology in case of a 1.5 KW DC-DC converter.

Keywords: DC-DC converters, electric vehicles, power electronics, direct current control

Procedia PDF Downloads 695
8846 Electric Propulsion Systems in Aerospace Applications - Energy Balance Analysis

Authors: T. Tulwin, M. Gęca, R. Sochaczewski

Abstract:

Recent improvements in electric propulsion systems and energy storage systems allow for the electrification of many sectors where it was previously not feasible. This analysis proves the feasibility of electric propulsion in aviation applications reviewing recent energy storage developments. It can be more quiet, energy efficient and more environmentally friendly. Numerical simulations were done to prove that energy efficiency can be improved for rotorcrafts especially in hover conditions. New types of aircraft configurations are reviewed and future trends are presented.

Keywords: aircraft, propulsion , efficiency, storage

Procedia PDF Downloads 137
8845 Robust Control of Traction Motors based Electric Vehicles by Means of High-Gain

Authors: H. Mekki, A. Djerioui, S. Zeghlache, L. Chrifi-Alaoui

Abstract:

Induction motor (IM)Induction motor (IM) are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system.

Keywords: electric vehicles, sliding mode control, induction motor drive, high gain observer

Procedia PDF Downloads 51
8844 Selling Electric Vehicles: Experiences from Car Salesmen in Sweden

Authors: Jens Hagman, Jenny Janhager Stier, Ellen Olausson, Anne Y. Faxer, Ana Magazinius

Abstract:

Sweden has the second highest electric vehicle (plug-in hybrid and battery electric vehicle) sales per capita in Europe but in relation to sales of internal combustion engine electric vehicles sales are still minuscular (< 4%). Much research effort has been placed on various technical and user focused barriers and enablers for adoption of electric vehicles. Less effort has been placed on investigating the retail (dealership-customer) sales process of vehicles in general and electric vehicles in particular. Arguably, no one ought to be better informed about needs and desires of potential electric vehicle buyers than car salesmen, originating from their daily encounters with customers at the dealership. The aim of this paper is to explore the conditions of selling electric vehicle from a car salesmen’s perspective. This includes identifying barriers and enablers for electric vehicle sales originating from internal (dealership and brand) and external (customer, government) sources. In this interview study five car brands (manufacturers) that sell both electric and internal combustion engine vehicles have been investigated. A total of 15 semi-structured interviews have been conducted (three per brand, in rural and urban settings and at different dealerships). Initial analysis reveals several barriers and enablers, experienced by car salesmen, which influence electric vehicle sales. Examples of as reported by car salesmen identified barriers are: -Electric vehicles earn car salesmen less commission on average compared to internal combustion engine vehicles. -It takes more time to sell and deliver an electric vehicle than an internal combustion engine vehicle. -Current leasing contracts entails relatively low second-hand value estimations for electric vehicles and thus a high leasing fee, which negatively affects the attractiveness of electric vehicles for private consumers in particular. -High purchasing price discourages many consumers from considering electric vehicles. -The education and knowledge level of electric vehicles differs between car salesmen, which could affect their self-confidence in meeting well prepared and question prone electric vehicle buyers. Examples of identified enablers are: -Company car tax regulation promotes sales of electric vehicles; in particular, plug-in hybrid electric vehicles are sold extensively to companies (up to 95 % of sales). -Low operating cost of electric vehicles such as fuel and service is an advantage when understood by consumers. -The drive performance of electric vehicles (quick, silent and fun to drive) is attractive to consumers. -Environmental aspects are considered important for certain consumer groups. -Fast technological improvements, such as increased range are opening up a wider market for electric vehicles. -For one of the brands; attractive private lease campaigns have proved effective to promote sales. This paper gives insights of an important but often overlooked aspect for the diffusion of electric vehicles (and durable products in general); the interaction between car salesmen and customers at the critical acquiring moment. Extracted through interviews with multiple car salesmen. The results illuminate untapped potential for sellers (salesmen, dealerships and brands) to mitigating sales barriers and strengthening sales enablers and thus becoming a more important actor in the electric vehicle diffusion process.

Keywords: customer barriers, electric vehicle promotion, sales of electric vehicles, interviews with car salesmen

Procedia PDF Downloads 199
8843 Anesthetic Considerations for Carotid Endarterectomy: Prospective Study Based on Clinical Trials

Authors: Ahmed Yousef A. Al Sultan

Abstract:

Introduction: The aim of this review is based on clinical research that studies the changes in middle cerebral artery velocity using Transcranial Doppler (TCD) and cerebral oxygen saturation using cerebral oximetry in patients undergoing carotid endarterectomy (CEA) surgery under local anesthesia (LA). Patients with or without neurological symptoms during the surgery are taking a role in this study using triplet method of cerebral oximetry, transcranial doppler and awake test in detecting any cerebral ischemic symptoms. Methods: about one hundred patients took part during their CEA surgeries under local anesthesia, using triple assessment mentioned method, Patients requiring general anesthesia be excluded from analysis. All data were recorded at eight surgery stages separately to serve this study. Results: In total regional cerebral oxygen saturation (rSO2), middle cerebral artery (MCA) velocity, and pulsatility index were significantly decreased during carotid artery clamping step in CEA procedures on the targeted carotid side. With most observed changes in MCA velocity during the study. Discussion: Cerebral oxygen saturation and middle cerebral artery velocity were significantly decreased during clamping step of the procedures on the targeted side. The team with neurological symptoms during the procedures showed higher changes of rSO2 and MCA velocity than the team without neurological symptoms. Cerebral rSO2 and MCA velocity significantly increased directly after de-clamping of the internal carotid artery on the affected side.

Keywords: awake testing, carotid endarterectomy, cerebral oximetry, Tanscranial Doppler

Procedia PDF Downloads 140
8842 Laser Beam Bending via Lenses

Authors: Remzi Yildirim, Fatih. V. Çelebi, H. Haldun Göktaş, A. Behzat Şahin

Abstract:

This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams.

Keywords: laser, bending, lens, light, nonlinear optics

Procedia PDF Downloads 454
8841 Laser Light Bending via Lenses

Authors: Remzi Yildirim, Fatih V. Çelebi, H. Haldun Göktaş, A. Behzat Şahin

Abstract:

This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams.

Keywords: laser, bending, lens, light, nonlinear optics

Procedia PDF Downloads 667
8840 Cognitive Effects of Repetitive Transcranial Magnetic Stimulation in Patients with Parkinson's Disease

Authors: Ana Munguia, Gerardo Ortiz, Guadalupe Gonzalez, Fiacro Jimenez

Abstract:

Parkinson's disease (PD) is a neurodegenerative disorder that causes motor and cognitive symptoms. The first-choice treatment for these patients is pharmacological, but this generates several side effects. Because of that new treatments were introduced such as Repetitive Transcranial Magnetic Stimulation (rTMS) in order to improve the life quality of the patients. Several studies suggest significant changes in motor symptoms. However, there is a great diversity in the number of pulses, amplitude, frequency and stimulation targets, which results in inconsistent data. In addition, these studies do not have an analysis of the neuropsychological effects of the treatment. The main purpose of this study is to evaluate the impact of rTMS on the cognitive performance of 6 patients with H&Y III and IV (45-65 years, 3 men and 3 women). An initial neuropsychological and neurological evaluation was performed. Patients were randomized into two groups; in the first phase one received rTMS in the supplementary motor area, the other group in the dorsolateral prefrontal cortex contralateral to the most affected hemibody. In the second phase, each group received the stimulation in the area that he had not been stimulated previously. Reassessments were carried out at the beginning, at the end of each phase and a follow-up was carried out 6 months after the conclusion of the stimulation. In these preliminary results, it is reported that there's no statistically significant difference before and after receiving rTMS in the neuropsychological test scores of the patients, which suggests that the cognitive performance of patients is not detrimental. There are even tendencies towards an improvement in executive functioning after the treatment. What added to motor improvement, showed positive effects in the activities of the patients' daily life. In a later and more detailed analysis, will be evaluated the effects in each of the patients separately in relation to the functionality of the patients in their daily lives.

Keywords: Parkinson's disease, rTMS, cognitive, treatment

Procedia PDF Downloads 122